Biomedical Engineering Design - Lecture 7. Example - rehabilitation

87
BIOMEDICAL BIOMEDICAL ENGINEERING DESIGN ENGINEERING DESIGN WB2308 WB2308

Transcript of Biomedical Engineering Design - Lecture 7. Example - rehabilitation

Page 1: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

BIOMEDICALBIOMEDICALENGINEERING DESIGNENGINEERING DESIGN

WB2308WB2308

Page 2: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

LECTURE STRUCTURE1. INTRODUCTION

CLINICALLY DRIVEN PROBLEM ANALYSISASSIGNMENT

3. BASIC REQUIREMENTS: ORTHOPAEDICS4. PROBLEM ANALYSIS: STUDENT PRESENTATIONS5. DESIGN ENGINEERING: THE CREATIVE PROCESS

6. DESIGN ENGINEERING PRINCIPLES

2. BASIC REQUIREMENTS: REHABILITATION

7. EXAMPLES: REHABILITATIONORTHOPAEDICS

Page 3: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation
Page 4: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Presentation overviewPresentation overview

BackgroundHistory of pneumatic actuationProject goalsMethodsResultsConcluding remarks

Page 5: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

BackgroundBackground

Many different types of prostheses available

Page 6: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

BackgroundBackground

WILMER, NetherlandsHosmer Dorrance, USAOtto Bock Healthcare GmbHMotion Control, USA

Page 7: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

BackgroundBackground

Many different types of prostheses availableBut all fail to comply with the basic requirements

Page 8: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

BackgroundBackground

RSL-Steeper, UK

Centri AG, Sweden

Otto Bock Healthcare GmbH

VASI Inc., Canada

Page 9: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

BackgroundBackground

Disadvantages electric actuation:– Mass– Speed– Vulnerable– Size

RSL-Steeper, UK

Page 10: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

BackgroundBackground

Pneumatic actuation:– Light– Fast– Reliable– Small

Page 11: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

History of pneumatic actuationHistory of pneumatic actuation

Dates back to 1877!

Page 12: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

History of pneumatic actuationHistory of pneumatic actuation

Dates back to 1877!

Dalish, 1877

Page 13: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

History of pneumatic actuationHistory of pneumatic actuation

Anonymous, ±1919

Page 14: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

History of pneumatic actuationHistory of pneumatic actuation

Dates back to 1877!Boosted in mid 20th

century: Thalidomide!

Page 15: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

History of pneumatic actuationHistory of pneumatic actuation

Dates back to 1877!Boosted in mid 20th

century: Thalidomide!

Page 16: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

History of pneumatic actuationHistory of pneumatic actuation

Dates back to 1877!Boosted in mid 20th

century: Thalidomide!

Page 17: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

History of pneumatic actuationHistory of pneumatic actuation

Dates back to 1877!Boosted in mid 20th

century: Thalidomide!

Heidelberg, 1949+

Page 18: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

History of pneumatic actuationHistory of pneumatic actuation

Steeper, 1964

Page 19: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

History of pneumatic actuationHistory of pneumatic actuation

Otto Bock, 1970+

Page 20: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

History of pneumatic actuationHistory of pneumatic actuation

Edinburgh, 1963 - 1977

Page 21: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

History of pneumatic actuationHistory of pneumatic actuation

Never successful:– Gas containers– Gas consumption– Overall mass

Page 22: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

History of pneumatic actuationHistory of pneumatic actuation

Page 23: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

History of pneumatic actuationHistory of pneumatic actuation

Page 24: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Project goalsProject goals

Re-assessment pneumatic actuation:– Light?– Fast?– Reliable?– Small?

