Bilan Scientifique ICARE

94
BILAN SCIENTIFIQUE 2006 – 2010 INSTITUT DE COMBUSTION, AEROTHERMIQUE, REACTIVITE & ENVIRONNEMENT CNRS – INSIS (UPR 3021)

Transcript of Bilan Scientifique ICARE

BILAN SCIENTIFIQUE

2006 – 2010

INSTITUT DE COMBUSTION, AEROTHERMIQUE, REACTIVITE & ENVIRONNEMENT

CNRS – INSIS (UPR 3021)

Bilan de l’activité de recherche et des résultats obtenus par ICARE (UPR3021) 2006 - 2010 . 1 Bilan général de l’Unité ........................................................................................................... 1

Aspects organisationnels ........................................................................................................ 1 Eléments d’appréciation du bilan scientifique d’ICARE....................................................... 3 Organigramme général ........................................................................................................... 6

Overview of the activities of the Thematic Research Groups.................................................... 7 Thematic Research Group I : Chemical kinetics of combustion and reactive systems.............. 7

1 Research context and objectives ......................................................................................... 7 2 Research activities and key results...................................................................................... 8

2.1 Determination of fundamental parameters ................................................................... 8 2.2 Formation and reduction of pollutants from combustion............................................. 8 2.3 New fuels.................................................................................................................... 10 2.4 New combustion technologies for energy production................................................ 11

Thematic Research Group II: Atmospheric reactivity ............................................................. 13 1 Research context and objectives ....................................................................................... 13 2. Research activities and key results................................................................................... 13

2.1 Atmospheric degradation of volatile and semi-volatile organic compounds and secondary organic aerosols formation.............................................................................. 13 2.2 Gas-surface reactions ................................................................................................. 14 2.3 Reactions influencing the oxidative capacity of the troposphere............................... 16 2.4 Field measurements and instruments intercalibration................................................ 17

Thematic Research Group III : Dynamics of combustion and reactive systems ..................... 19 1. Research context and objectives ...................................................................................... 19 2 Research activities and key results.................................................................................... 20

2.1 Dynamics of laminar and turbulent flames ................................................................ 20 2.2 Dynamics of chemical explosions.............................................................................. 21 2.3 Multiphase gasification and combustion phenomena ................................................ 23

Thematic Research Group IV : Space propulsion & high-speed flows ................................... 25 1 Research context and objectives ....................................................................................... 25 2 Research activities and key results.................................................................................... 25

2.1 Space propulsion ........................................................................................................ 25 2.2 High-speed flows........................................................................................................ 28 2.3 Non-continuing research activities............................................................................. 30

Thematic Research Group V : Chemical vapor deposition and inductive processes for materials elaboration ................................................................................................................ 31

1 Research context and objectives ....................................................................................... 31 2 Research activities and key results.................................................................................... 31

2.1 Experimental and kinetic studies of C-H-O plasmas for polycrystalline and nano-smooth diamond deposition ............................................................................................. 31 2.2 Elaboration of carbon nanoparticles in plasmas......................................................... 32 2.3 Optimization of diamond films properties for mechanical, biomechanical and electronic applications...................................................................................................... 32 2.4 Development of inductive processes to elaborate and transform metallic materials with specific properties .................................................................................................... 33

LISTE DES PUBLICATIONS ICARE – (2006-2010)............................................................ 34 LISTES DES THESES ICARE (2006-2010)........................................................................... 76 ANNEXE 1 : Fiches Plateformes Expérimentales................................................................... 81 ANNEXE 2 : Bilan de la Participation à l’Enseignement et la Formation par la Recherche .. 82 ANNEXE 3 : Action de Formation Permanente des Personnels de l’UPR3021 ..................... 83 ANNEXE 4 : Rapport des actions Hygiène & Sécurité de l’UPR3021 ................................... 90

