bioabsorbable interference screw

download bioabsorbable interference screw

of 27

  • date post

    22-Jan-2018
  • Category

    Engineering

  • view

    204
  • download

    0

Embed Size (px)

Transcript of bioabsorbable interference screw

  1. 1. Interference screw in ACL reconstruction WHAT ARE THE REQUIRED PROPERTIES FOR GOOD SCREW AND WHICH MATERIAL IS THE BEST FOR THAT USE
  2. 2. ACL anatomy and rupture University of Maryland Medical Center http://umm.edu/health/medical/ency/presentations/anterior-cruciate-ligament-repair-series
  3. 3. Reconstruction University of Maryland Medical Center http://umm.edu/health/medical/ency/presentations/anterior-cruciate-ligament-repair-series
  4. 4. Degradable Interference Screw NEC-PLUS Interference Screw Poly (L/DL Lactide) 70-30 absorbable screw
  5. 5. Screw location M. Chizari, M. Alrashidi, K. Alrashdan, and I. Yildiz, Mechanical Aspects of an Interference Screw Placement in ACL Reconstruction, pp. 1820
  6. 6. Material requirement Mech prop Bio comp Bio deg PLA M. Chizari, M. Alrashidi, K. Alrashdan, and I. Yildiz, Mechanical Aspects of an Interference Screw Placement in ACL Reconstruction, pp. 1820
  7. 7. Mechanical prop. K. F. Farraro, K. E. Kim, S. L. Y. Woo, J. R. Flowers, and M. B. McCullough, Revolutionizing orthopaedic biomaterials: The potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering, J. Biomech., vol. 47, no. 9, pp. 19791986, 2014. 892919 70100 0 100 200 300 400 500 600 700 800 900 1000 Yield Strength [Mpa] AISI 316L Titanium PLA bone 210 106 414 0 50 100 150 200 250 Young Modulus [Gpa] AISI 316L Titanium PLA bone 17 16 7 3 0 2 4 6 8 10 12 14 16 18 Elongation [%] AISI 316L Titanium PLA bone
  8. 8. Parameters affecting Biocompatibility Y. Ramot, M. H. Zada, A. J. Domb, and A. Nyska, Biocompatibility and safety of PLA and its copolymers, Adv. Drug Deliv. Rev., vol. 107, pp. 153162, 2015. ImplantHost Shape and sizeType of tissue CompositionLocation in the body Roughness of surfaceSurrounding environment MorphologyGenetics Porosity Sterility Duration of contact
  9. 9. Parameters affecting BioDegradation Y. Ramot, M. H. Zada, A. J. Domb, and A. Nyska, Biocompatibility and safety of PLA and its copolymers, Adv. Drug Deliv. Rev., vol. 107, pp. 153162, 2015. ImplantHost Shape and sizepH Spatial structureTemperature Hydro-philicity/phobicity Surface morphology Porosity Sterility Duration of contact
  10. 10. Why Biodegradation ? Problems of the Traditional screw potentially need to be removed hinder MRI/CT Rupture of implant Y. Arama, L. J. Salmon, K. Sri-Ram, J. Linklater, J. P. Roe, and L. A. Pinczewski, Bioabsorbable Versus Titanium Screws in Anterior Cruciate Ligament Reconstruction Using Hamstring Autograft: A Prospective, Blinded, Randomized Controlled Trial With 5-Year Follow-up., Am. J. Sports Med., vol. 43, no. 8, pp. 18931901, 2015.
  11. 11. Stereoisomerism of PLA isomerMonomerRepetitive unit L D K. Masutani and Y. Kimura, PLA Synthesis and Polymerization. 2014.
  12. 12. Crystallinity Y. Onuma and P. W. Serruys, Bioresorbable scaffold: The advent of a new era in percutaneous coronary and peripheral revascularization?, Circulation, vol. 123, no. 7, pp. 779797, 2011.
  13. 13. L-isomer High crystallinity Less amorphous region Reduce Hydration -CH3 Hydrophobicity Reduce degradation rate tensile & yield strength Reduce elongation S. Farah, D. G. Anderson, and R. Langer, Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review, Adv. Drug Deliv. Rev., vol. 107, pp. 367392, 2016. R. M. Rasal, A. V. Janorkar, and D. E. Hirt, Poly(lactic acid) modifications, Prog. Polym. Sci., vol. 35, no. 3, pp. 338356, 2010. Reduce FBR
  14. 14. Degradation method Y. Onuma and P. W. Serruys, Bioresorbable scaffold: The advent of a new era in percutaneous coronary and peripheral revascularization?, Circulation, vol. 123, no. 7, pp. 779797, 2011. Hydration Ester- Hydrolysis Mass loss Dissolution
  15. 15. Y. Onuma and P. W. Serruys, Bioresorbable scaffold: The advent of a new era in percutaneous coronary and peripheral revascularization?, Circulation, vol. 123, no. 7, pp. 779797, 2011.
  16. 16. PLA limitations K. F. Farraro, K. E. Kim, S. L. Y. Woo, J. R. Flowers, and M. B. McCullough, Revolutionizing orthopaedic biomaterials: The potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering, J. Biomech., vol. 47, no. 9, pp. 19791986, 2014. 1Youngs modulus similar to the bone 2Degradation 3Allow bone regeneration (?) 4Properties control (?) 5Allow MRI/CT 1Break during surgery 2Slow degradation rate 3Bad bone regeneration 4Inaccurate control
  17. 17. Resent studies
