Biochemistry 1.01 Cell Membrane

8
1 of 8 Cell Membrane [Maki, Mayo, Mañago, Mendoza, Morales] CELL MEMBRANE Susan C. Tengco, MD, MBA 1.01 June 18, 2015 CELL MEMBRANE Asymmetric, sheetlike structure with an inner leaflet (exposed to the ICF) and an outer one (exposed to the ECF) Exists in viscous—gelfluid like—and plastic structures (ex. RBCs). Dynamic—exhibits rapid turnover and lateral diffusion Has a thermodynamically stable and metabolically active arrangement Composed of lipids, proteins, and carbohydrates A. Cell Membrane Assymetry INSIDEOUTSIDE ASYMMETRYo Due to the irregular distribution of proteins o Carbohydrates are only found externally o Specific locations of enzymes (ex. In the mitochondria, enzymes involved in ETC are found on the inner mitochondrial membrane) o Nature of phospholipids Outer leaflet: phosphatidylcholine, sphingomyelin, glycolipids Inner leaflet: phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol REGIONAL ASYMMETRYo Villous borders, gap junctions, tight junctions o Can only be found in specific sites B. Functions of Cell Membrane Selective barrier aided by carriers and channels, allowing exchange between the cell and the environment Permits cell individuality – separates cell from other cells Celltocell interaction – due to hormonereceptor interactions Cell adhesion to basement membrane and other cells Transmembrane signaling – signal transduction mechanism Compartmentalization Localize enzymes Excitationresponse coupling Site for energy transduction Disruption of the cell membrane results to diseases: 1. Familial hypercholesterolemia Lipids not directly absorbed by cells Bind to proteins (LDL) to be absorbed LDL receptors lacking in cell membrane LDLs stay in the blood vessles and accumualate Premature atherosclerosis TOPIC OUTLINE I. Cell Membrane a. Cell Membrane Assymetry b. Functions on Cell Membrane II. Two Major Body Components a. Intracellular Fluid Compartment b. Extracellular Fluid Compartment III. Composition of Cell Membrane a. Lipids i. Types of Lipids b. Proteins i. Types of Membrane Proteins c. Carbohydrates IV. FluidMosaic Model a. Factor Affecting Membrane Fluidity i. Importance of Increased Membrane Fluidity V. Artificial Membranes and Other Special Membrane Structures a. Micelles b. Liposomes c. Tight Junctions d. Gap Junctions VI. Signal Transduction VII. The Cell Membrane and Transport Systems a. Transport Systems b. Cross Membrane Transport of Small Molecules i. Passive Transport ii. Carrier Mediated Transport iii. Osmosis c. Cellular Transport of Macromolecules i. Endocytosis - Pinocytosis - Phagocytosis ii. Exocytosis VIII. Membrane Assembly IX. Lipid Assembly X. Protein Assembly

description

trans

Transcript of Biochemistry 1.01 Cell Membrane

       

  1  of  8   Cell  Membrane  [Maki,  Mayo,  Mañago,  Mendoza,  Morales]    

CELL  MEMBRANE    Susan  C.  Tengco,  MD,  MBA    

1.01    June  18,  2015  

 

                                                                                           

CELL  MEMBRANE  • Asymmetric,  sheet-­‐like  structure  with  an  inner  leaflet  

(exposed  to  the  ICF)  and  an  outer  one  (exposed  to  the  ECF)  

• Exists  in  viscous—gel-­‐fluid  like—and  plastic  structures  (ex.  RBCs).    