Bilan de l’activité de recherche et des résultats obtenus par ICARE (UPR3021) 2006 - 2010 Bilan général de l’Unité L’UPR 3021 du CNRS, Institut de Combustion, Aérothermique, Réactivité et Environnement – ICARE, a été créé le 1er janvier 2007 par la fusion de deux UPR, le Laboratoire de Combustion et Systèmes Réactifs (LCSR) et le Laboratoire d’Aérothermique. Ces deux laboratoires avaient chacun un passé de plus de quarante années au moment de leur fusion. Autrement dit, ils vivaient chacun une période de départs massifs à la retraite. La fusion de deux laboratoires historiques du CNRS a créé une opportunité unique pour rééquilibrer mutuellement les forces en présence et faire émerger un laboratoire à expertises multiples. Les années 2007 et 2008 ont évidemment présenté les caractéristiques générales de toute situation de transition; un important travail de consolidation a été réalisé à partir de mi 2008, pour regrouper les équipes de l’Unité autour des thématiques bien identifiées, pour lesquelles la légitimité d’ICARE est bien admise et en adéquation avec ses forces vives. Les éléments qui suivent constituent une ébauche d’analyse de ces quatre années et devraient permettre de préparer le futur.

Aspects organisationnels

L’organigramme fonctionnel ci-joint de l’organisation scientifique et administrative d’ICARE montre la situation d’aujourd’hui issue de cette phase de consolidation. Les 2 domaines d’intervention d’ICARE, à savoir l’Energie & Environnement et la Propulsion & Espace sont déclinés en 4 Groupes Thématiques, soutenus par 8 équipes de recherche. Les forces de recherche d’ICARE sont constituées aujourd’hui (au 1er septembre 2010) de 14 enseignants-chercheurs (4 PR et 10 MCF), 11 chercheurs CNRS (5 DR et 6 CR), 18 ITA CNRS, 1 IATOSS (à 25%), 20 doctorants et 7 chercheurs post-doctorants ou assimilés, ce qui fait un total de 71 personnes, dont 44 permanents. Une analyse de l’évolution du personnel d’ICARE sur une longue période sera faite dans la partie projet du dossier unique, mais signalons d’ores et déjà ici que le nombre des permanents d’ICARE était 56 au 1er janvier 2008. On peut également insister sur la réduction importante du personnel d’ICARE depuis plusieurs années en rappelant qu’entre 2004 et fin 2011, le total des départs sera de 29 permanents (17 ITA et 12 chercheurs et enseignants-chercheurs). ICARE a donc été obligé de réagir à ces départs massifs en réduisant le périmètre de ses axes de recherche et en arrêtant ou gelant plusieurs activités de recherche, notamment celles sur - la réduction de schémas cinétiques (départ de JC Boettner) - la structure des flammes à basse pression (départs C Vovelle et JL Delfau) - les dépôts chimiques (départ L Vandenbulcke) - les activités autour de l’installation PELICAN (départ A Lebehot) - les activités calculs Monte-Carlo sur les écoulements hypersoniques (départ JC Lengrand) - les activités combustion assistée par plasma (départ JP Martin) ICARE a aussi procédé à différentes restructurations de ses équipes ; on peut notamment mentionner les évolutions suivantes : - Suite à l’arrêt des activités de l’équipe CVD (retraite de L Vandenbulcke août 2010) et les départs de C Vovelle et JL Delfau, l’équipe structure de flamme a été consolidée autour de la thématique structure des flammes laminaires à haute pression, autour de Laure Pillier (CR1)