Page 25: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

MethodMethod

Minimize gas consumption by– System choice– Reduction of friction losses– Reduction of dead space– Supply pressure

Prototypes

Page 26: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– system choicesystem choice

‘Standard’ operation

0 max. hand opening widthpi

nchi

ng fo

rce

Page 27: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– system choicesystem choice

‘Bi-phasic’ operation

0 max. hand opening width

cont

rol f

orce

max.

object size

prehension phase

pinching phase

Page 28: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– system choicesystem choice

‘Bi-phasic’ operationpinching motorpinching spring

closing springprehension motor

locking mechanism

Page 29: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– system choicesystem choice

Glove compensation

0max. thumb angle

thum

b m

o men

t M

characteristic ofcosmetic glove

resulting characteristic

characteristic ofcompensation mechanism

φ

Page 30: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

-250

-200

-150

-100

-50

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35

thumb opening angle ϕ [°]

mom

ent t

hum

b ax

is [N

mm

]

M open

M close

Method Method –– system choicesystem choice

Page 31: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

thu m

b m

omen

t

0

compensation mechanismcharacteristic of

ϕ

resulting characteristic

cosmetic glovecharacteristic of

max. thumb angle

Method Method –– system choicesystem choice

Page 32: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

II

I

thumb closed

thumb open

Method Method –– system choicesystem choice

Page 33: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

-300

-200

-100

0

100

200

300

0 5 10 15 20 25 30 35

thumb opening angle ϕ [°]

mom

ent t

hum

b ax

is [N

mm

] M open

M close

compensation moment

remaining closing moment

remaining openingmoment

Method Method –– system choicesystem choice

Page 34: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– system choicesystem choice

0 max. hand opening width

cont

rol f

orce

max.

object size

prehension phase

pinching phase

Pinching Phase Mechanism

Page 35: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– system choicesystem choice

0x

F

1

2

3x, F

Force delivered bySprings 1 and 2

Force needed tocompress Spring 3

F

F

Page 36: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– system choicesystem choice

05

1015

20253035

0 2 4 6 8

Thumb tip displacement [mm]

Pinc

hing

forc

e [N

]

Page 37: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– system choicesystem choice

Thumb tip displacement

0

5

10

15

20

25

30

35

40

0 2 4 6 8

Thumb tip displacement [mm]

Pinc

hing

forc

e [N

]

desired pinchingforce

resulting pinchingforce

Page 38: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– system choicesystem choice

Locking mechanism:– Continuously adjustable– Friction free– Rigid– Fast switching– Low energy– No backlash– Quiet– Overload protection

Page 39: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– system choicesystem choice

Logical circuit

pinching motor

locking motor

object sensor

prehension motor

p /p in out

state sensor pinching motor

state sensorslocking motor

Page 40: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– system choicesystem choice

Page 41: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– friction lossesfriction losses

Pivot point friction:– Journal bearings– Ball bearings– Flexible pivots– Gas bearings

Page 42: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– friction lossesfriction losses

Pivot point friction:– Journal bearings

2d

FfT rf ⋅⋅=

Page 43: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– friction lossesfriction losses

Pivot point friction:– Ball bearings

m113m0

7f dPfdf10160T ⋅⋅+⋅⋅⋅= −

Page 44: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– friction lossesfriction losses

Pivot point friction:– Flexible pivot

2r

z 4dF

Tπ⋅

ϕ⋅⋅=

Page 45: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– friction lossesfriction losses

Pivot point friction:– Gas bearings

zpdF

4T

2r

⋅Δ⋅α

⋅⋅η⋅

π=

Page 46: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– friction lossesfriction losses

Pivot point friction assumptions:all pivots are loaded with the same force Fr

the axis diameter d is the same for all pivot pointsthe rotation angle ϕ = 30°, to be travelled in Δt = 0.1 s

Page 47: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– friction lossesfriction losses

Pivot point friction:– Journal bearings Tf = 0.05•Fr•d– Ball bearings Tf ~ 0.0018•Fr•d– Flexible pivots Tf = 0.013•Fr•d– Gas bearings Tf = 1•10-7•Fr•d2

Page 48: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– friction lossesfriction losses

Pneumatic seal friction:– Piston motor– O-ring seals

Page 49: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– friction lossesfriction losses

O-ring seal friction: [ ] [ ]AfLfF hcf ⋅+⋅=

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25

O-ring compression [%]

f c [N

/mm

]

70° shore

80° shore

90° shore

0

100

200

300

400

500

600

0 5 10 15 20 25

pressure [MPa]

f h [k

Pa]

Page 50: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– dead spacedead space

Qp = ρ•Vds

Qp friction losses?