• Dynamic—exhibits  rapid  turnover  and  lateral  diffusion  

• Has  a  thermodynamically  stable  and  metabolically  active  arrangement  

• Composed  of  lipids,  proteins,  and  carbohydrates    

A.  Cell  Membrane  Assymetry  • “INSIDE-­‐OUTSIDE  ASYMMETRY”  

o Due  to  the  irregular  distribution  of  proteins  o Carbohydrates  are  only  found  externally  o Specific  locations  of  enzymes  (ex.  In  the  

mitochondria,  enzymes  involved  in  ETC  are  found  on  the  inner  mitochondrial  membrane)    

o Nature  of  phospholipids  § Outer  leaflet:  phosphatidylcholine,  

sphingomyelin,  glycolipids  § Inner  leaflet:  phosphatidylethanolamine,  

phosphatidylserine,  phosphatidylinositol  • “REGIONAL  ASYMMETRY”  

o Villous  borders,  gap  junctions,  tight  junctions  o Can  only  be  found  in  specific  sites  

 B.  Functions  of  Cell  Membrane  • Selective  barrier  -­‐  aided  by  carriers  and  channels,  

allowing  exchange  between  the  cell  and  the  environment  

• Permits  cell  individuality  –  separates  cell  from  other  cells  

• Cell-­‐to-­‐cell    interaction  –  due  to  hormone-­‐receptor  interactions  

• Cell  adhesion  to  basement  membrane  and  other  cells  • Transmembrane  signaling  –  signal  transduction  

mechanism  • Compartmentalization  • Localize  enzymes  • Excitation-­‐response  coupling  • Site  for  energy  transduction    Disruption  of  the  cell  membrane  results  to  diseases:    

1. Familial  hypercholesterolemia    

   

Lipids  not  directly  

absorbed  by  cells  

Bind  to  proteins  (LDL)  to  be  absorbed  

LDL  receptors  lacking  in  

cell  membrane  

LDLs  stay  in  the  blood  vessles  and  accumualate  

Premature  atherosclerosis  

TOPIC  OUTLINE  I. Cell  Membrane  

a. Cell  Membrane  Assymetry  b. Functions  on  Cell  Membrane  

II. Two  Major  Body  Components  a. Intracellular  Fluid  Compartment  b. Extracellular  Fluid  Compartment  

III. Composition  of  Cell  Membrane  a. Lipids  

i. Types  of  Lipids  b. Proteins  

i. Types  of  Membrane  Proteins  c. Carbohydrates  

IV. Fluid-­‐Mosaic  Model  a. Factor  Affecting  Membrane  Fluidity  

i. Importance  of  Increased  Membrane  Fluidity  

V. Artificial  Membranes  and  Other  Special  Membrane  Structures  a. Micelles  b. Liposomes  c. Tight  Junctions  d. Gap  Junctions  

VI. Signal  Transduction  VII. The  Cell  Membrane  and  Transport  Systems  

a. Transport  Systems  b. Cross  Membrane  Transport  of  Small  

Molecules  i. Passive  Transport  ii. Carrier  Mediated  Transport  iii. Osmosis  

c. Cellular  Transport  of  Macromolecules  i. Endocytosis  

- Pinocytosis  - Phagocytosis  

ii. Exocytosis  VIII. Membrane  Assembly  IX. Lipid  Assembly  X. Protein  Assembly  

 

2  of  8   Cell  Membrane[Maki,  Mayo,  Mañago,  Mendoza,  Morales]    

Cell  Membrane  1.01    

2. Congenital  Goiter  

 

3. Myocardial  Ischemia  4. Acute  Pancreatitis  

 

   TWO  MAJOR  BODY  COMPONENTS  

 A. INTRACELLULAR  FLUID  COMPARTMENT  (ICF)    

o 2/3  (40%)of  total  body  water  o Provides  proper  environment  for  cell  to:  

§ Synthesize,  store  and  utilize  energy  § Repair  itself  § Replicate  § Perform  special  function  

o Cell  housekeeping  function  o Predominant  ions:  K+,  Mg2+,  PO4-­‐,  proteins;  

negatively  charged    

B. EXTRACELLULAR  FLUID  COMPARTMENT  (ECF)    o 1/3  (20%)  of  total  body  water  o Subdivided  into  plasma  and  interstitial  fluid  o Acts   as   transport/delivery   system   of   nutrients,  

ions,  oxygen,  hormonesand  waste  products  o Predominant  ions:  Na+,  Ca2+,  Cl-­‐,  glucose  

