Bioproducts for a Sustainable Use

download Bioproducts for a Sustainable Use

of 35

Transcript of Bioproducts for a Sustainable Use

  • 7/29/2019 Bioproducts for a Sustainable Use

    1/35

    19/06/13

    1

    LipochemistryBioproducts for a

    Sustainable UsePREFALC

    Dr. Guadalupe VACA MEDINAUniversit de Toulouse

    June 27th 2013 Riobamba, Ecuador

    Outline

    ! Process in One-Pot! Substitution Molecules! New Technology Process! New Reaction Pathway

  • 7/29/2019 Bioproducts for a Sustainable Use

    2/35

    19/06/13

    2

    Valorization of Native Fatty

    Acids from Rapeseed via an

    Integrated Process with ThreePhase Partitioning

    Guadalupe VACA MEDINA, Zphirin MOULOUNGUI, Jean-Franois FABRE,Muriel CERNY & Eric LACROUX

    6th Euro Fed Lipid Congress

    Athens, September 7-10, 2008

    Valorisation of Native Fatty

    Acids from Rapeseed

    Oilseed Fatty Acids Ester

    IntegratedProcess

    Three PhasePartitioning

    Objective

  • 7/29/2019 Bioproducts for a Sustainable Use

    3/35

    19/06/13

    3

    CHOCORCH2OCOR'

    CH2OCOR'OH2 3 CHOH

    CH2OH

    CH2OHR'COOH+' +

    ROH+RCOOH H2O+RCOOR

    Hydrolyse

    Esterification

    Candidarugosa

    Reactions Lipase

    Au-kbc.org

    Catalytic Transformation

    Oilseed

    Water

    Crushing

    Emulsion

    AqueousPhase

    PelletCentrifugationHydrolysis

    Lipase

    Z. Mouloungui & E. Mechling (2006)

    Homogenization

    LipidTransformation

    MechanicalStrength

    Particle SizeReduction

    Particle SizeReduction

    PhaseSeparation

    Integrated Process

  • 7/29/2019 Bioproducts for a Sustainable Use

    4/35

    19/06/13

    4

    Use renewable feedstockUse safer solvents and reactionconditions

    Reduce number of steps in theprocess

    Maximize atom economyIncrease energy efficiencyPrevent wasteUse catalysts

    RapeseedBrassica napus

    Colza Kosto

    (MOMONT, France)

    Protein Content 17 to 19 %

    Oil Content 44 %

    C16:0 ~5%

    C18:0 ~2%

    C18:1 60-62%

    C18:2 20-21%

    C18:3 8-10%

    Release /

    Transformation

    Anastas & Warner (1998)

    Integrated Process

    Oleosomes have affinity

    with water due to theamphiphilic character of

    biomolecules thatsurround the oil droplet

    Oleosome

    Anastas & Warner (1998)

    Use renewable feedstockUse safer solvents and reactionconditions

    Reduce number of steps in theprocess

    Maximize atom economyIncrease energy efficiencyPrevent wasteUse catalysts

    Release /

    Transformation

    Integrated Process

  • 7/29/2019 Bioproducts for a Sustainable Use

    5/35

    19/06/13

    5

    Anastas & Warner (1998)

    Use renewable feedstockUse safer solvents and reactionconditions

    Reduce number of steps in theprocess

    Maximize atom economyIncrease energy efficiencyPrevent wasteUse catalysts

    Release /

    Transformation

    Integrated Process

    Pellet

    Protein supply

    Fibre supply

    Second generation of biofuels

    Emulsion

    Aqueous

    Phase

    Pellet

    Integrated Process

    Aqueous Phase

    Conducting Medium

    Oligo-elements

    Fertilization

    Glycerol

    Anastas & Warner (1998)

    water and

    enzyme

    Recycling

    Use renewable feedstockUse safer solvents and reactionconditions

    Reduce number of steps in theprocess

    Maximize atom economyIncrease energy efficiencyPrevent wasteUse catalysts

    Release /

    Transformation

    Integrated Process

  • 7/29/2019 Bioproducts for a Sustainable Use

    6/35

    19/06/13

    6

    Lipase

    CHOCOR"

    CH2

    OCOR'''

    CH2

    OCOR'

    CHOCOR"

    CH2

    OH

    CH2

    OCOR'Lipase

    R'''COOH

    OH2

    OH2 CHOH

    CH2

    OH

    CH2

    OCOR'Lipase

    R''COOH

    OH2 CHOH

    CH2

    OH

    CH2

    OHLipase

    R'COOH

    Triglyceride Diglyceride Monoglyceride Glycerol

    + + +

    Anastas & Warner (1998)

    Use renewable feedstockUse safer solvents and reactionconditions

    Reduce number of steps in theprocess

    Maximize atom economyIncrease energy efficiencyPrevent wasteUse catalysts

    Release /

    Transformation

    Integrated Process

    Lipase LYPOLYVE CC

    (LYVEN)from Candida Rugosa

    Enzymatic Hydrolysis

    40C

    400 rpm

    300 U/g seed

    A lipase (triacylglycerol acylhydrolase, EC 3.1.1.3)which makes part of the family of hydrolases acts on

    carboxylic ester bonds

    -10

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 50 100 150 200 250 300 350

    time, min

    HydrolysisRate,

    L ip oz ym e R M IM N o vo z ym 4 35 L p 2Y .I. L Y P O L IV E C C L Y P O L IV E C C R e cyc le