Qp leakage?

Page 51: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– dead spacedead space

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

dimensional scale factor

para

siti

c ga

s co

nsum

ptio

nsc

ale

fact

or

dead space volumeO-ring frictionorificeball bearing frictionannular orifice

Page 52: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– supply pressuresupply pressure

L

d

x max

x

ps

Page 53: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– supply pressuresupply pressure

[ ] ⎥⎦⎤

⎢⎣⎡ ⋅+⋅⋅

π⋅ρ=+⋅ρ= c

2cphc AxLd

4VVm

L

d

x max

x

ps

Page 54: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– supply pressuresupply pressure

[ ] ⎥⎦⎤

⎢⎣⎡ ⋅+⋅⋅

π⋅ρ=+⋅ρ= c

2cphc AxLd

4VVm

Optimal supply pressure level from:

0AxLd4dp

ddp

dmc

2

ss

hc =⎥⎦

⎤⎢⎣

⎡⎥⎦⎤

⎢⎣⎡ ⋅+⋅⋅π

⋅ρ=

Page 55: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– supply pressuresupply pressure

( )

( )

( ) ( )[ ]

( ) ( ) ( ) ( )[ ]

( ) ( ) ( )[ ]

+

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

⎥⎥⎦

⎢⎢⎣

++⋅

+⋅

⎥⎥⎦

⎢⎢⎣

⋅−

+⋅⋅+

+⎥⎥⎦

⎢⎢⎣

−+⋅

−⋅

⎥⎥⎦

⎢⎢⎣

⋅+

−⋅⋅

⋅π⋅η⋅

⋅+⋅−+⋅−⋅⋅⋅

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

+⋅−+⋅−⋅⋅⋅⋅⎥⎥⎦

⎢⎢⎣

⎥⎥⎦

⎢⎢⎣

++⋅

+⋅

+⋅⋅+

⎥⎥⎦

⎢⎢⎣

−+⋅

−⋅

−⋅⋅⋅+−

−⎥⎥⎦

⎢⎢⎣

⎥⎥⎦

⎢⎢⎣

++⋅

+⋅

⎥⎥⎦

⎢⎢⎣

⋅−

+⋅⋅+

⎥⎥⎦

⎢⎢⎣

−+⋅

−⋅

⎥⎥⎦

⎢⎢⎣

⋅+

−⋅⋅⋅+⋅+⋅⋅⋅

⋅⋅⋅⋅η⋅

=

top0

top0333.32

s

0toptop

top0

top0333.32

s

0toptop

22asas

333.3

2asas

333.3

top0

top03s

0toptop

top0

top03s

0toptopas

top0

top0333.32

s

0toptop

top0

top0333.32

s

0toptop2as

333.3

333.32

s

s

FFxc

FFln

)T01.0(

517.57

pc

)FF2(F

FFxc

FFln

)T01.0(

483.107

pc

)FF2(F

tL128

pp4915.12pp5.82T01.0TR

pp4915.12pp5.82T01.0TRFFxc

FFln

pc

)FF2(F

FFxc

FFln

pc

)FF2(Fpp

FFxc

FFln

)T01.0(517.57

pc

)FF2(F

FFxc

FFln

)T01.0(483.107

pc

)FF2(Fpp4915.12T01.0TR

T01.0t

L32

dppdm

( ) ( ) ( ) ( ) ( ) ( )[ ]( ) ( ) ( )[ ] 0

pp4915.12pp5.82T01.0TR

T01.0TRpp4915.125.82T01.0ppT01.0pp4915.12

p

Fx22

asas333.3

2333.3as

333.32as

333.33as

2s

top =⎥⎥⎦

⎢⎢⎣

+⋅−+⋅−⋅⋅⋅

⋅⋅⋅⋅−⋅+⋅⋅⋅++⋅⋅+⋅⋅

⋅+

Page 56: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– supply pressuresupply pressure