1

et Stéphanie de Persis, transférée de l’équipe CVD. Cette jeune équipe fonctionne déjà depuis 2 années. - Suite aux départs de JC Lengrand, M Dudeck, E Barbosa, JP Martin, les activités de l’équipe ARCHE ont été recentrées sur les études expérimentales autour de la thématique des rentrées atmosphériques et contrôle d’écoulements supersoniques. On doit aussi mentionner plusieurs réorganisations dans les services communs d’ICARE, par exemple dans son pôle de gestion administrative et financière et aussi dans le service de conception et réalisation mécaniques, rendues nécessaires par le départ à la retraite de plusieurs collègues de ces services. De même, les départs de plusieurs chercheurs et l’arrêt de certaines activités a occasionné des réaménagements importants dans l’utilisation des locaux d’ICARE. Un bon exemple, mais pas le seul, est l’affectation de surfaces importantes pour l’implantation de l’installation HELIOS. Plus globalement, la consolidation d’ICARE a abouti depuis deux années à une organisation scientifique sous la forme de 4 « groupes thématiques ». Ces groupes thématiques sont : * Cinétique chimique de la combustion et des systèmes réactifs * Dynamique de la combustion et des systèmes réactifs * Propulsion spatiale et écoulements à grande vitesse * Réactivité atmosphérique Ces groupes thématiques correspondent parfaitement au périmètre des missions d’ICARE définies ainsi dans la fiche détaillée de la structure UPR3021 pour le mandat 01/01/2008 – 31/12/2011 : « Développer les domaines de la combustion et la détonation, la propulsion aérospatiale et automobile, la réactivité atmosphérique, les nouvelles ressources et matériaux pour l’énergétique » Les activités de ces groupes thématiques sont soutenues par les installations expérimentales d’ICARE qui sont souvent uniques et très bien instrumentées. Elles sont décrites dans ce bilan d’une façon détaillée (voir Annexe 1) La lecture de la présentation ci-après des résultats scientifiques d’ICARE, organisée selon ces 4 groupes thématiques, montrera que plusieurs équipes contribuent à plus d’un groupe thématique et qu’elles collaborent à des projets communs inter-équipes. Ce fonctionnement en « équipe-projet » sera consolidé à partir de 2011 (voir aussi la partie Projet de ce document). L’organigramme scientifique et fonctionnel présenté ici montre cette évolution importante, tout en gardant la lisibilité des équipes constituées et fonctionnant comme des équipes d’expertises identifiées. Le renforcement de la cohésion thématique d’ICARE et aussi de sa cohésion en tant qu’unité, ne peuvent être assuré que par la consolidation de cette politique, notamment par l’élaboration de plus de projets collectifs. Pour faciliter et soutenir cette évolution, deux instances internes ont été mises en place dès la création d’ICARE : le Conseil Scientifique pour augmenter la cohérence scientifique de l’Unité, et la Cellule de Coordination des services communs de l’Unité afin d’améliorer son efficacité organisationnelle.

2

Eléments d’appréciation du bilan scientifique d’ICARE

Le bilan scientifique détaillé d’ICARE est présenté dans ce rapport selon ces 4 Groupes Thématiques. Les activités du groupe CVD (L. Vandenbulcke) et procédés matériaux (P. Gillon) sont aussi présentées, mêmes si ces activités ne seront plus poursuivies à ICARE. Ces rapports thématiques (présentés en anglais)1 incluent le contexte et les objectifs des travaux de recherche, précisent les résultats les plus marquants et indiquent toutes les collaborations régionales, nationales et internationales et aussi les partenariats contractuels. Dans le présent paragraphe, nous donnons quelques éléments d’appréciation globale du bilan des activités d’ICARE. Le potentiel de recherche d’ICARE est très bien valorisé en termes de publications scientifiques (voir plus loin la liste complète des publications d’ICARE pour la période concernée). Si on ne prend que les publications dans les revues à comité de lecture international répertoriées dans ISI Web, les publications parues dans la période concernée sont au nombre de 182, soit 3,37 publications par mois (pour 54 mois). Rapporté au nombre de chercheurs et d’enseignants-chercheurs (compte-tenu de leur présence effective dans l’Unité pendant la période concernée, pour tenir compte des départs au cours de la période), ce chiffre correspond à une moyenne pour la période des 54 mois de 6,38 publications par chercheur ou enseignant-chercheur, ou de 1,42 publications par an par chercheur ou enseignant-chercheur. Signalons aussi que dans 45% de ces 182 publications, on trouve la signature de l’un des doctorants d’ICARE. Les revues dans lesquelles ICARE publie ont des facteurs d’impact (FI) importants : Voir graphe ci-dessous.