    Hydrolysis Rate = [FFA] x 100

    [FFA] + [MG] + 2[DG] + 3[TG]

    Lipid Transformation

  • 7/29/2019 Bioproducts for a Sustainable Use

    7/35

    19/06/13

    7

    t 0

    t f

    Lipase LYPOLYVE CC is ableto convert > 99 % of

    triglycerides giving place to acomplex emulsion

    40% Water

    55% Fatty Acids

    5% Proteins

    20%Rapeseed

    Lipid Transformation

    Z. Mouloungui & E. Mechling (2002)

    ProteinsVegetable Oils

    Three Phase Partitioning

    Free Fatty Acids Release

    Ethanol ExtractionThree Phase partitioning

    C. Dennison & R. Lovrien (1997)

    R. Gaur et al. (2007)

    ?Free Fatty Acids

    BackgroundBackgroundBackground

    Break emulsion forfatty acids release

    Fatty Acidsin Emulsion

  • 7/29/2019 Bioproducts for a Sustainable Use

    8/35

    19/06/13

    8

    Experimental Conditions

    5 g lipids and proteins / 20 mL water 30 % w/v ammonium sulphate 1:1 v/v alcohol 37 C for 1 hour Centrifugation 10 min at 5000 x g

    1. Methanol2. Ethanol3. 1-propanol4. Butan-1-ol5. Iso-butanol6. Ter-butanol7. 1- octanol8. 2-ethylhexan-1-ol

    Tested Alcohols

    1 2 3 4 5 6 7 8

    1 2 3 4 5 6 7 8

    C1-C2 C3-C4 C8

    Without (NH4)2SO4

    With (NH4)2SO4

    Three Phase Partitioning

    CN Solvent% LIPID

    EXTRACTION(NH4)2SO4

    1 Methanol -

    2 Ethanol 80

    3 1-propanol 85

    4 Butan-1-ol 88

    4 Iso-butanol 95

    4 Tert-butanol 86

    8 1-octanol 97

    8 2-ethylhexan-1-ol 90

    Three Phase Partitioning

  • 7/29/2019 Bioproducts for a Sustainable Use

    9/35

    19/06/13

    9

    Alcohol Catalyst Conditions Reference

    Methanol 2%p-TSA3:1 alcohol/oleic acid, 500 rpm,

    120 min,100CE. Lacroux (2006)

    Ethanol 2%p-TSA3:1 alcohol/oleic acid, 500 rpm,

    120 min,110CE. Lacroux (2006)

    1-octanol0.20 mol

    phosphoric acid0.23 mol oil, 1.2 mol alcohol, 7

    h, 500 rpm, 130CC. Lacaze & Z.

    Mouloungui (1999)

    2-ethylhexan-1-ol2%p-TSA in

    xilene50 mmol oleic acid, 50 mmol

    alcohol, 300 rpm, 50 min, 140CC. Lacaze & Z.

    Mouloungui (2000)

    Chemical Catalysis

    Chemical Catalysis

    Enzymatic Catalysis

    Fatty Acids

    +

    Alcohol

    Esterification

    CN AlcoholESTERIFICATION

    DEGREE (%)

    1 Methanol -

    2 Ethanol 0

    3 1-propanol 2

    4 Butan-1-ol 18

    4 Iso-butanol 30

    4 Tert-butanol 0

    8 1-octanol 58

    8 2-ethylhexan-1-ol 85

    Experimental Conditions

    5 g lipids and proteins / 20 mL water 30 % w/v ammonium sulphate 1:1 v/v alcohol 37 C for 4 hour Centrifugation 10 min at 5000 x g

    Enzymatic Catalysis

    Fatty Acids

    +

    Alcohol

    Chemical Synthesis

    Enzymatic Synthesis

    CN AlcoholESTERIFICATION

    DEGREE (%)

    1 Methanol -

    2 Ethanol 0

    3 1-propanol 2

    4 Butan-1-ol 18

    4 Iso-butanol 30

    4 Tert-butanol 0

    8 1-octanol 58

    8 2-ethylhexan-1-ol 85

    ED = [Ester] x 100

    [Ester] + [Fatty Acid]

    Esterification

  • 7/29/2019 Bioproducts for a Sustainable Use

    10/35

    19/06/13

    10

    Summary

    Substitution of ASA from

    fossil origin by ASA from fattyacid esters of vegetable oils

    Laure CANDY, Carlos VACA-GARCIA & Elisabeth BORREDON

    5th International Conference on Renewable Resources & Biorefineries

    Ghent, June 10-12, 2009

  • 7/29/2019 Bioproducts for a Sustainable Use

    11/35

    19/06/13

    11

    Paper Production & Consumption in 2006

    84,1

    65,0

    31,1

    22,7

    18,2

    12,1

    10,7

    10,0

    10,0

    14,2

    0,0 20,0 40,0 60,0 80,0 100,0

    USA

    China

    Japan

    Germany

    Canada

    Finland

    Sweden

    Korean Republic

    Italy

    France

    Paper and Board Production (106

    tons)

    10th world Rank

    301

    49

    247

    253

    213

    268

    176

    201

    179

    330

    0 100 200 300 400

    USA

    China

    Japan

    Germany

    Canada

    Finland

    Sweden

    Korean Republic

    Italy

    France

    Paper and Board Annual Consumption (kg/inhabitant)

