Bioimaging ChemEng 590B: Lecture 15 4/11/13. Rat mammary carcinoma cells 10 min, images every 20...

29
Bioimaging ChemEng 590B: Lecture 15 4/11/13

Transcript of Bioimaging ChemEng 590B: Lecture 15 4/11/13. Rat mammary carcinoma cells 10 min, images every 20...

Page 1: Bioimaging ChemEng 590B: Lecture 15 4/11/13. Rat mammary carcinoma cells 10 min, images every 20 seconds Michele Balsamo, Gertler lab MIT 1. Imaging Cells.

Bioimaging

ChemEng 590B: Lecture 15

4/11/13

Page 2: Bioimaging ChemEng 590B: Lecture 15 4/11/13. Rat mammary carcinoma cells 10 min, images every 20 seconds Michele Balsamo, Gertler lab MIT 1. Imaging Cells.

Rat mammary carcinoma cells

10 min, images every 20 seconds

Michele Balsamo, Gertler lab MIT

1. Imaging Cells in Culture

Page 3: Bioimaging ChemEng 590B: Lecture 15 4/11/13. Rat mammary carcinoma cells 10 min, images every 20 seconds Michele Balsamo, Gertler lab MIT 1. Imaging Cells.

Quantifying Cell Migration: Live Microscopy

White light Incubator: physiological conditions

cameraObjectives (magnification)

Not shown

Fluorescent light

Page 4: Bioimaging ChemEng 590B: Lecture 15 4/11/13. Rat mammary carcinoma cells 10 min, images every 20 seconds Michele Balsamo, Gertler lab MIT 1. Imaging Cells.

Magnification of signal

This is actually not how a modern LM is built This is actually not how a modern LM is built

Page 5: Bioimaging ChemEng 590B: Lecture 15 4/11/13. Rat mammary carcinoma cells 10 min, images every 20 seconds Michele Balsamo, Gertler lab MIT 1. Imaging Cells.

The origin of the resolution problemLight propagates as a wave

f f

Superposition (addition) of incoming wave fronts

Page 6: Bioimaging ChemEng 590B: Lecture 15 4/11/13. Rat mammary carcinoma cells 10 min, images every 20 seconds Michele Balsamo, Gertler lab MIT 1. Imaging Cells.

In Phase

Out of Phase

Constructive interferenceIncreased amplitude (brightness)

Destructive interferenceDecreased amplitude (brightness)

Superposition of waves

Page 7: Bioimaging ChemEng 590B: Lecture 15 4/11/13. Rat mammary carcinoma cells 10 min, images every 20 seconds Michele Balsamo, Gertler lab MIT 1. Imaging Cells.

A (good) lens is built to produce constructive interference in the

main image point

Huygens’ principle(wave theory)

Page 8: Bioimaging ChemEng 590B: Lecture 15 4/11/13. Rat mammary carcinoma cells 10 min, images every 20 seconds Michele Balsamo, Gertler lab MIT 1. Imaging Cells.

Z

Image of a Point Source of Light –The Point Spread Function (PSF)

Objective

Airy disk

XY

Page 9: Bioimaging ChemEng 590B: Lecture 15 4/11/13. Rat mammary carcinoma cells 10 min, images every 20 seconds Michele Balsamo, Gertler lab MIT 1. Imaging Cells.

The opening of the cone of rays captured by a lens defines the width of the main

lobe of the PSF

This “opening” is the numerical aperature

Page 10: Bioimaging ChemEng 590B: Lecture 15 4/11/13. Rat mammary carcinoma cells 10 min, images every 20 seconds Michele Balsamo, Gertler lab MIT 1. Imaging Cells.