 Notes:    

The   ICF   and   ECF   have   different   compositions   and  consistencies    Changes   in   the   composition   occur   from   time-­‐to-­‐time,  but  will  return  to  normal  due  to  membrane  activity    

COMPOSITION  OF  CELL  MEMBRANE    A. LIPIDS  • Provide  basic  structure;  backbone  • Amphipathic  due  to  hydrophobic  and  hydrophilic  

parts  –  attributing  to  formation  of  a  bilayer  • With  FA  tails    

o Saturated  FAs  –  straight  tailsàorganized,  compact,  crystalline  membrane  

o Unsaturated  FAs  –  kinked  tailsàdue  to  double  bond,  disorganized,  fluid  membrane    

Three  Important  Types  of  Lipids  1. Phospholipids  –  lipids  with  Phosphate  groups.  Lends  

to  selective  permeability  of  cell  membrane  as  it  allows  lipophilic  substances  (e.g  O2,  CO2,  alcohol)  to  pass  through.    

 Figure  1.  Phospholipids  

 

 Figure  2.  Lipid  Bilayer  

 i. Phosphoglycerides    

-­‐ most  common  phospholipid  -­‐ consist  of  a  glycerol  backbone  +  2  fatty  acid  

chains  connected  via  ester  linkages  +  phosphorylated  alcohol  

-­‐  (e.g.  ethanolamine,  choline,  serine,  glycerol,  or  inositol)  

-­‐  Fatty  acids  are  even-­‐numbered  (16-­‐18  C  atoms)  which  could  be  saturated  or  unsaturated  

Iodine  needs  receptors  to  be  absorbed  into  

cells  

Cell  membrane  lacks  Iodine  receptors  

Iodine  is  not  absorbed  

Thyroid  hormones  are  not  produced  

Pancreas  make  and  keep  digestive  enzymes  in  inactive  state  

Injlammation  of  pancreas  

Cell  membrane  is  disrupted  

Enzymes  will  leak  out  

Digestion  of  nearby  

structures  will  occur  

Polar  head  group  

Apolar,  hydrocarbon  tails  

Aqueous  

Aqueous  

Hydrophilic  

Hydrophobic  

Hydrophilic  

 

3  of  8   Cell  Membrane[Maki,  Mayo,  Mañago,  Mendoza,  Morales]    

Cell  Membrane  1.01    

-­‐ Simplest  phosphoglyceride  is  phosphatidic  acid  

 Figure  3.  Phosphoglyceride  

ii. Sphingomyelin    

 Figure  4.  Sphingomyelin  

-­‐ second  major  class  of  phospholipid  -­‐ contains  a  sphingosine  backbone  instead  of  

glycerol  -­‐ A  fatty  acid  is  attached  by  an  amide  link  to  

the  amino  group  of  sphingosine    =    CERAMIDE  

-­‐  Hydroxyl  group  of  sphingosine  is  esterified  to  phosphorylcholine    

-­‐  Sphingomyelin  is  prominent  in  myelin  sheath    

 2. Glycosphingolipids  –  sugar  attached  to  a  ceramide  

backbone;  found  in  nerve  tissues  i. Cerebrosides  ii. Gangliosides  

 3. Sterols  

i. Cholesterol    -­‐ Most  common  sterol  and  intercalates  with  

membrane  phospholipids  -­‐ 27-­‐Carbon  atom  with  4  rings  conferring  

rigidity  

-­‐ All  parts  are  hydrophobic  except  for  the  hydroxyl  group  near  the  polar  heads.  