    24th world Rank

    Copacel Annual Report; 2007 ; http://internet.copacel.org/rapport_annuel.php

    95 industries111 factories181 papermachines18,277 employees6,2 Billion Turnover

    France

    Laboratoire de Chimie Agro-Industrielle Study of Alkenyl Succinic Anhydrides from fatty acid esters of vegetable oils as paper sizing agents

    French Paper & Board Production in 2006

    Newsprint

    11%

    Corrugated

    paper 34%

    Flexible

    packaging

    3%

    Paperboards

    9%

    Others 5%

    Toiletries 7%

    Printing

    paper 32%

    3,2 Mt

    Copacel Annual Report; 2007 ; http://internet.copacel.org/rapport_annuel.php

  • 7/29/2019 Bioproducts for a Sustainable Use

    12/35

    19/06/13

    12

    Laboratoire de Chimie Agro-Industrielle Study of Alkenyl Succinic Anhydrides from fatty acid esters of vegetable oils as paper sizing agents

    Papersheet process

    Chemical

    Mechanical

    Additives

    Papermachine

    Laboratoire de Chimie Agro-Industrielle Study of Alkenyl Succinic Anhydrides from fatty acid esters of vegetable oils as paper sizing agents

    The different additives in paper process

    Fillers

    Calcium

    carbonate

    Clay

    Talc

    Additives : specialty chemicals

    Polymer binders;

    56%

    Coating additives;

    6%

    Process chemicals;

    11%

    Others; 5%

    Sizing agents;

    12%

    Colorants; 1,50%

    Synth. dry strength

    resins; 2%

    Wet strength agents;

    7%

    M. Prinz & W.S. Schultz, Wochenblatt fr

    Papierfabrikation, 2006, 22, 1329-1335

    Sized paper Unsized paper

    Sizing agents

  • 7/29/2019 Bioproducts for a Sustainable Use

    13/35

    19/06/13

    13

    Laboratoire de Chimie Agro-Industrielle Study of Alkenyl Succinic Anhydrides from fatty acid esters of vegetable oils as paper sizing agents

    Sizing agents

    Sized paper Unsized paper

    Sizing agents Cellulose

    Alkenyl Succinic

    Anhydride (ASA)O

    O

    O

    HO

    O

    HO

    OH

    O

    HO

    O

    HOHO

    OH

    O

    HO OH

    HO

    O

    HO HO

    OH

    OH

    n

    O

    O

    Rosin

    COOH

    O

    O

    OAlkyl Ketene

    Dimer

    ()12

    OO

    ()12Petrochemical -olefins

    Isomerization

    ASA

    Maleinization

    Laboratoire de Chimie Agro-Industrielle Study of Alkenyl Succinic Anhydrides from fatty acid esters of vegetable oils as paper sizing agents

    Objectives

    Petrochemical ASA

    Substitution ?

    Olo-ASA

    Optimum C16-C20

    Maximal hydrophobic character

    O

    O

    O

    O

    O

    O O

    OR

    Oleo-ASA

    L. Neimo ; Papermaking Science & Technology,

    1999, 4, 151-203 Fatty acid esters C18-C22

  • 7/29/2019 Bioproducts for a Sustainable Use

    14/35

    19/06/13

    14

    Laboratoire de Chimie Agro-Industrielle Study of Alkenyl Succinic Anhydrides from fatty acid esters of vegetable oils as paper sizing agents

    Objectives

    Vegetal

    Sizing Agent

    Green labelMarket in

    developement

    Petrochemical ASA

    Substitution

    Agricultural resources

    valorization

    Oleo-ASA

    O

    O

    R

    Source=

    Alkyl oleates

    R = linear

    -CH3-C2H5-C3H7-C4H9-C5H11-C6H13

    R = branched

    R = cyclicCH3

    CH3

    CH3CH3

    CH3CH3

    CH3CH3

    O

    OR

    9

    10

    O

    OR

    OO O

    9

    10

    11

    O

    OR

    9

    10

    OO O

    8

    O

    OR

    9

    10 8

    OO O

    OO O

    11

    O

    OROO O

    +

    a b

    ene-reactionallylic addition

    910

    F. Stefanoiu et al ; Eur. J. Lipid Sci. Technol., 2008, 110, 441-447 K. Holmberg & J.A. Johansson, Acta Chem. Scand., 1982, B36, 481-485

  • 7/29/2019 Bioproducts for a Sustainable Use

    15/35

    19/06/13

    15

    Laboratoire de Chimie Agro-Industrielle Study of Alkenyl Succinic Anhydrides from fatty acid esters of vegetable oils as paper sizing agents

    Oleo-ASA synthesis

    Secondary reactions

    maleic anhydride polymerizationanhydride/alkene copolymerizationretro-ene reaction

    Purification : distillation under reduced pressure

    Synthesis conditions

    230 C8 hmolar ratio nANH/nC=C = 1,3N2 atmosphere without catalyst

    RR'

    H

    OO O

    RR

    '

    OO O

    J. Quesada et al., J. Am. Oil Chem. Soc., 2003, 80, 281-286

    Laboratoire de Chimie Agro-Industrielle Study of Alkenyl Succinic Anhydrides from fatty acid esters of vegetable oils as paper sizing agents

    Optimization of the Oleo-ASA synthesis

    Ene-reaction : ethylic, propylic and isopropylic oleates

    Optimal

    conditions

    O OOO

    O

    R

    +

    Doehlert

    experimental design

    EsterEster Anhydridemalique

    Anhydride

    malique

    Produits

    secondairesProduits

    secondairesOlo-ASAOlo-ASA

    EsterEster Anhydridemalique

    Maleic

    Anhydride

    Produits

    secondairesSecondary

    productsOlo-ASAOlo-ASA

    Temprature (C)(220 ; 1,2)