Répartition de la production scientifique

1

27

39

53

37

41

3

0

10

20

30

40

50

60

0 1 2 3 4 5 9 12

Facteur d'Impact moyen

No

mb

re d

e p

ub

licat

ion

s

Les contributions des membres d’ICARE à des congrès nationaux, européens et internationaux sont également très nombreuses. Le nombre de publications dans des actes de congrès internationaux est de 128 ; 62% de ces publications sont aussi signées par l’un des doctorants d’ICARE. Enfin, on recense 25 présentations à des congrès en tant que conférencier invité. Les membres d’ICARE jouissent d’une forte reconnaissance nationale et internationale, comme en témoignent la présence d’un nombre très important d’entre eux dans les instances dirigeantes des sociétés savantes nationales et internationales, dans les comités d’organisation de réunions internationales, dans les comités éditoriaux de revues scientifiques de prestige, et aussi comme responsable d’un nombre très appréciable de programmes de recherche nationaux et internationaux.

1 Les rapports thématiques ont été préparés en anglais anticipant la présence éventuelle de rapporteurs anglophones.

3

Les activités de recherche d’ICARE sont menées dans un cadre partenarial très développé. En effet, les recherches menées à ICARE interviennent essentiellement dans deux grands domaines ayant des enjeux et des retombées socio-économiques évidents : Energie & Environnement, d’une part, et Espace & Propulsion, d’autre part. L’intensité de l’implication des recherches d’ICARE dans des problématiques R&D de nos partenaires pourrait se mesurer par le nombre et la variété de ces derniers : SNECMA, AIRBUS, MBDA, ROXEL, SNPE, ASTRIUM, CILAS, ESA, CNES, ONERA principalement pour le domaine spatial ; EDF, GDF, RENAULT, PSA, TOTAL, SHELL, BP, AIR LIQUIDE, IFP, CEA, ADEME, AREVA, INERIS, IRSN principalement pour le domaine Energie & Environnement. A cette liste il faudrait évidemment ajouter tous nos partenaires dans le cadre des coopérations européennes et internationales. Afin de quantifier les retombées financières de ces actions de partenariat, on peut souligner que dans la période concernée, 80 contrats ont été signés tout type de partenaires confondu pour un montant total de 6 282 887 euros, Les activités d’ICARE sont soutenues par plusieurs Pôles de Compétitivité, comme Aerospace Valley, DERBI, TRIMATEC, TENERRDIS, Cosmetic Valley. ICARE participe à plusieurs programmes européens du 7ème PCRDT dans le cadre des priorités Transport ; Espace; Environnement ; Energie. Enfin, ICARE participe ou a participé à 10 projets ANR dans la période concernée. Par ailleurs, un soutien fort a été obtenu pour la thématique « Nouvelles Energies » dans le cadre du CPER Etat Région 2007-2013, pour l’ensemble des trois laboratoires de la Fédération EPEE (ICARE, GREMI, PRISME). Des soutiens importants sont aussi obtenus via les appels d’offres de la Région Centre, très souvent amplifiés par les fonds FEDER. Plusieurs équipes d’ICARE émargent aussi dans les programmes spécifiques du CNRS, comme le Programme Interdisciplinaire Energie ou les programmes de l’INSU. De même, les équipes d’ICARE sont les membres importants de plusieurs GDR, comme le GDR Propulsion à plasma dans l’Espace (CNRS/CNES/SNECMA) ; Micropesanteur Fondamentale et Appliquée (CNRS/CNES) ; GDRE franco-italien « Energétique et Sécurité de l’Hydrogène (CNRS/CNR 2005-2008). La situation financière d’ICARE ne pose pas de problèmes particuliers et permet au laboratoire de fonctionner correctement. Ceci est aussi permis grâce aux ressources propres du laboratoire qui alimentent aussi un fonds de fonctionnement global de l’Unité pour pallier les insuffisances chroniques du soutien de base. A titre d’exemple, en 2008, les ressources financières d’ICARE hors salaires des permanents étaient de 2 590 k€ et de 6 372 k€ avec les salaires des permanents. Ces mêmes chiffres étaient respectivement de 1 960 k€ et 5 362 k€ pour 2009 (voir ci-dessous les graphiques correspondants). On remarquera que les salaires des permanents constituent respectivement les 59% et 63% du budget consolidé de 2008 et 2009. Dans le budget non-consolidé la part des ressources propres est de 78% en 2008 et de 71,5% en 2009.

Ressources financières d'ICARE pour 2008(2 590 Keuros - hors salaires permanents)

45,91%Contrats

22,15%CNRS et Univ.