Ps, opt = 1.2 MPa

Independent of:Δt, L, Fs, and x

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3

supply pressure [MPa]

gas

cons

umpt

ion

[mg]

Page 57: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– prototype Iprototype I

Page 58: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Results IResults I

Page 59: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Results IResults I

Page 60: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Results IResults I

Addition of check valvesPneumatic switchGlove compensation

Page 61: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Results IResults I

Logical circuit

pinching motor

locking motor

object sensor

prehension motor

p /p in out

state sensor pinching motor

state sensorslocking motor

Page 62: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Results IResults I

Logical circuit

Page 63: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Results IResults I

Logical circuit

Page 64: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Results IResults I

‘Old timer’ check valve

Page 65: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Results IResults I

Pneumatic switch

Page 66: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Results IResults I

Page 67: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Results IResults I

Page 68: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

-250

-150

-50

50

150

250

350

0 0.1 0.2 0.3 0.4 0.5 0.6

thumb angle [rad]

glov

e to

rque

[Nm

m]

Glove compensation

Results IResults I

Page 69: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Results IResults I

Endurance test: 77000 cycles

Page 70: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Results IResults I

Page 71: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– prototype IIprototype II

Glove compensationMass of framePneumatical switchCheck valve

Page 72: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

-250

-150

-50

50

150

250

350

0 0.1 0.2 0.3 0.4 0.5 0.6

thumb angle [rad]

glov

e to

rque

[Nm

m]

Method Method –– prototype IIprototype II

Page 73: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– prototype IIprototype II

0 mm10

Page 74: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

-250

-150

-50

50

150

250

350

0 0.1 0.2 0.3 0.4 0.5 0.6

thumb angle [rad]

glov

e to

rque

[Nm

m]

-250

-150

-50

50

150

250

350

0 0.1 0.2 0.3 0.4 0.5 0.6

thumb angle [rad]

glov

e to

rque

[Nm

m]

Page 75: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– prototype IIprototype II

Page 76: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– prototype IIprototype II

Page 77: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– prototype IIprototype II

Δpcontrol

Δpcontrol

patm patm patm

phand mechanism

psupply

I II III IV

p

controlΔp

patm

supply

hand mechanismp

psupply

hand mechanism

atmppatm

p

Δpcontrol

a

b

c

Page 78: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– prototype IIprototype II

Pneumatic relay:

- Ø 3.5 x 8.15 mm

- ΔP = 0.4 MPa

- Q = 74.2 ltr/hr

- m = 0.66 g

Page 79: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– prototype IIprototype II

Page 80: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– prototype IIprototype II

Pneumatic switch:

- Ø 3.0 x 4.3 mm

- F = 0.6 N

- Q = 97.0 ltr/hr

- m = 0.19 g

Page 81: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– prototype IIprototype II

Page 82: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Method Method –– prototype IIprototype II

Check valve:

- Ø 1.5 x 2.8 mm

- ΔP = 48 kPa

- Q ≥ 120.0 ltr/hr

- m = 0.05 g

Page 83: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Results IIResults II

Page 84: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Concluding remarksConcluding remarks

Pneumatic actuation excels electrical actuation:– Low in mass– Fast– Reliable– Small

Page 85: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Concluding remarksConcluding remarks

Clinical evaluationPneumatic servo mechanismMiniature pneumatic components

Page 86: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

Delft Delft InstituteInstitute of of ProstheticsProsthetics and and OrthoticsOrthotics

Page 87: Biomedical Engineering Design - Lecture 7.  Example - rehabilitation

ADVANCED REHABILITATION TECHNOLOGYD E L F T U N I V E R S I T Y O F T E C H N O L O G Y

T H E N E T H E R L A N D S