biosel 2011 plastids

30

Transcript of biosel 2011 plastids

Page 1: biosel 2011 plastids
Page 2: biosel 2011 plastids

DEFINISIDEFINISI

PLASTIDA : organela pada sel PLASTIDA : organela pada sel tumbuhan yang dapat menimbulkan tumbuhan yang dapat menimbulkan efek warnaefek warna

KLOROPLAS : plastida yang KLOROPLAS : plastida yang menghasilkan warna hijaumenghasilkan warna hijau

Page 3: biosel 2011 plastids

MACAM PLASTIDAMACAM PLASTIDA

KROMOPLASKROMOPLAS : plastida yang : plastida yang memantulkan warna merah atau memantulkan warna merah atau orangeorange

pada bunga dan buahpada bunga dan buah

LEUKOPLASLEUKOPLAS : plastida yang tidak : plastida yang tidak memancarkan cahayamemancarkan cahaya

pada sel-sel penyusun organ akarpada sel-sel penyusun organ akar

Page 4: biosel 2011 plastids

STRUKTUR KLOROPLASSTRUKTUR KLOROPLAS

Bentuk lensaBentuk lensa Ukuran 2- 5 um Ukuran 2- 5 um Tersusun atas membran rangkap : Tersusun atas membran rangkap :

membran luar dan membran dalammembran luar dan membran dalam Terdapat Terdapat stromastroma (matriks cair) (matriks cair)

banyak mengandung enzimbanyak mengandung enzim Membran dalam menyusunMembran dalam menyusun tilakoid tilakoid

membran tilakoidmembran tilakoid dan lumendan lumen Tumpukan tilakoid Tumpukan tilakoid granumgranum

Page 5: biosel 2011 plastids

Tilakoid Tilakoid rumahnya klorofil rumahnya klorofil Klorofil menyerap energi matahari Klorofil menyerap energi matahari Karbohidrat diproduksi di stromaKarbohidrat diproduksi di stroma

Page 6: biosel 2011 plastids

PlastidaPlastida

Organela spesifik dari sel tumbuhan dan

beberapa protista yang berfungsi menangkap dan

memantulkan cahaya, sehingga menimbulkan

efek warna yang khas.

Plastida memiliki beberapa bentuk yang dapat

berubah menjadi bentuk2 yang lain. Bentuk

terbanyak adl kloroplas.

Plastida lain yang berwarna adl lastida lain yang berwarna adl kromoplaskromoplas dan yg dan yg

tidak berwarna adl tidak berwarna adl leukoplasleukoplas

Page 7: biosel 2011 plastids

Kloroplas

Plastida yang berwarna hijau Struktur kloroplas memiliki 2 lapis membran yang membungkus cairan kloroplas / stroma Di dalam stroma terdapat lempeng tilakoid sebagai ‘tempat tinggal’ klorofil Klorofil mampu menyerap energi sinar matahari Pembentukan glukosa hasil fotosintesis berlangsung di dalam stroma.

Page 8: biosel 2011 plastids

Bagian dalam Kloroplas :

1. grana (chlorophyll-rich) and stroma (chlorophyll-poor)

2. DNA kloroplas

Page 9: biosel 2011 plastids

KromoplasKromoplasPlastida utk warna merah, kuning atau orange

Warna ini hasil dari xantophyll (kuning) dan

carotenoids (kuning smp merah)

Dijumpai pada organ bunga, buah dan beberapa akarDijumpai pada organ bunga, buah dan beberapa akar

LeukoplasLeukoplas

Plastida yang tidak berwarna dibentuk dari ProplastidaPlastida yang tidak berwarna dibentuk dari Proplastida

Ketika ada cahaya dpt berubah mjd kloroplas atau kromoplas

Dijumpai pada sel-sel meristematik (ujung akar/ batang)Dijumpai pada sel-sel meristematik (ujung akar/ batang)

Menyimpan hasil metabolisme : amiloplas (pati/amilum), Menyimpan hasil metabolisme : amiloplas (pati/amilum),

proteinoplas (protein), elaioplas (lemak)proteinoplas (protein), elaioplas (lemak)

Page 10: biosel 2011 plastids

Plastida bersifat reversible dapat berubah bentuk

Perombakan klorofil lebih cepat dp karotenoid jelas pd musim gugur

Karotenoid tdk terlalu larut dalam air dan terkristalisasi di kromoplas

ProplastidaProplastida mrp organela yang berasal dari perkembangan sel awal mrp organela yang berasal dari perkembangan sel awal (germ cell) yg disebabkan krn degenerasi plastida (germ cell) yg disebabkan krn degenerasi plastida

Proplastida dpt berdiferensiasi mjd plastida selama perkembangan Proplastida dpt berdiferensiasi mjd plastida selama perkembangan embrio tumbuhan. embrio tumbuhan.

