Biogenic, pryogenic, anthropogenic pryogenic anthropogenic biogenic anthropogenic pryogenic...

17
biogenic, pryogenic, anthropogenic pryogenic anthropogenic biogenic anthropogenic pryogenic pyrogenic anthropogenic biogenic anthropogenic Thomas Kurosu, Harvard-Smithsonian HCHO August 2006 Ozone Monitoring Experiment Using space-based measurements of formaldehyde to learn about BVOC distributions Paul Palmer, University of Edinburgh

Transcript of Biogenic, pryogenic, anthropogenic pryogenic anthropogenic biogenic anthropogenic pryogenic...

Page 1: Biogenic, pryogenic, anthropogenic pryogenic anthropogenic biogenic anthropogenic pryogenic pyrogenic anthropogenic biogenic anthropogenic Thomas Kurosu,

biogenic, pryogenic, anthropogenic

pryogenicanthropogenic

biogenicanthropogenic

pryogenicpyrogenicanthropogenic

biogenicanthropogenic

Thom

as

Kuro

su, H

arv

ard

-Sm

ithso

nia

n

HCHO August 2006Ozone Monitoring Experiment

Using space-based measurements of formaldehyde to learn about BVOC

distributionsPaul Palmer, University of Edinburgh

Page 2: Biogenic, pryogenic, anthropogenic pryogenic anthropogenic biogenic anthropogenic pryogenic pyrogenic anthropogenic biogenic anthropogenic Thomas Kurosu,

Environmental factors:• temperature• solar irradiance• leaf area index• leaf age

July2003

MEGAN Isoprene Emission Inventory

Page 3: Biogenic, pryogenic, anthropogenic pryogenic anthropogenic biogenic anthropogenic pryogenic pyrogenic anthropogenic biogenic anthropogenic Thomas Kurosu,

Global Ozone Monitoring Experiment (GOME) &the Ozone Monitoring Instrument (OMI)

• GOME (European), OMI (Finnish/USA) are nadir SBUV instruments• Ground pixel (nadir): 320 x 40 km2 (GOME), 13 x 24 km2 (OMI)• 10.30 desc (GOME), 13.45 asc (OMI) cross-equator time • GOME: 3 viewing angles global coverage within 3 days• OMI: 60 across-track pixels daily global coverage• O3, NO2, BrO, OClO, SO2, HCHO, H2O, cloud properties

Launched in 2004

GOME

Page 4: Biogenic, pryogenic, anthropogenic pryogenic anthropogenic biogenic anthropogenic pryogenic pyrogenic anthropogenic biogenic anthropogenic Thomas Kurosu,

GOME HCHO columns

July 2001

[1016 molec cm-

2]

0 1 20.5

1.5

2.5

Biogenic emissions

Biomass burning

* Columns fitted: 337-356nm * Fitting uncertainty < continental signals

Data: c/o Chance et al

– fractionally cloudy pixels (>40%) removed

Page 5: Biogenic, pryogenic, anthropogenic pryogenic anthropogenic biogenic anthropogenic pryogenic pyrogenic anthropogenic biogenic anthropogenic Thomas Kurosu,

Relating HCHO Columns to VOC Emissions

VOC HCHOhours

OH

hours

h, OH

Local linear relationship between HCHO and E

kHCHO

EVOC = (kVOCYVOCHCHO)HCHO

___________

VOC source

Distance downwind

HCHO Isoprene

-pinenepropane

100 km

EVOC: HCHO from GEOS-CHEM CTM and MEGAN isoprene emission model

Palmer et al, JGR, 2003.

Net

Page 6: Biogenic, pryogenic, anthropogenic pryogenic anthropogenic biogenic anthropogenic pryogenic pyrogenic anthropogenic biogenic anthropogenic Thomas Kurosu,

MCM HCHO yield calculationsC

um

ula

tive H

CH

O y

ield

[p

er

C]

0 2 4 6 8 10 12 14 16 18 20 220.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

HC

HO

YIE

LD

PE

R C

RE

AC

TE

D

DAYS

NOX= 1 PPB NOX= 100 PPT

pinene

( pinene similar)DAYS

0.4

0 20 40 60 80 100 120 1400.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55C

umm

ula

tive

HC

HO

Yie

ld fr

om

iso

pren

e o

xid

atio

n (p

er C

)

TIME (HOURS)

NOX = 0.1 PPB

NOX =1 PPB

Figure 18. Formation of HCHO from isoprene. Vertical lines denote midnight of each day

Isoprene

HOURS

0.5NOx = 1 ppb

NOx = 0.1 ppb

Parameterization (1ST-order decay) of HCHO production from monoterpenes in global 3-D CTM

Higher CH3COCH3 yield from monoterpene oxidation delayed (and smeared) HCHO production

Palmer et al, JGR, 2006.

