Bimonthly Meeting on Dec. 5, 2008

12
Bimonthly Meeting on Dec. 5, 2008 Absolute Metabolite Concentrations on Brain Tissue by Gaussian and Lorentzian Functions Amarjeet Bhullar

description

Absolute Metabolite Concentrations on Brain Tissue by Gaussian and Lorentzian Functions. Amarjeet Bhullar. Bimonthly Meeting on Dec. 5, 2008. How to get absolute signal?. Absolute Signal = Raw data - Noise. Raw data = Real Spectrum without any manipulation. - PowerPoint PPT Presentation

Transcript of Bimonthly Meeting on Dec. 5, 2008

Page 1: Bimonthly Meeting on Dec. 5, 2008

Bimonthly Meeting on Dec. 5, 2008

Absolute Metabolite Concentrations on Brain Tissue

by Gaussian and Lorentzian Functions

Amarjeet Bhullar

Page 2: Bimonthly Meeting on Dec. 5, 2008

How to get absolute signal?

Absolute Signal = Raw data - Noise

Raw data = Real Spectrum without any manipulation

Noise = Draw a Baseline using few anchor points on Spectrum

Anchor Points Real Spectrum Baseline

Noise=Baseline is determined by interpolating anchor points on spectrums.

Page 3: Bimonthly Meeting on Dec. 5, 2008

Absolute Metabolite Concentrations

• Create baseline using few anchor points on spectrum.

• Find metabolite peaks.

• Fit Mathematical function on metabolite peaks.

• Integrate peaks between the limits to calculate absolute metabolite concentrations.

Page 4: Bimonthly Meeting on Dec. 5, 2008

Mathematical Model: Gaussian Function

2

2)(2

2/)( w

xx c

ew

Axf

)4ln(

1ww 2/w

Ah

60 62 64 66 68 70 72 74 76 78 800

50

100

150

200

250

300

1w

Adxew

A w

xx c

2

2)(2

2/

?2/

max

min

2

2)(2

dxe

w

Ax

x

w

xx c

Page 5: Bimonthly Meeting on Dec. 5, 2008

dxe

w

Ax

x

w

xx cmax

min

2

2)(2

2/

w

xxErf

w

xxErf

A cc minmax 22

2

Integral of Gaussian Function : Error Function

Numerically: Codes developed in C and Mathematica 6.0

x

t dtexErf0

22)(

Error Function

Page 6: Bimonthly Meeting on Dec. 5, 2008

dxe

w

Ax

x

w

xx cmax

min

2

2)(2

2/

Integral of Gaussian Function : Gamma Function

2

2min

2

2max 2

,2

12,

2

1

2

12

2 w

xx

w

xxA cc

dtetaFunctionGamma ta

0

1

2

1

dtetxaFunctionGammaIncompleteUpper t

x

a

1,

dtetxaFunctionGammaIncompleteLower txa

0

1,

xaxaa ,,

Page 7: Bimonthly Meeting on Dec. 5, 2008

Mathematical Model: Lorentz Function

22)(4

2)(

wxx

wAxf

c

Adxwxx

wA

c

22)(4

2

?)(4

2max

min

22

dxwxx

wAx

x c56 58 60 62 64 66 68 70 72 74

0

50

100

150

200

250

300

350

400

Arb

itra

ry U

nit

Image Number

FWHMwh

w

Ah

2

Page 8: Bimonthly Meeting on Dec. 5, 2008

Integral of Lorentzian Function : ArcTan

w

xxArcTan

w

xxArcTan

A cc )(2)(2 minmax

dxwxx

wAx

x c

max

min

22)(4

2

Page 9: Bimonthly Meeting on Dec. 5, 2008

50 55 60 65 70 75 800

100

200

300

400

500

Gaussian Function

x

f(x)

Lorentzian Function

Difference Between Lorentzian and Gaussian Function

Page 10: Bimonthly Meeting on Dec. 5, 2008

50 100 150 200 250-250

0

250

500

750

1000

1250 Voxel # 32

Sig

nal

(M

R U

nit

s)

Image Number

Manipulated Spectrum

0 50 100 150 200 250-250

0

250

500

750

1000

1250 Voxel # 32

Sig

nal

(M

R U

nit

s)

Image Number

Anchor Points Real Spectrum Baseline

Voxel #32 Gaussian

Cho/Cre 1.58

Cho/NAA 0.34

Metabolite ratios by Gaussian function

Page 11: Bimonthly Meeting on Dec. 5, 2008

0 50 100 150 200 250-250

0

250

500

750

1000

1250 Voxel # 32

Sig

nal

(M

R U

nit

s)

Image Number

Anchor Points Real Spectrum Baseline

50 100 150 200 250-250

0

250

500

750

1000

1250 Voxel # 32

Sig

nal

(M

R U

nit

s)

Image Number

Manipulated Spectrum

Metabolite ratios by Lorentzian function

Voxel #32 Lorentzian

Cho/Cre 1.54

Cho/NAA 0.33

Page 12: Bimonthly Meeting on Dec. 5, 2008

Voxel #32 Gaussian Lorentzian Average

Cho/Cre 1.58 1.54 1.55

Cho/NAA 0.34 0.33 0.33

Conclusion:

Both mathematical models have produced the same ratios.

Suggestions are welcome