Perubahannya mjd kloroplas terjadi hanya oleh pencahayaan. Perubahannya mjd kloroplas terjadi hanya oleh pencahayaan.

Page 11: biosel 2011 plastids

Plastids and Genome Interactions1. Types of plastids1) proplastids:most simple and least developed form of plastids.

Found in least differentiated tissues such as meristem and reproductive cells. Very small (1 um diameter) and primitive suborganelle structure.

TEM picture ofA proplastid next to a MitochondriaFrom bean root cell. The dark dots in the cytoplasm are ribosomes. SO are the dots pointed by a small arrows (the organelle ribosomes).

Page 12: biosel 2011 plastids

2) Amyloplast: is also rather simple. Non-colored plastids that accumulate and store starch (thus the name). They are found in storage tissues such as potato tuber etc. Amyloplasts in root cap cells also serves as gravity-sensing statoliths during gravity response. Leucoplasts refer to non-pigmented palstids (proplastids and amyloplasts).

TEM picture of a amyloplast from root cap of white clover. This statolith device contain largely starch grains (s) surrounded by the stroma membranes.

IN potato tubers, the starch grains fill the entire organelles with even less stroma.

Page 13: biosel 2011 plastids

3) Chromoplasts: plastids that are pigmented into red, organge, yellow. Found in fruits, roots/tuber, and flowers. Tomato and pepper, carrots and sweet potatos. Some colorful pigments are also stored in vacuoles such those in flowers.

TEM picture of a chromoplast from a cherry fruit cell. The plastid is filled with carotenoids that are formed by enzymes and carotenes associated with the plastid membranes. Depending on the type of carotenoids and other pigments present in the chromoplast, they display different colors, shapes, and sizes.

Page 14: biosel 2011 plastids

4) Etioplasts: precursor of chloroplasts when plants were grown in the dark. The etioplasts develop into chloroplasts when light becomes available. This happens a lot during early germination.

light

Some prolamellar structure getting ready for further development into thylokoid membrane system inside the chloroplast. As the etiolated (dark grown) plants are illuminated, the thylokoid membrane begin to extend and form more extensive membrane networks.

Page 15: biosel 2011 plastids

5) Chloroplasts: most important plastid and most complex in suborganelle structure. Green tissues.

Stroma and stacked granaForm continuous membrane Network that contain the entire Light reaction machinery to capture light and turn it into chemical energy

Page 16: biosel 2011 plastids

Development of plastids reflect the differentiation of plant tissues. IN meristem, proplastids dominate and they develop into different types of plastids depending on the type of tissue a meristem cell is differentiated into. In roots, they develop into amyloplast (typical non-color root) or chromoplasts (in carrot). IN shoots, it develops into chloroplast, etioplasts depending on light.

2

Page 17: biosel 2011 plastids

An important concept for plastid development is their inter-conversion, ie, mature plastids can be converted into different type of mature plastids under certain conditions.

For example, amyloplast in the potato tuber can turn into chloroplast if allowed to stay outside of soil during development (seeing light);

chromoplasts can turn into chloroplasts too (green patch on the top of a carrot);

chloroplast into chromoplasts (green tomato into red one during ripening);

etioplasts certainly turn into chloroplasts when illuminated (yellow plants in the dark—green plants after light)---

2

Page 18: biosel 2011 plastids
Page 19: biosel 2011 plastids

3. Plastid replication and cell divisionPlastids, like many other organelles, cannot be synthesized de novo.

They come from mother plastids by replication—division.

1. What types of plastids divide? We know meristem cells, but not differentiated cells, divide. Naturally, proplastids divide. But mature plastids divide too—All types of plastids do! Plastid division keeps pace with cell division in meristem cells, but they also respond to cell enlargement after division. E.g, when a leaf expand, mesophyll cell enlarge, chloroplasts inside the mesophyll cell replicate (otherwise, the larger leaves will look pale due to dilution of chloroplast density).

Page 20: biosel 2011 plastids

2) How do they divide?They are thought to evolve from a bacterium, and they indeed divide like one. The division appear to be simple fission—starting with a constriction, deep cleavage, break apart. Recent studies suggest that FtsZ-like molecules are required for the division of chloroplasts. FtsZ is a protein involved in bacterial cell division (formation of septum). This further indicates that division of plastids may have been conserved from bacterial division.