  18. 18. Solution for bone regeneration 3D print Stem cell HA coat Hydro gel Bone hilling K. F. Farraro, K. E. Kim, S. L. Y. Woo, J. R. Flowers, and M. B. McCullough, Revolutionizing orthopaedic biomaterials: The potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering, J. Biomech., vol. 47, no. 9, pp. 19791986,
  19. 19. Mg alloys - AZ31 | MgZnCa K. F. Farraro, K. E. Kim, S. L. Y. Woo, J. R. Flowers, and M. B. McCullough, Revolutionizing orthopaedic biomaterials: The potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering, J. Biomech., vol. 47, no. 9, pp. 19791986, 2014. 1.Young modulus similar to the bone = 40-45 [GPa] 2.Tensile strength greater than polymer 3.Good elongation = 16% 4.Allow MRI 5.controlled degradation time
  20. 20. Summery 1. ACL reconstruction is very common, hence it is extensively studied. 2. What makes successful screw is: properties similarity to the human bone, biocompatibility, accelerate bone regeneration. 3. Despite its limitations, PLA demonstrates few important benefits that justifies further research and development.
  21. 21. My Opinion Despite recent breakthroughs in printed metals, I think that PLA still has major advantage over metals which is the friendly, easy and cheap printability using FDM printers. This will be useful especially when availability is an important factor, for example, in orthopedic departments.
  22. 22. [1] A. Huser, T. Leader, C. Kreofsky, J. Poblocki, and D. Nadler, Bioactive Interference Screw for ACL Reconstruction Team Members :, 2005. [2] M. Chizari, M. Alrashidi, K. Alrashdan, and I. Yildiz, Mechanical Aspects of an Interference Screw Placement in ACL Reconstruction, pp. 1820. [3] M. Chizari, B. Wang, M. Snow, and M. Barrett, Experimental and numerical analysis of screw fixation in anterior cruciate ligament reconstruction, AIP Conf. Proc., vol. 1045, pp. 61 70, 2008. [4] N. Caplan and D. F. Kader, Biomechanical analysis of human ligament grafts used in knee- ligament repairs and reconstructions, Class. Pap. Orthop., no. April, pp. 145147, 2014. [5] S. O. Adeosun, G. I. Lawal, and O. P. Gbenebor, Characteristics of Biodegradable Implants, J. Miner. Mater. Charact. Eng., vol. 2, no. 2, pp. 88106, 2014.
  23. 23. [6] M. Losertov, M. tamborsk, J. Lapin, and V. Mare, Comparison of deformation behavior of 316L stainless steel and Ti6Al4V alloy applied in traumatology, Metalurgija, vol. 55, no. 4, pp. 667670, 2016. [7] S. Farah, D. G. Anderson, and R. Langer, Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review, Adv. Drug Deliv. Rev., vol. 107, pp. 367392, 2016. [8] K. Choi and S. A. Goldstein, A comparison of the fatigue behavior of human trabecular and cortical bone tissue, J. Biomech., vol. 25, no. 12, pp. 13711381, 1992. [9] Y. Ramot, M. H. Zada, A. J. Domb, and A. Nyska, Biocompatibility and safety of PLA and its copolymers, Adv. Drug Deliv. Rev., vol. 107, pp. 153162, 2015.
  24. 24. [10]Y. Arama, L. J. Salmon, K. Sri-Ram, J. Linklater, J. P. Roe, and L. A. Pinczewski, Bioabsorbable Versus Titanium Screws in Anterior Cruciate Ligament Reconstruction Using Hamstring Autograft: A Prospective, Blinded, Randomized Controlled Trial With 5-Year Follow-up., Am. J. Sports Med., vol. 43, no. 8, pp. 18931901, 2015. [11]D. N. M. Caborn, W. P. Urban, D. L. Johnson, J. Nyland, and D. Pienkowski, Biomechanical comparison between BioScrew and titanium alloy interference screws for bone-patellar tendon- bone graft fixation in anterior cruciate ligament reconstruction, Arthroscopy, vol. 13, no. 2, pp. 229232, 1997. [12]P. Debieux et al., Bioabsorbable versus metallic interference screws for graft fixation in anterior cruciate ligament reconstruction, Cochrane Database Syst. Rev., vol. 2016, no. 7, 2016. [13]K. Masutani and Y. Kimura, PLA Synthesis and Polymerization. 2014. [14]G. E. Luckachan and C. K. S. Pillai, Biodegradable Polymers- A Review on Recent Trends and Emerging Perspectives, J. Polym. Environ., vol. 19, no. 3, pp. 637676, 2011.
  25. 25. [15]R. M. Rasal, A. V. Janorkar, and D. E. Hirt, Poly(lactic acid) modifications, Prog. Polym. Sci., vol. 35, no. 3, pp. 338356, 2010. [16]Y. Onuma and P. W. Serruys, Bioresorbable scaffold: The advent of a new era in percutaneous coronary and peripheral revascularization?, Circulation, vol. 123, no. 7, pp. 779 797, 2011. [17]A. Liu et al., 3D Printing Surgical Implants at the clinic: A Experimental Study on Anterior Cruciate Ligament Reconstruction., Sci. Rep., vol. 6, no. October 2015, p. 21704, 2016. [18]K. F. Farraro, K. E. Kim, S. L. Y. Woo, J. R. Flowers, and M. B. McCullough, Revolutionizing orthopaedic biomaterials: The potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering, J. Biomech., vol. 47, no. 9, pp. 19791986, 2014. [19]T. M. Keaveny, E. F. Morgan, and O. C. Yeh, Bone Mechanics, Stand. Handb. Biomed. Eng. Des., p. 8.1-8.23, 2004.