Orléans

4,48%Europe

7,14%ANR

20,32%Collectivitésterritoriales

Ressources financières d'ICARE pour 2008(6 372 Keuros - avec les salaires des permanents)

18,66%Contrats

8,26%Collectivitésterritoriales

2,90%ANR

1,82%Europe

9,00%CNRS et Univ.

Orléans

59,35%Salaires

permanents

4

Ressources financières d'ICARE pour 2009(1 960 Keuros - hors salaires permanents)

16,12%Collectivitésterritoriales

16,44%ANR

3,43%Europe

28,53%CNRS et

Univ. Orléans35,47%Contrats

Ressources financières d'ICARE pour 2009(5 362 Keuros - avec les salaires des permanents)

12,97%Contrats5,89%

Collectivitésterritoriales

6,01%ANR

1,26%Europe

10,43%CNRS et Univ. Orléans

63,45%Salaires

ICARE est également très bien intégré dans son milieu scientifique régional. Il est conventionné avec l’Université d’Orléans et est l’un des trois laboratoires de la Fédération de Recherche EPEE. Il a de fortes interactions de recherche avec l’Observatoire des Sciences de l’Univers du Centre, et en particulier avec les laboratoires LPC2E, CEMHTI, CRMD, MAPMO du campus d’Orléans. La participation des membres d’ICARE à l’enseignement au sein de l’Université d’Orléans et à la formation par la recherche est excellente. Les enseignants-chercheurs et les ATER d’ICARE contribuent évidemment au renforcement de ces liens depuis des années. La grande majorité des chercheurs CNRS d’ICARE et aussi un nombre important de ses ITA enseignent dans les différents cycles de l’Université d’Orléans. A titre d’exemple, on peut signaler que durant l’année universitaire 2008-2009, le personnel d’ICARE a assuré 1784 heures éqTD en Licence et 870 heures éqTD en Master. 37 thèses de doctorats de l’Université d’Orléans (dont 4 en co-tutelle) ont été préparées à ICARE et soutenues dans la période concernée. Le nombre de stagiaires de tout niveau reçus par ICARE est également très important. Les membres d’ICARE, enseignants-chercheurs et chercheurs sont présents dans plusieurs instances de l’Université d’Orléans, comme la direction de l’IUT d’Orléans et de deux de ses départements, la direction du Département de Chimie de la Faculté des Sciences, la présidence du Conseil Scientifique de l’ENSI de Bourges, le Conseil Scientifique de l’Université d’Orléans, les CED…L’Annexe 2 donne les détails de ces participations à l’enseignement et la formation par la recherche. De même, il est important de souligner que le personnel d’ICARE, toutes catégories confondues, est très actif dans la diffusion de l’information scientifique et technique et dans la vulgarisation des savoirs, grâce à des publications ou interventions dans divers media, l’accueil de stagiaires de divers niveaux, participation très soutenue aux manifestations comme La Fête de la Science et d’autres opérations « portes ouvertes » et des conférences dans les collèges et les lycées. Les Annexes 3 et 4 résument respectivement les actions de formation permanente des personnels de l’unité et celles concernant l’Hygiène et la Sécurité.