C5H8+OH(i) RO2+NOHCHO, MVK, MACR

(ii) RO2+HO2ROOH

ROOH recycle RO and RO2

Page 7: Biogenic, pryogenic, anthropogenic pryogenic anthropogenic biogenic anthropogenic pryogenic pyrogenic anthropogenic biogenic anthropogenic Thomas Kurosu,

GOME Isoprene Emissions: 1996-2001May Jun Jul Aug Sep

1996

1997

1998

1999

2000

2001

[1012 molecules cm-2s-1]0 5 10

Palm

er

et

al, JG

R,

2006.

Page 8: Biogenic, pryogenic, anthropogenic pryogenic anthropogenic biogenic anthropogenic pryogenic pyrogenic anthropogenic biogenic anthropogenic Thomas Kurosu,

Surface temperature explains 80% of GOME-observed variation in HCHO

NCEP Surface Temperature [K]

GO

ME Iso

pre

ne E

mis

sions

[1

012 a

tom

s C

cm

-2s-

1] G98 fitted to

GOME data

G98 Modeled curves

Time to revise model parameterizations of isoprene emissions?

Palm

er

et

al, JG

R,

2006.

Page 9: Biogenic, pryogenic, anthropogenic pryogenic anthropogenic biogenic anthropogenic pryogenic pyrogenic anthropogenic biogenic anthropogenic Thomas Kurosu,

Tropical ecosystems represent 75% of biogenic NMVOC emissions

What drives observed variability of tropical BVOC emissions?

Page 10: Biogenic, pryogenic, anthropogenic pryogenic anthropogenic biogenic anthropogenic pryogenic pyrogenic anthropogenic biogenic anthropogenic Thomas Kurosu,

Sla

nt

Colu

mn H

CH

O [

10

16 m

ole

c cm

-2]

Sep 1997

Nov 1997

19971998199920002001

X = Active Fire (ATSR)

Mon

thly

ATS

R F

irecou

nts

Day of Year

Significant pyrogenic HCHO source over tropicsGood: Additional trace gas measurement of biomass burning; effect can be identified largely by firecounts (see below)

Bad: Observed HCHO a mixture of biogenic and pyrogenic – difficult to separate without better temporal and spatial resolution

GOME

Page 11: Biogenic, pryogenic, anthropogenic pryogenic anthropogenic biogenic anthropogenic pryogenic pyrogenic anthropogenic biogenic anthropogenic Thomas Kurosu,

HCHO and Isoprene over the Amazon

In situ isoprene 2002

Tro

stdorf e

t al,

200

4

19971998199920002001

GOME

ATSR Firecounts used to remove HCHO from fires

Page 12: Biogenic, pryogenic, anthropogenic pryogenic anthropogenic biogenic anthropogenic pryogenic pyrogenic anthropogenic biogenic anthropogenic Thomas Kurosu,

em

issio

n r

ate

(C

)(µ

g g

-1 h

-1)

PA

R(µ

mol m

-2 s

-1)

assim

ilati

on

(C

)(m

g g

-1 h

-1)

0

1

2

3

4

5

6

limonene myrcene b-pinene a-pinene sabinene

500

1000

1500

00:0006:00

12:0018:00

00:0006:00

12:0018:00

00:00

0

2

4

local time [hh:mm]

10

20

30

40

tem

pera

ture

[°C

]

0

2

4 G

93

for

isop

.[s

um

of

mon

ote

rpen

es]

tran

sp

irati

on

(mm

ol m

-2 s

-1)

monoterpene emission of Apeiba tibourbou

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

00:00 02:24 04:48 07:12 09:36 12:00 14:24 16:48 19:12 21:36 00:00

Time bin midpoint

Co

nce

ntr

atio

n (

pp

b)