An etioplast in bean sprout was caught in division (see the central constriction, arrow)

Page 21: biosel 2011 plastids

3) What controls division?a) Cell division and expansion (developmental cues). b) Environmental cues (light is critical for chloroplast division).

Mechanism not clear.

4) How does it coordinate with cell division?a) Does not synchronize with cell division although they keep pace

roughly. They can amend that later on because all plastids can divide.b) Not necessarily equal distribution of DNA to the daughter plastids.

There are usually many copies of genomes in one plastid. They can also replicate their genome after division. Even the DNA synthesis is blocked by inhibitors, division can still occur—in sharp contrast to cell division.

c) During cell division, there is no precise control over the number of plastids that are divided into the daughter cells (many other organelles aren’t necessarily evenly distributed either).

Page 22: biosel 2011 plastids

4. Plastid inheritance

Plastids are not synthesized de novo. They are inherited from parents—they are passed on through egg and sperm.

For angiosperms, plastids (and mitochondria) have maternal inheritance in most plants. But for gymnosperms, plastids are often from paternal inheritance. Why and how, details are not clear.

5. The plastid genome1) Circular DNA of 120-160 kb encoding some of the proteins

involved in plastid function like photosynthesis in chloroplasts. Also encode ribosomal RNA and proteins.

2) DNA replication, Transcription, and translation follow bacterial patterns.

3) Gene expression regulation and chloroplast development: think about how many genes may be involved in chloroplast development from an etioplast or proplastid. All photosynthetic proteins and other metabolic enzymes involved in other chloroplast functions.

Developmental cues from nuclear genome and light signal.

Page 23: biosel 2011 plastids

6. Nuclear-plastid genome interaction in gene expression and chloroplast development

Both nuclear and plastid genome are required for chloroplast development---each encode part of the whole set of proteins in the chloroplast. Studies have shown that the expression of the nuclear and plastids genes are coordinated—making sense as the different subunits of the same enzyme can be encoded by different genome. Classical example: RUBISCO small subunit is encoded by nuclear genes and large subunit is by plastid genome. Fascinating questions:How do the two genome coordinate and what are signals that communicate between the two compartments?

Earlier experiments indicated that if chloroplasts do not develop properly (chlorophyll synthesis blocking etc), the nuclear genes for chloroplast development/function will not be expressed even under light. More recent genetic analysis support the idea that chlorophyll metabolism is a key process in inter-genome signaling.

Page 24: biosel 2011 plastids

VakuolaVakuola

Vakuola Vakuola centralcentral yang besar terdapat yang besar terdapat pada sel tumbuhanpada sel tumbuhan

Page 25: biosel 2011 plastids

VACUOLEVACUOLE

Vacuoles are “bubbles” that float in Vacuoles are “bubbles” that float in the cell the cell 

Vacuoles are more important to the Vacuoles are more important to the survival of plant cells than they are survival of plant cells than they are to animal cellsto animal cells

Page 26: biosel 2011 plastids

Membran yang membungkus vakuola disebut

vacuolar membrane or tonoplast (seperti

membran plasma).

Meliputi 90% dari volume sel.

Mendukung bentuk sel tumbuhan

Organel penyimpan / Storage vessicle : air, gula,

enzim, protein, garam, pigmen, substansi toxic:

asam, tanin, alkaloida, lateks, dll.

Membantu mengisolasi senyawa2 tsb dari dalam

sel itu sendiri.

Peran Vakuola

Page 27: biosel 2011 plastids

VACUOLE:VACUOLE: STORAGE IN PLANT CELLSSTORAGE IN PLANT CELLS

Vacuoles in plants support structureVacuoles in plants support structure

Vacuoles hold onto things that the cell Vacuoles hold onto things that the cell might need…like a backpackmight need…like a backpack

There are some vacuoles that hold onto There are some vacuoles that hold onto waste products, similar to having a big waste products, similar to having a big septic tankseptic tank

Storing waste products protects the cell Storing waste products protects the cell from contaminationfrom contamination

Page 28: biosel 2011 plastids

VACUOLE CONT’DVACUOLE CONT’D

So, when there is no water…the So, when there is no water…the vacuole shrinks and the cell wall is vacuole shrinks and the cell wall is the only thing holding the plant the only thing holding the plant together. together.

Page 29: biosel 2011 plastids

You will know that a plant's vacuoles are shrinking when you see the plant begin to droop over

HOLDING UP THE WALLS

Page 30: biosel 2011 plastids

Turgor Pressure- force exerted by the water entering (osmosis) the vacuole, which then swells exerting internal force on the cell wall

•Causes “rigidity” so the plant my increase by stacking cells