5

Organigramme général

6

Overview of the activities of the Thematic Research Groups

Thematic Research Group I : Chemical kinetics of combustion and reactive systems

1 Research context and objectives

Chemical kinetic studies are necessary for understanding combustion processes. They allow analysing new combustion concepts and predicting energy release. Furthermore, combustion chemistry is useful for developing new fuels and understanding the formation of pollutants and potential means of reduction in future applications (engines, burners …). The development of detailed and reduced chemical kinetic reaction mechanisms involves the computation and measurement of fundamental parameters (thermochemical properties, rate constants) and development of experimental databases (ignition delays, fundamental flame propagation velocities…) to validate the proposed kinetic schemes. Such databases are obtained under well-controlled laboratory conditions. ICARE has equipments available for measuring fundamental parameters and providing experimental databases for model validations. Several ‘ideal’ complementary reactors are currently used with appropriate diagnostics: * Heated spherical combustion chambers for the measurement of fundamental burning velocities of gaseous and liquid fuels at high pressures by fast speed ombroscopy imaging. The spherical bombs used at ICARE have characteristics not entirely available for similar equipments in France: maximum heating temperature of 210°C, high operating pressure (50 bars), and large internal volume (56 L) allowing reliable laminar combustion properties measurements (laminar flame speeds, Markstein lengths, maximum combustion overpressure) * Burners - A recently implemented unique high pressure counter-flow burner facility (maximum chamber pressure 5MPa) allowing, as a first step, the stabilisation of laminar premixed counter flow flames up to 1MPa (as well as partially premixed or diffusion flames,), with optical access for laser diagnostics (such as Laser Induced Fluorescence, Emission, Absorption, Raman spectroscopy, Cavity Ring Down Spectroscopy) for major and minor chemical species, radicals, pollutants and temperature measurements. - Flat flame burner with probe sampling for characterization and measurement of stable chemical species by gas phase chromatography (CPG-FID-TCD) and FTIR * Pressurized jet stirred reactors (JSR) that can operate over an extended range of temperature (500-1500 K, covering both low and high temperature oxidation regimes), pressure (0.1- 4.0 MPa), and equivalence ratio (0.02-4). This is a unique and powerful system allowing operation at pressures as high as those encountered in gas turbines. Chemical analyses of stable species are performed using complementary techniques such as FTIR, GC-MS-FID-TCD, trap and HPLC. * High pressure shock tubes (ST) that can operate up to ca. 5000 K. They are equipped with complementary diagnostics such as ARAS, Laser Scattering/Extinction, UV and IR absorption, detection of OH* and CH* emission. ICARE has a large ensemble of shock tubes for chemical kinetic studies and its ST-ARAS set-up is unique in France whereas only few are operating worldwide.

7

2 Research activities and key results

2.1 Determination of fundamental parameters

Fundamental chemical kinetic data are needed to understand and model the combustion processes. Among them, rate constants for elementary reactions and thermochemical properties of chemical species are necessary to propose detailed kinetic reaction mechanisms.

2.1.1 Elementary reactions in combustion Shock tube studies at ICARE aim at measuring elementary rate constants involving H and O atoms using atomic resonance absorption spectroscopy (ARAS). Several studies concerned the oxidation of hydrogen (PNIR « Carburant et moteurs », action “Hydrogène”, in collaboration with PC2A at Lille), the decomposition of nitrous oxide and its reduction by reaction with hydrogen, and interactions between silane and nitrous oxide (ACL59, ACL65).

2.1.2 Determination of thermo-kinetic parameters To build chemical kinetic reaction mechanisms, in addition to reaction rate constants, the thermochemical properties of the chemical species involved are needed. Group additivity methods (Benson) have been generally used in the past. Since these methods showed some limitations, ab initio calculations are preferred nowadays. Such methods have been implemented at ICARE to compute accurately the thermochemical properties of a variety of components such as polycyclic hydrocarbons, energetic materials (ACL28, ACL49), biodiesel components and biomass derived chemicals (ACL27, ACL36, ACL50). These studies have been conducted within national research programs (ANR-PNRB GALACSY, and SUPERBIO) and international research contracts (US Air Force).

2.1.3 Chemical kinetic mechanisms The fundamental parameters determined at ICARE are used to build chemical kinetic reaction mechanisms that in turn are validated against experimental results. The needed experimental databases for model validation are obtained using the techniques listed above. Jet-stirred reactors provide data on the variation of mole fractions of reactants, stable intermediates and products. These data are used together with ignition delays measured in shock tubes, flame speeds, flame structures in premixed flames or opposed flow diffusion flames (through a collaboration with the University of Toronto). Our most recent studies concerned the oxidation kinetics of pure fuels, mixtures, commercial fuels, and surrogates, i.e. natural gas and hydrogen-enriched mixtures (ANR project TACOMA; programme PIE-CNRS HyTAG), diesel fuel (program PNIR-CAM1; CIFRE contracts with IFP), gasoline, E85, bio-fuels, kerosene (contracts CALIN – Pôle de compétitivité Aerospace Valley and FP7 project Alfabird). (ACL4-11, ACL13-17, ACL20-26, ACL29-33, ACL38-40, ACL42-43, ACL44-47, ACL52-58, ACL60-61, ACL64-66, ACL70-72).