-­‐ “Moderator  molecule”  that  moderates  membrane  fluidity  

-­‐ Increases  fluidity  if  T  <  Tm*  -­‐ Decreases  fluidity  if  T  >  Tm  

 *Tm  –  transition  temperature;  temperature  at  which  cell  membrane  becomes  disorganized    

 Figure  5.  Cholesterol  

B. PROTEINS  • Amphipathic  structures  • Determines  membrane  function  • Act  as  pumps,  channels,  carriers,  receptors,  enzymes,  

structural  components,  antigens    

Two  Types  of  Membrane  Proteins  1. Integral/Transmembrane    

-­‐  attached  directly  to  phospholipids  -­‐ require  detergents  to  be  removed  -­‐ amphipathic,  globular  and  spans  the  bilayer  

(transmembrane)  several  times  in  certain  proteins  

-­‐ asymmetrically  distributed  in  cell  membrane    

2. Peripheral    -­‐ do    not  interact  directly  with  phospholipids  -­‐ attached  to  integral  proteins  -­‐ usually  found  inside  the  cell  -­‐ Some  are  cytoskeletal  proteins  (ex.  Ankyrin  in  

RBCs  is  attached  to  integral  protein  Band  3  and  anchors  spectrin  à    providing  stability  to  RBCs)  

   

Legend:  Phosphorylcholine  Sphingosine  Fatty  Acid  

 

 

4  of  8   Cell  Membrane[Maki,  Mayo,  Mañago,  Mendoza,  Morales]    

Cell  Membrane  1.01    

C. CARBOHYDRATES  • occur   in   association   with   lipids   or   proteins     :    

glycolipids  or  glycoproteins    • mostly  found  on  the  external  membrane  surface  • functions    :  

o receptors  o antigens  o confers  negative  charge  to    cell  (as  glycocalyx)    

 FLUID-­‐MOSAIC  MODEL  (Singer  &  Nicholson)  

 • universally  accepted  description  of  membrane  

structure    •  “icebergs”  (proteins)  floating  in  a  “sea”  of  

phospholipids  • membranes  undergo  phasic  changes  from  stiff  (gel  or  

crystalline)  to  fluid  state  •  both  lipids  and  proteins  undergo  "rapid  

redistribution"  in  the  plane  of  the  membrane  ("lateral  diffusion")    

 Factors  Affecting  Membrane  Fluidity  

1. Lipid  composition  -­‐ longer  and  more  saturated  fatty  acid  chains  

exhibit  higher  transition  temperature  -­‐ unsaturated  cis  bonds  tend  to  increase  membrane  

fluidity  -­‐ presence  of  cholesterol  the  moderator  molecule  

 2. Temperature  

Transition  Temperature  (Tm)  -­‐  temperature  at  which  structure  undergoes  transition  from  ordered  to  disordered  state    -­‐ ↑    temperatures  =    membrane  fluidity  increases  -­‐ ↓    temperatures  =    hydrophobic  side  chains  

become  aligned  =  stiff  structure    3. Role  of  Cholesterol  

-­‐ modifies  membrane  fluidity  -­‐  at  temperatures  above  Tm,  its  rigid  structure  

LIMITS  FLUIDITY  (condensing  effect)    

-­‐  at  temperatures  below  Tm,  it  INCREASES  FLUIDITY  by  interfering  with  the  interactions  of  hydrocarbon  tails  of  fatty  acids  (induces  disorder)    

 Importance  of  Increased  Membrane  Fluidity    

1. Permeability  to  water  and  other  hydrophilic  molecule  increases  

2. Lateral  mobility  of  integral  proteins  increases*    *  especially  important  with  proteins  involved  in  transport  and  receptor  proteins  3. Increased  protein  diffusion  –  since  some  proteins  are  

internalized,  allows  for  faster  appearance    ARTIFICIAL  MEMBRANES  AND  OTHER  SPECIAL  

MEMBRANE  STRUCTURES      

A. Micelle  

 • are  relatively  small  aggregates  of  amphipathic  

molecules  forming  a  monolayer  with    :  o hydrophobic  regions  -­‐  shielded  from  H20  o hydrophilic  regions    -­‐    immersed  or  interact  with  