    (235 ; 0,7)

    (235 ; 1,7)

    (250 ; 1,2)(190 ; 1,2)

    (205 ; 1,7)

    (205 ; 0,7)

    Temperature (C)(220 ; 1,2)

    (235 ; 0,7)

    (235 ; 1,7)

    (250 ; 1,2)(190 ; 1,2)

    (205 ; 1,7)

    (205 ; 0,7)

    Molar ratio

    (220 ; 1,2)

    (235 ; 0,7)

    (235 ; 1,7)

    (250 ; 1,2)(190 ; 1,2)

    (205 ; 1,7)

    (205 ; 0,7)

  • 7/29/2019 Bioproducts for a Sustainable Use

    16/35

    19/06/13

    16

    Optimization of the Oleo-ASA synthesis

    Consumption > YieldSecondary products

    Topt = 220-235C

    ratioopt = 1.3-1.5

    190 220 250

    0,7

    1,2

    1,790-100

    80-90

    70-80

    60-70

    50-60

    40-50

    30-40

    20-30

    10-20

    0-10

    Yield in ASA (%)

    T (C)

    R

    190 220 250

    0,7

    1,2

    1,719-22

    16-19

    13-16

    10-13

    7-10

    4-7

    1-4

    190 220 250

    0,7

    1,2

    1,790-100

    80-90

    70-80

    60-70

    50-60

    40-50

    30-40

    20-30

    10-20

    0-10

    Gardner Index Clarity index

    T (C)

    R

    T (C)

    R

    190 220 250

    0,7

    1,2

    1,790-100

    80-90

    70-80

    60-70

    50-60

    40-50

    30-40

    20-30

    10-20

    0-10

    Oleate Consumption (%)

    T (C)

    R

    Laboratoire de Chimie Agro-Industrielle Study of Alkenyl Succinic Anhydrides from fatty acid esters of vegetable oils as paper sizing agents

    Cobb Index

    Cobb60

    Water

    Measurement of the increasein weight

    60 s

    Cobb60 (g/m)

    0

    20

    40

    60

    80

    100

    120

    140

    Poor

    Efficient

    LowSizing

    ISO 535, 1994, Determination of water absorptiveness Cobb Method

  • 7/29/2019 Bioproducts for a Sustainable Use

    17/35

    19/06/13

    17

    Laboratoire de Chimie Agro-Industrielle Study of Alkenyl Succinic Anhydrides from fatty acid esters of vegetable oils as paper sizing agents

    Linear Oleo-ASA R = n-CnH2n+1

    C1 C2 C3 C4 C5 C6

    30 2927

    60

    43

    19 22

    0

    20

    40

    60

    80

    100

    120

    140

    Sizing optimum forethylic & propylic ASA

    Efficient fiber coveringEasier approach for cellulose hydroxyl groups

    Cobb (g/m)

    Laboratoire de Chimie Agro-Industrielle Study of Alkenyl Succinic Anhydrides from fatty acid esters of vegetable oils as paper sizing agents

    Branched and cyclic oleo-ASA

    29

    43

    22

    3950

    25

    0

    20

    40

    60

    80

    100

    120

    140

    C3 C4 C6

    CH3

    CH3 CH3

    CH3

    CH3

    CH3

    100

    Branched oleo-ASA less competitiveSterical hindrancea Reactivity more difficult with hydroxylsIsopropylic ASA really efficient

    Cobb (g/m)

  • 7/29/2019 Bioproducts for a Sustainable Use

    18/35

    19/06/13

    18

    Laboratoire de Chimie Agro-Industrielle Study of Alkenyl Succinic Anhydrides from fatty acid esters of vegetable oils as paper sizing agents