2.2 Formation and reduction of pollutants from combustion

Combustion of fuels generates pollutants. Many efforts have been devoted to understand the mechanisms of formation of pollutants (nitrogen oxides, polyaromatic hydrocarbons, soot) and to propose means to reduce their formation. ICARE has been very much involved in these studies.

8

2.2.1 Chemical kinetics of NOx formation and destruction Nitrogen oxides (NOx) are important pollutants formed during combustion in air. Nitric oxide (NO) is generally the most important. In collaboration with the Ecole des Mines at Albi, we have studied the reduction of NO by solid fuels (ACL35). Our kinetic models have been extended to conditions relevant to a cement plant calciner. This work showed the importance of nitrogen and sulphur mass fractions in the fuel on the formation/reduction of NOx. Among the intermediates formed during the oxidation of N-bound fuels, HCN (hydrogen cyanide) is produced. It is also a key-intermediate in NO-reburning. Therefore, its kinetics of oxidation has been reviewed; an updated reaction scheme has been proposed in collaboration with the groups from Universities of Lyngby and Zaragoza (ACL37). NOx formation in high pressure flames is studied, in collaboration with the PC2A, Lille (ANR project NO-mecha, 2009-2012). It aims at revisiting the NOx formation mechanism, particularly the recent controversy about the prompt-NO route (CH + N2 = NCN + H) in methane and natural gas-air flames. It relies on a novel experimental approach that allows obtaining a completely renewed database including most of the NO-sensitive species in a very large range of flame conditions in terms of pressure (4 kPa -1 MPa) and composition. The new high pressure counter-flow burner facility of ICARE is used coupled to laser diagnostics. LIF and PLIF techniques have been applied with success for OH radical measurements (ACTI12) in high pressure CH4/air flames (up to 1MPa) and measurements of NO and CH are ongoing. A modelling work is performed in parallel in order to test the performances of the kinetic mechanism GDFkin®3.0 (ACL176) at high pressure conditions. The formation of NOx was also investigated in collaboration with the University of Seattle for lean prevaporived premixed combustion conditions (ACL29).

2.2.2 Soot and precursors

2.2.2.1 Formation of PAH and soot precursors Soot is still one of the most difficult combustion generated pollutant to reduce. The formation of soot precursors (benzene, cyclopentadiene, PAH) was studied in a JSR and a chemical kinetic modelling was performed within a research program of ESA-MAP "ombustion Properties of Materials for Space Applications Phase 2 (2005-2012) in collaboration with LCD in Poitiers, the Universities of Lund and Cottbus. Analytical procedures involving HPLC-UV-Fluo-MS, and GC-MS were developed to measure PAH at low concentration levels. This work was extended to the measurement of PAH on soot obtained from the combustion of kerosene and mixtures containing bio-fuels (ACL102).

2.2.2.2 Soot Formation Despite a tremendous work-effort by the research community during the last decades, soot formation and oxidation remains one of the most challenging phenomena in the combustion field. Due to the harmful effects of soot particles both on health and environment, governments worldwide have strengthened the emission regulations for automotive engines. The reduction of Diesel soot emissions were and still are a target of these regulations since this combustion mode is prone to soot production. During the last decade, we have developed a powerful tool in order to study soot formation and oxidation based on a shock tube coupled to laser techniques such as extinction and Rayleigh diffusion. Based on soot sampling techniques, the organization (TEM low resolution), structure (TEM high resolution) as well as the adsorbed phase (LDI-TOF-MS) were thoroughly investigated. The ICARE heated shock tube allows conducting fundamental studies on heavy pure fuels or commercial fuels at conditions relevant to internal combustion engines (high pressures and temperatures). These studies were conducted in the framework of several co-operations with TOTAL, CNR-Milano within the Franco-Italian

9

GDRE on Hydrogen Combustion and Safety, and the University of Toronto. This last cooperation aims the modelling of soot formation by coupling a detailed kinetic mechanism for soot precursors to a global soot formation code (ACL41, ACL178-180).