H20  • arrangement  of  different  regions  depends  on  the  

chemical  environment  where  the  micelle  is  situated    • single-­‐layer  unlike  cell  membrane  • used  in  detergents  • clinical  application  of  micelles    :  

o are  formed  when  bile  acids  (which  are  amphipathic)  associate  with  products  of  lipid  digestion  

o bile  acids-­‐formed  micelles  assist  in  the  digestion  and  absorption  of  fat  plus  ADEK    

 B. Liposomes  • Vesicles  surrounded  with  lipid  bilayer  • Consist  of  phospholipids  that  are  of  natural  or  

synthetic  origin  • Lipid  content  can  be  varied  allowing  for  examination  

of  varying  lipid  composition  on  certain  functions  (ie.,  transport)  

• In  the  study  of  factors  that  affect  protein  and  enzyme  function  

• May  be  used  for  specific  drug  delivery  and  gene  therapy    

 

5  of  8   Cell  Membrane[Maki,  Mayo,  Mañago,  Mendoza,  Morales]    

Cell  Membrane  1.01    

• Considered  as  possible  cancer  treatment;  manufacturing  of  lyposomes  that  deliver  drugs  specifically  to  tumor  cells    

C. Tight  Junctions  • Located  below  the  apical  surface  of  epithelial  cells  • Prevents  the  diffusion  of  macromolecules  between  

them  • Composed  of  proteins  occludin,  claudins    •    Sites  of  paracellular  transport    • Means  of  attachment  • Prevents  diffusion  of  macromolecules  • Allows  paracellular  transport  of  water  (e.g.  Na+  K+  

ATPase)  • Physical  connection  between  cells    

   D. Gap  Junctions  

 

• Low  resistance  connection  between  cells  • More  functional  connection  • Made  of  connexons  (made  of  connexins)  and  are  

aligned  with  another  cell  • Transports  small  ions,  molecules,  and  impulses  • In  heart  muscles,  they  are  known  as  syncytium  

 E. Lipid  Raft  • are  dynamic  areas  of  the  exoplasmic  leaflet  of  the  lipid  

bilayer  enriched  in  cholesterol,  sphingolipids  and  proteins    

• involved  in  and  enhances  signal  transduction  by  clustering  elements  of  the  signaling  systems    

 SIGNAL  TRANSDUCTION  

• biochemical  signals  from  hormones,  neurotransmitters  bind  to  receptors  in  the  cell  membrane  

• transmits  information  to  the  cytoplasm  via  these  membranes    through  the  generation  of  signalling  molecules    :    cyclic  nucleotides,  calcium,  diacylglycerol  and  phosphoinositides    

• Hormones  and  neurotransmitters  cannot  enter  the  cell,  and  thus  only  attach  to  receptors  found  in  the  cell  membrane  

• Requires  secondary  messengers  (e.g.  cAMP,  IP3)  

 • One  hormoneàmultiple  effectsàsignal  is  amplified  • Signal  transduction  will  end  once  GTP  is  hydrolyzed  

back  to  GDP    THE  CELL  MEMBRANE  AND  TRANSPORT  SYSTEMS    • Cell  membrane   transport   systems  are  very   important  

because      :  1. The  cell  membrane  is  SELECTIVE  2. Cell   membrane   RECEIVES   AND   TRANSMITS  

SIGNALS  from  other  cells  and  chemicals    

Transport  Systems  

 

6  of  8   Cell  Membrane[Maki,  Mayo,  Mañago,  Mendoza,  Morales]    

Cell  Membrane  1.01    

• According  to  direction  of  movement:  

 o UNIPORT  -­‐    moves  ONE  TYPE  of  substance  

bidirectionally    o COTRANSPORT  

§ SYMPORT    -­‐    moves  TWO  solutes  in  the  SAME  DIRECTION  Ex:    Na+  and  glucose  cotransport    

§ ANTIPORT    -­‐    moves  TWO  solutes  in  the  OPPOSITE  DIRECTION  Ex    :    Na+  (in)  and  Ca++  or  H+  (out)  