0

1

2

3

4

5

6

00:00 02:24 04:48 07:12 09:36 12:00 14:24 16:48 19:12 21:36 00:00

Time bin midpoint

Co

nce

ntr

atio

n (

pp

b)

0

0.5

1

1.5

2

2.5

3

3.5

00:00 02:24 04:48 07:12 09:36 12:00 14:24 16:48 19:12 21:36 00:00

Time bin midpoint

Co

nce

ntr

atio

n (

pp

b)

Isoprene

Limonene

Beta-pinene

[pp

b]

Time of DayC/o J. Kesselmeier

C/o J. Saxton A. Lewis

Amazon

AfricaCan isoprene explain the observed magnitude and variance of HCHO columns over the tropics?

Page 13: Biogenic, pryogenic, anthropogenic pryogenic anthropogenic biogenic anthropogenic pryogenic pyrogenic anthropogenic biogenic anthropogenic Thomas Kurosu,

May Jun Jul

Aug Sep Oct

OMI gives a better chance of estimating African BVOCs

OMI Data c/o Thomas Kurosu; horizontal resolution O(10x25 km2)

Page 14: Biogenic, pryogenic, anthropogenic pryogenic anthropogenic biogenic anthropogenic pryogenic pyrogenic anthropogenic biogenic anthropogenic Thomas Kurosu,

Isoprene concentrations during AMMA July 2006 measured by the Bae146 aircraft; MODIS tree cover overlaid

Isoprene data c/o Jim Hopkins and Ally Lewis, U. York

Jul

OMI

-2 -1 0 1 2 3 4 5 69

10

11

12

13

14

1.000

1.951

3.807

7.429

14.50

28.28

55.19

107.7

210.1

410.0

800.0

[ppt]

-2 -1 0 1 2 3 4 5 69

10

11

12

13

14

1.000

1.951

3.807

7.429

14.50

28.28

55.19

107.7

210.1

410.0

800.0

ATSR Firecounts

Jul

Page 15: Biogenic, pryogenic, anthropogenic pryogenic anthropogenic biogenic anthropogenic pryogenic pyrogenic anthropogenic biogenic anthropogenic Thomas Kurosu,

40

45

50

55

60

65

70

- 60 - 50 - 40 - 30 - 20 - 10 0 10

“Normal” airmass flow

44

46

48

50

52

54

56

- 20 - 15 - 10 - 5 0 5 10

Stagnant airmass flow

0

200

400

600

800

1000

1200

1400

27-Jul

29-Jul

31-Jul

2-Aug

4-Aug

6-Aug

8-Aug

10-Aug

12-Aug

14-Aug

16-Aug

18-Aug

20-Aug

22-Aug

24-Aug

26-Aug

28-Aug

30-Aug

0

5

10

15

20

25

30

35

40

Tem

pera

ture

(C

)

Isop

ren

e (

pp

t)

Estimated up to 700 extra deaths attributable to air pollution (O3 and PM10) in UK during this period

O3 > 100 ppb on 6 consecutive days

2pm, 6th Aug, 2003

Compiled from UK ozone network data

Isoprene c/o Ally Lewis

An increasing role for BVOCs in UK air quality?

Page 16: Biogenic, pryogenic, anthropogenic pryogenic anthropogenic biogenic anthropogenic pryogenic pyrogenic anthropogenic biogenic anthropogenic Thomas Kurosu,

Stewart et al, 2003Isoprene

MonoterpenesBVOC fluxes for a “hot, sunny” day

1016 [molec cm-

2]

OMI HCHO

2<0.3

Bottom-up emission inventory

“Expect harmful levels of ozone and PM2.5 over the next couple of days; please keep small children and animals inside. Transatlantic pollution represents 20% of today’s UK surface ozone.”

2010

Satellite observations test bottom-up emission inventories used for air quality: an important step toward regional chemical weather forecasting

Page 17: Biogenic, pryogenic, anthropogenic pryogenic anthropogenic biogenic anthropogenic pryogenic pyrogenic anthropogenic biogenic anthropogenic Thomas Kurosu,

Final Comments

Proper interpretation of HCHO requires an integrated approach, i.e., including surface data, lab data

Interpreting space-based HCHO data is still in its infancy – new instruments bring better resolution but also new challenges

With the frequency of European heatwaves projected to increase the role of BVOCs in future UK air quality must be better quantified