    Optimum oleo-ASA for sizing application

    ASAOE

    O

    O

    OO

    O

    ASAOPrO

    O

    OO

    O

    ASAOIPrO

    O

    OO

    O

    Cobb60

    2227

    1925

    0

    20

    40

    60

    80

    100

    120

    140

    ASAPAP

    ASAAO

    ASAOM

    ASAOE70

    ASAOE98

    ASAOPr-e

    ASAOPr-a

    ASAOB

    ASAOPe

    ASAOH

    ASAOIPr-e

    ASAOIPr-a

    ASAOMPr

    ASAOMPe

    ASAO2EH

    ASAOCH

    ASAEMT

    ASAEMC

    ASAOE802

    ASAOB804

    ASAO2EH808

    ASAO2EH208

    ASAEMCE

    ASAEMTO

    ASAEETO

    ASAEPrTO

    ASAEBTO

    g/m

    ASAOE

    ASAOPr

    ASAOIPr

  • 7/29/2019 Bioproducts for a Sustainable Use

    19/35

    19/06/13

    19

    Other specifications for sizing agents

    90,290,289,6

    90,2

    82

    84

    86

    88

    90

    92

    94

    96

    98

    100

    ASAPAP

    ASAAO

    ASAOM

    ASAOE70

    ASAOE98

    ASAOPr-e

    ASAOPr-a

    ASAOB

    ASAOPe

    ASAOH

    ASAOIPr-e

    ASAOIPr-a

    ASAOMPr

    ASAOMPe

    ASAO2EH

    ASAOCH

    ASAEMT

    ASAEMC

    ASAOE802

    ASAOB804

    ASAO2EH808

    ASAO2EH208

    ASAEMCE

    ASAEMTO

    ASAEETO

    ASAEPrTO

    ASAEBTO

    ASAEPeTO

    2227

    1925

    0

    20

    40

    60

    80

    100

    120

    140

    ASAPAP

    ASAAO

    ASAOM

    ASAOE70

    ASAOE98

    ASAOPr-e

    ASAOPr-a

    ASAOB

    ASAOPe

    ASAOH

    ASAOIPr-e

    ASAOIPr-a

    ASAOMPr

    ASAOMPe

    ASAO2EH

    ASAOCH

    ASAEMT

    ASAEMC

    ASAOE802

    ASAOB804

    ASAO2EH808

    ASAO2EH208

    ASAEMCE

    ASAEMTO

    ASAEETO

    ASAEPrTO

    ASAEBTO

    Cobb60 (g/m) Total retention (%)

    Surface tension (mN/m)Particles diameter (m)

    31,130,5 30,8 30,2

    20

    22

    24

    26

    28

    30

    32

    34

    36

    38

    40

    ASAPAP

    ASAAO

    ASAOM

    ASAOE70

    ASAOE98

    ASAOPr-e

    ASAOPr-a

    ASAOB

    ASAOPe

    ASAOH

    ASAOIPr-e

    ASAOIPr-a

    ASAOMPr

    ASAOMPe

    ASAO2EH

    ASAOCH

    ASAEMT

    ASAEMC

    ASAOE802

    ASAOB804

    ASAO2EH808

    ASAO2EH208

    ASAEMCE

    ASAEMTO

    ASAEETO

    ASAEPrTO

    ASAEBTO

    ASAEPeTO

    0,5

    1,3

    0,7

    0,2

    0

    0,2

    0,4

    0,6

    0,8

    1

    1,2

    1,4

    1,6

    1,8

    2

    ASAPAP

    ASAAO

    ASAOM

    ASAOE70

    ASAOE98

    ASAOPr-e

    ASAOPr-a

    ASAOB

    ASAOPe

    ASAOH

    ASAOIPr-e

    ASAOIPr-a

    ASAOMPr

    ASAOMPe

    ASAO2EH

    ASAOCH

    ASAEMT

    ASAEMC

    ASAOE802

    ASAOB804

    ASAO2EH808

    ASAO2EH208

    ASAEMCE

    ASAEMTO

    ASAEETO

    ASAEPrTO

    ASAEBTO

    ASAEPeTO

    Laboratoire de Chimie Agro-Industrielle Study of Alkenyl Succinic Anhydrides from fatty acid esters of vegetable oils as paper sizing agents

    Emulsion stability

    Same

    granulometry

    t0

    t12h

    ASAOPr

    10 m

    10 m

    Stable

    emulsion

    10 cm

  • 7/29/2019 Bioproducts for a Sustainable Use

    20/35

    19/06/13

    20

    Laboratoire de Chimie Agro-Industrielle Study of Alkenyl Succinic Anhydrides from fatty acid esters of vegetable oils as paper sizing agents

    Strategy

    Stripping Hydrolysis Reactivity

    Comparison oleo-ASA vs petrochemical ASA

    Oleo-ASA advantages

    Equivalent sizing

    Optimal oleo-ASA Petrochemical ASA

    Laboratoire de Chimie Agro-Industrielle Study of Alkenyl Succinic Anhydrides from fatty acid esters of vegetable oils as paper sizing agents

    Steam Stripping

    ASA : 10% H2O : 90%

    Vapor stripping

    L/L Extraction

    MTBE

    Organic phase Aqueous phase

    Solvant concentration

    Dilution

    HPLC analysis

    Deposits (stickies):

    In air-ductsOn presses

    Heating

    W.E. Scott, Principles of Wet End Chemistry, Tappi Press, 1996; 99-110

    J. Lindfors et al.,Nord. Pulp Paper Res., 2005, 20, 453-458

  • 7/29/2019 Bioproducts for a Sustainable Use

    21/35

    19/06/13

    21

    Laboratoire de Chimie Agro-Industrielle Study of Alkenyl Succinic Anhydrides from fatty acid esters of vegetable oils as paper sizing agents

    Steam Stripping

    M stripped ASA(g/kg ASA)

    Oleo-ASA = deposits divided by factor 10

    Volatility decreased by the ester function

    0,08 0,06 0,04

    0,57

    1,46

    0,64

    0,0

    0,4

    0,8

    1,2

    1,6

    ASAOE ASAOPr ASAOIPr ASAPAP1 ASAPAP2 ASAPAP3

    Laboratoire de Chimie Agro-Industrielle Study of Alkenyl Succinic Anhydrides from fatty acid esters of vegetable oils as paper sizing agents

    W.E. Scott, Principles of Wet End Chemistry, Tappi Press, 1996; 99-110

    Kinetics of ASA hydrolysis

    ASAcid drawbacks:

    Decrease in the quantity of active ASACritical to sizingSalts formation with Ca2+ and Mg2+

    The kinetics of this rapid reaction essentially depends on:

    TemperaturepH

    Emulsions prepared on site and impossible to store

    ASA ASAcid

    R CH2 CH

    OO O

    CH CH R' + R CH2 CH CH CH R'

    OHOH

    H2O

    OO%A

    SA

    Time (h)

    pH = 3.5

    Time (h)