 Cross  Membrane  Transport  of  Small  Molecules  

 A. Passive  Transport  • SIMPLE  DIFFUSION  

 o From  high  to  low  concentration  o No  energy  required;  depends  on  natural  kinetic  

energy  of  molecules  o Limited  by  (1)  thermal  agitation  of  molecules,  (2)  

concentration  and  electrical  gradient,  and  (3)  solubility  of  solute  

o FACTORS  AFFECTING  SIMPLE  DIFFUSION:  1.    concentration  gradient  across  membrane  2.    electrical  potential  across  membrane  3.    permeability  coefficient  of  the  substance  to  the  membrane,,  lipid  solubility  

4.    pressure  difference  across  membrane  5.    thickness  of  membrane  6.    temperature  7.    distance  8.    number  of  channels  

 • ION  CHANNELS  

o are  for  water  soluble  substances  (ions)  that  cannot  just  simply  permeate  the  membrane  

o permeability  depends  upon  size,  extent  of  hydration  and  charge  density  of  the  ion  

o  there  are  specific  channels  for  each  ion  o activity  of  some  channels  are  regulated  by  

neurotransmitters  o function  can  be  impaired  by  disease/mutations  o channels  can  be  “gated”  o ION  CHANNEL  GATING  

§ VOLTAGE  GATING  - channels  open  or  close  in  response  to  

changes  in  membrane  potential  - Ex:    sodium  channels  

§ LIGAND  GATING  - a  specific  molecule  or  chemical  binds  to  a  

receptor  which  opens  the  channel  - Ex:    binding  of  Acetylcholine  (Ach)  to  its  

receptor  opens  Na+  channels        

• AQUAPORINS  o  water  channels  found  in  certain  cells    :  RBC,  distal  

tubules  and  collecting  ducts  of  renal  nephrons    o are  tetrameric  membrane  proteins  o 5  distinct  aquaporins    :    AP-­‐1  to  AP-­‐5  o mutation  in  AP-­‐2  is  the  cause  of  nephrogenic  

Diabetes  Insipidus        B. Carrier-­‐Mediated  Transport  • FACILITATED  DIFFUSION  

 o Unilateral  transport  o Uses  a  “ping-­‐pong”  mechanism  wherein  the  

carrier  undergoes  conformational  changes  o Pong  state  =  carrier  is  exposed  to  high  

concentrations  of  solute  

 

7  of  8   Cell  Membrane[Maki,  Mayo,  Mañago,  Mendoza,  Morales]    

Cell  Membrane  1.01    

o Ping  state    =  carrier  is  exposed  to  a  lower  concentration  of  solute        

o Will  only  work  if  carrier  is  available  o FACTORS  AFFECTING  FACILITATED  DIFFUSION:  

1.    concentration  gradient  across  membrane  2.    amount  of  carrier  available  (key  control  step)  3.    rapidity  of  solute-­‐carrier  interaction  4.    rapidity  of  conformational  change  for  both  the    loaded  and  unloaded  carrier  

5.    presence  of  certain  hormones    :    Insulin,  GH  and  glucocorticoids    

 • ACTIVE  TRANSPORT  

o transport  is  away  from  thermodynamic  equilibrium  (energy  requiring)  

o Two  types:  § Primary  active  transport    

 - requires  energy  from  light,  electron  

movement  or  ATP  hydrolysis  - energy  for  this  process  represents  30  

40%  of  energy  expenditure  of  the  cell  - Ex:    Na+K+ATPase    

 § Secondary  Active  Transport  

 

 - Energy  is  supplied  by  a  concentration  

gradient  caused  by  action  of  primary  transport  

- Ex.  Gluc-­‐Na+  transport  will  only  occur  after  action  of  Na+K+ATPase  

- Primary  mechanism  of  oral  rehydration  solutions  

 