NA = n x sin(angle)n = refractive index of medium

between lens & specimen

Image from www.microscopyu.com

Definition of the Numerical Aperture (NA)

NA is defined for every objective.NA increases with increasing magnification

Page 11: Bioimaging ChemEng 590B: Lecture 15 4/11/13. Rat mammary carcinoma cells 10 min, images every 20 seconds Michele Balsamo, Gertler lab MIT 1. Imaging Cells.

d

Resolution: a measure of how close two point images can come such

that they are perceived as separate

Lord Rayleigh’s criterion: 0.61NA

R Physiologically motivated !!!Physiologically motivated !!!

The practical limit for \theta is about 70°. In an air objective or condenser, this gives a

maximum NA of 0.95. In a high-resolution oil immersion lens, the maximum NA is typically

1.45, when using immersion oil with a refractive index of 1.52. Due to these

limitations, the resolution limit of a light microscope using visible light is about 200 nm.

Page 12: Bioimaging ChemEng 590B: Lecture 15 4/11/13. Rat mammary carcinoma cells 10 min, images every 20 seconds Michele Balsamo, Gertler lab MIT 1. Imaging Cells.

Nyquist sampling

undersampledcritically sampled‘Nyquist’ sampled

over sampled

Page 13: Bioimaging ChemEng 590B: Lecture 15 4/11/13. Rat mammary carcinoma cells 10 min, images every 20 seconds Michele Balsamo, Gertler lab MIT 1. Imaging Cells.

Link between resolution and pixel size: Magnification

4x

Mp

NA

Defined bycamera

Defined byobjective

Interline transfer CCD EM-CCD sCMOS6.4 um 12.4 um 6.5 um

px< 8.9 um

Not an easy decision: decreasing pixel size means increasing $$!

Page 14: Bioimaging ChemEng 590B: Lecture 15 4/11/13. Rat mammary carcinoma cells 10 min, images every 20 seconds Michele Balsamo, Gertler lab MIT 1. Imaging Cells.

Pros and Cons of Standard LMs

Pros

• Live imaging!

• Fairly quick: images every one second, if necessary (depends on camera speed)

Cons

• Resolution limited at 200nm

• Increasing resolution, camera speed, light sources, depth of imaging == $$$.

• Some examples: Peyton lab: $170K

• Fancier, 3D microscopy: $1M +

• Can’t pick out individual proteins…..

Page 15: Bioimaging ChemEng 590B: Lecture 15 4/11/13. Rat mammary carcinoma cells 10 min, images every 20 seconds Michele Balsamo, Gertler lab MIT 1. Imaging Cells.

Susan Anderson, University of Washington

Charras, et al. JCB 2006

Ezrin Actin

2. Imaging of Intracellular Proteins

Page 16: Bioimaging ChemEng 590B: Lecture 15 4/11/13. Rat mammary carcinoma cells 10 min, images every 20 seconds Michele Balsamo, Gertler lab MIT 1. Imaging Cells.

How immunofluorescence works

Page 17: Bioimaging ChemEng 590B: Lecture 15 4/11/13. Rat mammary carcinoma cells 10 min, images every 20 seconds Michele Balsamo, Gertler lab MIT 1. Imaging Cells.

Pros and Cons of Fluorescent LM

Pros

• Can visualize how what proteins a cell is expressing as a function of your material.

• Can visualize how the cells is organizing that protein, how much of the protein it’s expressing at a given time, and where in the cell it is.

Cons

• Resolution limited at 200nm

• Increasing resolution, camera speed, light sources, depth of imaging == $$$.

• Some examples: Peyton lab: $170K

• Fancier, 3D microscopy: $1M +

• Sample prep can be time consuming.

• Cells are fixed, not live.…..

Page 18: Bioimaging ChemEng 590B: Lecture 15 4/11/13. Rat mammary carcinoma cells 10 min, images every 20 seconds Michele Balsamo, Gertler lab MIT 1. Imaging Cells.

EGFP-Mena /mcherry-actin

3. Live Imaging of Individual Proteins

Gertler Lab, MIT

Tag protein with GFPHow: recombinant DNA

technology

Page 19: Bioimaging ChemEng 590B: Lecture 15 4/11/13. Rat mammary carcinoma cells 10 min, images every 20 seconds Michele Balsamo, Gertler lab MIT 1. Imaging Cells.