    %A

    SA

    T = 25C

    R.B. Wasser, J. Pulp Pap. Sci, 1987, 13, 29-32

  • 7/29/2019 Bioproducts for a Sustainable Use

    22/35

    19/06/13

    22

    Laboratoire de Chimie Agro-Industrielle Study of Alkenyl Succinic Anhydrides from fatty acid esters of vegetable oils as paper sizing agents

    Kinetics of ASA hydrolysis

    Oleo-ASA = 2 times slower hydrolysis

    Comparison at 50C

    0

    20

    40

    60

    80

    100

    0 1 2 3 4 5 6 7 8 9 10 11 12

    Hydrolysis time (h)

    %A

    SA

    ASAOEASAOPrASAPAP1ASAPAP2ASAPAP3

    Laboratoire de Chimie Agro-Industrielle Study of Alkenyl Succinic Anhydrides from fatty acid esters of vegetable oils as paper sizing agents

    Kinetics of ASA hydrolysis

    The ester function decreases

    the anhydrides accessibility

    Oleo-ASA two times more

    resistant to hydrolysis

    k (mn-1) tmax (mn)ASAOE -0,240 558ASAOPr -0,252 615

    ASAPAP1 -0,461 222ASAPAP2 -0,496 249ASAPAP3 -0,639 278

  • 7/29/2019 Bioproducts for a Sustainable Use

    23/35

    19/06/13

    23

    Laboratoire de Chimie Agro-Industrielle Study of Alkenyl Succinic Anhydrides from fatty acid esters of vegetable oils as paper sizing agents

    Reaction with cellulose

    Is there an ester linkage ?How much ASA reacts with cellulose ?

    Cellulose+ ASA Bound ASA

    ASAcid

    Unbound ASA

    ASARetained

    ASA

    Unretained ASA

    R CH2 CH

    OO O

    CH CH R' + Cellulose R CH2 CH CH CH R'

    O CelluloseOH

    OH

    O O

    Laboratoire de Chimie Agro-Industrielle Study of Alkenyl Succinic Anhydrides from fatty acid esters of vegetable oils as paper sizing agents

    Reaction with cellulose

    Higher retention for Oleo-ASAMore bound Oleo-ASA

    0%

    20%

    40%

    60%

    80%

    100%

    ASAPAP1 ASAOPr

    %A

    SA

    Bound

    ASA

    Unretained

    ASA

    Unbound

    ASA

  • 7/29/2019 Bioproducts for a Sustainable Use

    24/35

    19/06/13

    24

    Development of Continuous

    Processes for Vegetable Oil

    Ethanolysis in MicrofluidicDevices

    Sophie THIEBAUD-ROUX, R. Richard, B. Dubreuil, L. PratJournes Chevreul

    June 2012

    Context and Objectives

    Vegetable oils

    SunflowerRapeseed

    Soybean

    +

    Palme

    Fatty Acid Ethyl Esters

    BioethanolCH3CH2OH

    FAEE

    FAEE : considered as 100% biosourcedFAEE used for applications principally in food and cosmetic industryTo open the application field to biofuels or biosolvents (as Methyl Esters), theprocess efficiency has to be developed to be economically profitable

    Transfer of the batch or semi-batch transesterification into a continuous device

  • 7/29/2019 Bioproducts for a Sustainable Use

    25/35

    19/06/13

    25

    Constant amount of monoglycerides at the end of the reaction (not negligiblecontrary to DG and TG) : stable equilibria

    Numerous steps in the ethanolysis process in order to shift the reaction equilibria(in comparison to methanolysis processes) :

    - Transesterification reaction

    - Separation of ethyl esters from glycerol, by-product of the reaction :quite difficult

    - Refill with ethanol and catalyst

    - 2nd reaction

    Limits of FAEE Production Processes

    Expensive process

    Continuous processBatch process

    Transesterification

    + 3 C2H5OH

    Homogeneous catalysis :EtONa

    3 RCOOC2H5 +

    1re tape : TG + R-OH DG + R-OOC-R

    2me tape : DG + R-OH MG + R-

    OOC-R

    3me tape : MG + R-OH GL + R-

    OOC-R

    k1

    k-1

    ReactionsTriglyceridesethanolysis *

    Secondary reactions **

    Phase equilibrium changesTwo immiscible phases are present at the beginning of the reaction (oil and ethanolphases) and at the end of the reaction (ester and glycerol phases with ethanol in

    excess in both phases)

    Simultaneous presence of various phenomena : mixing, heat and mass transfers,principal and competitive reactions

    OOCCH2

    CH

    R

    OOC R

    C OOC RH2

    OCH2

    CH O

    C OH2

    H

    H

    H

    + 3 Na+,OH-H2O

    3 RCOO-,Na+ +TG GL

    + 3 Na+,OH- RCOO-,Na+ +RCOOH H2O

    TG GL

    k2

    k-2k3

    k-3

    Saponification

    Salification

  • 7/29/2019 Bioproducts for a Sustainable Use

    26/35

    19/06/13

    26

    Continuous Process in Microreactors

    Reactiongenerating

    dropletsPDMS microreactor

    PFA microreactorImplementation of small volumes(widths between 1 m and 1000 m)

    safety is increased

    Perfect control of the flows (between1 L/h and several L/h)