Legend:    -­‐  Primary  Active  Transport    -­‐  Secondary  Active  Transport    

 C. Osmosis  

 • Net  flow  of  solvent  from  low  solute  to  high  solute  

concentration  • Requires  a  semi-­‐permeable  membrane  with  respect  to  

the  solvent  • High  [solute]  =  High  Osmotic  Pressure  

 • OSMOTIC  PRESSURE  

o minimum  pressure  required  to  negate  or  reverse  osmosis.  

o  force  or  pressure  is  applied  on  the  side  of  the  membrane  with  higher  solute  concentration  to  push  the  solvent  back  to  the  area  with  low  solute  concentration  

             

 

8  of  8   Cell  Membrane[Maki,  Mayo,  Mañago,  Mendoza,  Morales]    

Cell  Membrane  1.01    

Cellular  Transport  of  Macromolecules    

A. Endocytosis  • uptake  of  proteins,  polysaccharides,  and  

polynucleotides    

PINOCYTOSIS  

 A. Fluid-­‐Phase  Pinocytosis  

o nonselective  o uptake  through  small  vesicles  o active  process  

B. Absorptive  Pinocytosis  o selective;  receptor-­‐mediated  o involves  clathrin-­‐coated  pits  which  require  Ca  to  

contract.    o Ex:  LDL  Receptors  

 *Downregulation  –  internalization  of  receptors  via  absorptive  pinocytosis.  Occurs  when  there  is  continuous  exposure  of  receptors  to  ligands.    PHAGOCYTOSIS  • involves  ingestion  of  large  particles    :    whole  cells  

(bacteria),  particles  (viruses)  and  cellular  debris  •  involves  only  specialized  cells    :    macrophages  and  

neutrophils    • macrophages  ingest  a  large  volume  of  their  cell  

membrane  through  this  process    

 

B. Exocytosis  • is  the  release  of  macromolecules  to  the  exterior    • signal  for  initiation  is  often  via  a  hormone  which  binds  

to  cell-­‐surface  receptors    →  increased  Ca++  • 3  fates  of  molecules  released  thru  exocytosis    :  

o attach  to  cell  surface  to  become  peripheral  proteins  (Ex:    antigens)  

o may  become  part  of  extracellular  matrix  (Collagen,  GAGs)  

o may  enter  ECF  and  signal  other  cells  (hormones)        

EXOCYTOSIS  VS.  ENDOCYTOSIS  

   

MEMBRANE  ASSEMBLY  • both  lipids  and  proteins  are  inserted  independently  in    

membranes  • lipids  and  proteins  turnover  independently  and  at  

different  rates  • topogenic  sequences  (signal  N  terminal  or  internal  or  

stop)  are  important  in  determining  the  structure  of  proteins  in  membranes  

• final  sorting  of  many  membrane  proteins  occur  in  the  trans  golgi    

• specific  sorting  sequences  guide  proteins  to  particular  organelles  (Ex:    mannose-­‐6-­‐PO4  guides  hydrolases  destined  for  lysosomes  while  KDEL  [Lys-­‐Asp-­‐Glu-­‐Leu]  specify  proteins  for  the  ER)    

 LIPID  ASSEMBLY  

• enzymes  responsible  reside  in  the  cisternae  of  ER  • phospholipids  self  assemble  as  they  are  synthesized  

into  thermodynamically  stable  bilayers    • lipid  vesicles  migrate  and  fuse  with  GA  membrane  

which  in  turn  fuse  with  PM      

PROTEIN  ASSEMBLY  • explained  by  the  SIGNAL  HYPOTHESIS  • requires  ER-­‐-­‐>    GA-­‐-­‐>    -­‐-­‐>    PM  • there  are  2  kinds  of  proteins  :  

o those  synthesized  by  membrane  bound  ribosomes  (secreted  proteins  and  integral  proteins)  that  contain  a  SIGNAL  PEPTIDE  at  their  N-­‐terminal  

o those  synthesized  by  free  ribosomes  (cytosolic  proteins,  extrinsic  proteins  in  the  inner  PM  leaflet)  that  lack  signal  peptide    

 “Aim  high  and  always  hit  the  best.”