Actin dynamics are regulated by density of matrix proteins

19

Speckle Microscopy: Individual actin monomers are stained at sub-maximum concentrationCan see individual monomers move within a filament to watch dynamics

Page 20: Bioimaging ChemEng 590B: Lecture 15 4/11/13. Rat mammary carcinoma cells 10 min, images every 20 seconds Michele Balsamo, Gertler lab MIT 1. Imaging Cells.

Pros and Cons of Live-fluorescent LM

Pros

• Can visualize how what proteins a cell is expressing as a function of your material.

• Can visualize how the cells is organizing that protein, how much of the protein it’s expressing at a given time, and where in the cell it is.

• Live microscopy!

Cons

• Increasing resolution, camera speed, light sources, depth of imaging == $$$.

• Some examples: Peyton lab: $170K

• Fancier, 3D microscopy: $1M +

• Sample prep can be time consuming.

• Takes months to create a single recombinant protein.

• Still resolution limited at 200nm…

Page 21: Bioimaging ChemEng 590B: Lecture 15 4/11/13. Rat mammary carcinoma cells 10 min, images every 20 seconds Michele Balsamo, Gertler lab MIT 1. Imaging Cells.

Mena Mena11a

3. Beat the Resolution Limits with Scanning Electron Microscopy

Michele Balsamo & Leslie Mebane, Gertler Lab, MIT

These filamentou

s structures are less

than 100nm wide!

Page 22: Bioimaging ChemEng 590B: Lecture 15 4/11/13. Rat mammary carcinoma cells 10 min, images every 20 seconds Michele Balsamo, Gertler lab MIT 1. Imaging Cells.

How SEM works

Pro: sub-visible light wavelength imaging

Con: fixed samples only, everything is under super vacuum.Con: sample preparation can be

destructive, no water!!!Con: sample must be conductive!

Page 23: Bioimaging ChemEng 590B: Lecture 15 4/11/13. Rat mammary carcinoma cells 10 min, images every 20 seconds Michele Balsamo, Gertler lab MIT 1. Imaging Cells.

Other issues that we don’t have time to discuss.

•What about very deep into tissues?

•LMs are depth limited to about 300um.

•Options: 2-photon imaging

•What about in an animal? A human???

•Options: Intravital imaging, Photoacoustic tomography, MRI

Page 24: Bioimaging ChemEng 590B: Lecture 15 4/11/13. Rat mammary carcinoma cells 10 min, images every 20 seconds Michele Balsamo, Gertler lab MIT 1. Imaging Cells.

Multiphoton Imaging

Page 25: Bioimaging ChemEng 590B: Lecture 15 4/11/13. Rat mammary carcinoma cells 10 min, images every 20 seconds Michele Balsamo, Gertler lab MIT 1. Imaging Cells.

Intravital Imaging

Cancer biophysics, Hubrect Institute

Page 26: Bioimaging ChemEng 590B: Lecture 15 4/11/13. Rat mammary carcinoma cells 10 min, images every 20 seconds Michele Balsamo, Gertler lab MIT 1. Imaging Cells.

Photoacoustic Tomography

Page 27: Bioimaging ChemEng 590B: Lecture 15 4/11/13. Rat mammary carcinoma cells 10 min, images every 20 seconds Michele Balsamo, Gertler lab MIT 1. Imaging Cells.

MRI

Page 28: Bioimaging ChemEng 590B: Lecture 15 4/11/13. Rat mammary carcinoma cells 10 min, images every 20 seconds Michele Balsamo, Gertler lab MIT 1. Imaging Cells.

PET

Page 29: Bioimaging ChemEng 590B: Lecture 15 4/11/13. Rat mammary carcinoma cells 10 min, images every 20 seconds Michele Balsamo, Gertler lab MIT 1. Imaging Cells.

Bone density scan