    Very high surface/volume (S/V) ratiowhich increases heat and masstransfer

    Control of the initial mixingtime which does not depend on the

    feeding procedure

    Access to low characteristic times

    Parallelize the microreactors to produce (numbering-up vs scaling-up) : a faster extrapolation

    ocurrent approach: scale-up laboratory

    pilot Industrialscale

    oplanned approach: smart numbering-up

    Microstructuredreactor Moderate scale-up and

    optimizationParallelization forproduction scale

    Transposition to a continuous process in

    microreactors

  • 7/29/2019 Bioproducts for a Sustainable Use

    27/35

    19/06/13

    27

    Experimental Device

    Reaction isquenched

    by adding HCl

    to neutralize the

    basic catalyst

    Each tube length corresponds to a reaction time : thetube was cut to obtain lower reaction times

    Effect of temperature on the flow

    From T = TL, no drops are observed :coflowing jet

    c

    cc

    c

    dU

    =Re

    d

    dd

    d

    UCa

    =

    20

    25

    30

    35

    40

    45

    50

    55

    60

    65

    70

    0 1 2 3 4 5 6 7 8 9

    Reaction time (min)

    T (C)

    experimental points

    limit diphasic/monophasic flow

    limit jet/droplet

    Jet flow

    Droplet flow

    Monophasic flow

    TL

    Cad(10

    -3)

    Red/Rec(10

    -2)

    0,321,47

    1,25

    1,05

    0,89

    0,75

    0,44

    0,59

    0,80

    1,09

    Generation

    Qtot = 1,5 mL.h-1

    Molar ratio EtOH/huile = 45,4

    Catalyst EtONa = 1%

    Water content = 0,08%

  • 7/29/2019 Bioproducts for a Sustainable Use

    28/35

    19/06/13

    28

    FAEE contents for different EtOH:oil molar ratios

    1 m 2 m1,5 m0,5 m

    Ltube

    oilEtOH/EtONa

    Fast reaction :around 7 min

    Interfacial surface S/V increases

    A new on-line method based on

    Near Infrared spectroscopy and a

    multivariate approach

    Advantages:Fast Reliable Inexpensive Non-destructive No quench needed No sample preparation needed

  • 7/29/2019 Bioproducts for a Sustainable Use

    29/35

    19/06/13

    29

    NIR Spectroscopy Analysis

    Fiber-optic probe working bytransflectance

    Material : NIR Spectrometer Antarix MX FT-NIRProcess Analyzer from Thermo Fisher Scientific, USA

    Analysis parameters: Wavenumber range:

    10000 4000cm-1 (800 - 2500 nm)

    Optical beam path: 3 mm 32 scans Spectral resolution: 2 cm-1

    Optical beam path

    Mirror

    Height-adjustablescrew

    Light beam

    Monitoring of the reactionthrough sequential scans and with GC

    reference method

    Study of a new environment

    friendly catalytic system for

    the oxidative scission of

    unsaturated fatty acidsAnas Godard, Sophie Thiebaud-Roux, Emeline Vedrenne, Pascale

    de Caro, Zphirin Mouloungui103rd AOCS Annual Meeting & Expo

    Long Beach, California, USA

  • 7/29/2019 Bioproducts for a Sustainable Use

    30/35

    19/06/13

    30

    OH

    O

    O

    OH OH

    O

    OH

    O

    +

    ozonolysis

    ! Shorter and odd hydrocarbon chains! Low availability at a natural state! Interesting raw materials forbiobased products

    Cosmetics, synthesisof polymers/polyesters

    Biosolvents, lubrificants,resines, plastificizers

    Oleic acid(OA)

    Pelargonic acid

    (PA)

    Azelaic acid

    (AA)

    Oxidative cleavageGreen oxidant

    system

    Oxidative scission reaction

    ! Green oxidant system : H2O2 / Q3{PO4[WO(O2)2]4}

    ! No extra organic solvent

    OH

    O

    O

    OH OH

    O

    OH

    O

    +

    H2O2(oxidant)

    Q3{PO4[WO(O2)2]4}

    (catalyst/co-oxidant)

    OA

    Q+ : quaternary ammonium cation

    Oxidative cleavage of oleic acid

  • 7/29/2019 Bioproducts for a Sustainable Use

    31/35

    19/06/13

    31

    ! In the presence of H2O2, the catalyst is converted into the peroxo form

    ! The peroxo form of the catalyst transfer the oxygen to the substrate

    M : W

    (tungsten)

    H2O2 H2O

    Oxo form Peroxo form

    Peroxo form Oxo form

    interface

    Turnwald, SE. et al., Journal of Materials Science Letters, 1998Noyori, R. et al, Chemical Communications, 2003

    Mechanism of the phase transfer catalyst

    Hydrolysis of high oleic sunflower oil

    Total

    triglycerides

    conversion:

    100 min

    O

    O

    O

    ROC

    ROC

    ROC

    R

    OH

    O

    340 C , 5 h

    WaterLipase Candida Cylindracea (1%)

    aa

    ! Hydrolyse of high sunflower oil with the lipase Candida Cylindracea

    0

    20

    40

    60

    80

    100

    0 50 100 150 200 250 300

    Time (minutes)

    Yields

  • 7/29/2019 Bioproducts for a Sustainable Use

    32/35

    19/06/13

    32

    Hydrolysis of high oleic sunflower oil

    O

    O

    O

    ROC

    ROC

    ROC

    R

    OH

    O

    340 C , 5 h

    WaterLipase Candida Cylindracea (1%)

    aa

    ! Hydrolyse of high sunflower oil with the lipase Candida Cylindracea

    Fatty acids Symbol Mass composition

    Oleic acid C18 : 1 87.6 %

    Linoleic acid C18 : 2 4.7 %

    Palmitic acid C16 : 0 3.5 %

    Stearic acid C18 : 0 3.1 %

    Capric acid C10 : 0 0.2 %

    Other acids -- 0.9 %

    63/23Anas Godard - 103rdAOCS Annual Meeting & Expo

    Q3{PO4[WO(O2)2]4}

    Oleic acid

    1. Q+,X- in water

    2. H3PW12O40 with H2O2H2O2

    5 eq.

    1 eq.

    In situ

    formation

    Protocole for the oxidative cleavage of OA

    Catalyst/Co-oxidant

    Oxidant

    Substrate

    Reactants

    64/23

    Treatment

    ! Temperature quenching! Extraction with AcOEtAnalysis! GC with internal standard! MS with ammonia chemical ionization! NMR 1H and 13C

    Anas Godard - 103rdAOCS Annual Meeting & Expo

  • 7/29/2019 Bioproducts for a Sustainable Use

    33/35

    19/06/13

    33

    ! System : OA / H2O2 / Q3{PO4[WO(O2)2]4} (1/5/0.02)! 85 C, 5 h , 400 rpm! Four quaternary ammonium cations Q+ were tested

    Effects of the type of catalyst/co-oxidant

    Catalyst X- OA (%) YAA (%) YPA (%)-- - 38.1 1.8 2.2

    [n-Bu4N]3{PO4[WO(O2)2]4} Cl- 100.0 77.6 80.9

    [n-Bu4N]3{PO4[WO(O2)2]4} Br- 100.0 71.8 76.2

    [C5H5N(n-C16H33)]3{PO4[WO(O2)2]4} Cl- 100.0 81.5 86.1

    [MeN(n-C8H17)3]3{PO4[WO(O2)2]4} Cl- 100.0 75.7 80.7

    [(n-C8H17)4N]3{PO4[WO(O2)2]4} Cl- 100.0 73.2 76.5

    Best results were obtained with [C5H5N(n-C16H33)]3{PO4[WO(O2)2]4}

    65/23

    Experimental standard deviation(3 analyzed samples) between 0.1-3.9%

    Anas Godard - 103rdAOCS Annual Meeting & Expo

    Effects of the reaction temperature! System : OA / H2O2 / [C5H5N(n-C16H33)]3{PO4[WO(O2)2]4} (1/5/0.02)! 5 h, 400 rpm

    30

    40

    50

    60

    70

    80

    90

    60 65 70 75 80 85 90 95 100 105 110

    Temperature (C)

    Yield(%

    )

    Azelaic acid

    Pelargonic acid

    Optimal temperatures

    85 C - 90 C

    66/23

    Experimental standard deviation (3 analyzed samples) between0.3-2.2% Anas Godard - 103rdAOCS Annual Meeting & Expo

  • 7/29/2019 Bioproducts for a Sustainable Use

    34/35

    19/06/13

    34

    Kinetic investigation! OA / H2O2 / [C5H5N(n-C16H33)]3{PO4[WO(O2)2]4} (1/5/0.02), 85C

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    0 50 100 150 200 250 300

    Time (min)

    Ai /Atotal

    Pelargonic acid

    Azelaic acid

    Epoxide

    Diol

    Aldehyde (AP)

    Aldehyde (AA)

    Mechanism : OA Epoxide Diol Aldehydes Acids (AA and PA)

    67/23Anas Godard - 103rdAOCS Annual Meeting & Expo

    ! Extractions of AA and PA performed at low temperature! Catalyst recovery by filtration

    Influence of the post-reaction treatment

    Catalyst Treatment

    temperature

    YAA (%) YPA (%)

    [n-Bu4N]3{PO4[WO(O2)2]4} R.T. 72.9 73.9

    [n-Bu4N]3{PO4[WO(O2)2]4} Ice bath 77.6 80.9

    [C5H5N(n-C16H33)]3{PO4[WO(O2)2]4}R.T.

    71.8 70.9

    [C5H5N(n-C16H33)]3{PO4[WO(O2)2]4} Ice bath 81.5 86.1

    [MeN(n-C8H17)3]3{PO4[WO(O2)2]4} R.T. 71.3 77.2

    [MeN(n-C8H17)3]3{PO4[WO(O2)2]4} Ice bath 75.7 80.7

    ! OA / H2O2 / [C5H5N(n-C16H33)]3{PO4[WO(O2)2]4} (1/5/0.02)! 85C, 5 h, 400 rpm! Two treatment temperatures were tested:at room temperature (R.T.) or cold in an ice bath ( T < 4C)

    68/23

    Experimental standard deviation (3 analyzed samples) between0.1-3.9%

    Anas Godard - 103rdAOCS Annual Meeting & Expo

  • 7/29/2019 Bioproducts for a Sustainable Use

    35/35

    19/06/13

    Solvant

    recycling

    1. Ice bath(T < 4C)

    2. Filtration

    Oleic acid

    H2O2

    Extractionwith AcOEt

    Fatty acids

    ! In situ formation ofthe catalyst! 85 C, 5 h, 400 rpm

    Organic

    phase

    Aqueous

    phase

    Solventevaporation

    Solid catalyst

    Free-solvent

    (No waste)

    Aqueous

    phase

    Conclusions : Development of a green process

    Q3{PO4[WO(O2)2]4}

    Organic

    phase

    69/23Anas Godard - 103rdAOCS Annual Meeting & Expo

    [email protected]

    Thank you for your attention