2.2.2.3 Modelling of soot formation in Diesel engine conditions A modelling study of soot formation in a Diesel engine has been performed in collaboration with Renault and PRISME-University of Orléans in order to optimize IC engines for soot emissions reductions. A soot model was developed and coupled to a combustion model (for benzene, n-heptane, iso-octane, n-decane and toluene oxidation) in a 3D-CFD code (ACL62, ACTI7).

2.3 New fuels

Because they are renewable, biofuels and synthetic fuels from bio-resources are attracting great interest as transportation fuels but also for energy production. They may be less polluting, sometimes more biodegradable, and could reduce net greenhouse gas emissions. However, their application in engines and other combustion devices requires combustion models and experimental databases for their burning under various conditions (lean combustion, high pressure, exhaust gas recirculation…). Several studies have been recently performed at ICARE on the kinetics of oxidation of oxygenated fuels, naphtenic hydrocarbons, and synthetic fuels (in cooperation with the Universities of Galway and Illinois-Chicago, and under a research contract PNIR-CAM1 with CNRS, PSA, TOTAL).

2.3.1 Combustion of hydrogen-enriched fuels, syngas, and biofuels The optimisation of IGCC power plants (Integrated Gasification Combined Cycle) that produce electricity from combustion of syngas (CO/H2) in gas turbines necessitates many studies on the effect of fuel composition and dilution by carbon dioxide. A better understanding of the combustion kinetics of such fuels and of the effects of variation of their compositions is needed. Experimental and numerical flame structure studies have been performed at atmospheric pressure in order to specify the effect of CO2, H2 and H2O addition in CH4 and CO flames (ACL63). High pressure biogas (CH4/CO2) flames are currently studied. This work was completed with laminar syngas flames velocities measurements using the Particle Imaging Velocimetry (PIV) technique (ACTI60, ACTI62, see also below Groupe Thématique on Combustion Dynamics). The kinetics of combustion of hydrogen-enriched fuels was also studied through the PIE-CNRS HyTAG project and a contract with EDF. The kinetics of oxidation of fuel mixtures containing methane, syngas, CO2, and H2O were studied (ACL23, ACL45-47, ACL60-61). Further studies were performed through the ANR project TACOMA. The effect of fuel dilution by water vapour and interactions with SO2 were studied in a JSR and modelled.

2.3.2 Combustion of fatty acids methyl esters and biodiesel surrogates. Fatty acids methyl esters are new components of Diesel fuels for which little was known until recently. ICARE published the first kinetic study of the oxidation of rapeseed oil methyl ester in a JSR (ACL16). The kinetic modelling was performed using several model fuels, showing that RME behaves very similarly to large alkanes under JSR oxidation conditions. In collaboration with the Universities of Toronto and Princeton, we studied the kinetics of oxidation of simple methyl esters to improve our knowledge of biodiesel combustion kinetics (ACL22, ACL30, ACL40, ACL43, ACL57). The kinetics of oxidation of ethyl esters was also investigated in collaboration with the University of Galway (ACL64). These studies were conducted through several research projects (Predit contract Biokin; NSF International Research and Education in Engineering support with the University of Illinois-Chicago). Other chemical kinetic studies are currently performed for the oxidation of biodiesel through a

10

research contract with Renault and a research project with ESA-MAP on Combustion Properties of Partially-Premixed Spray Systems.

2.3.3 Other oxygenated fuels: alcohols, ethers, and ketones Ethanol accounts for over 90% of all biofuels production worldwide. However, mixing stability issues may appear with simple alcohols whereas larger alcohols would mix better with petrol-derived fuels due to their longer alkyl carbon chain. Therefore, the kinetics of oxidation of methanol, butanol isomers, 1-pentanol, and 1-hexanol were studied experimentally and modelled. Their mixtures with hydrocarbons and methyl esters were also investigated (ACL17, ACL55-56, ACL68, ACL70, ACL72). This research was partially performed in collaboration with PRISME-University of Orléans, the University of Toronto, and IFP. A collaboration with the University of Galway aimed at determining the laminar flame speeds of a series of oxygenated species and was supported by the ULYSSES program (ACL66). The kinetics of combustion of oxygenated gasoline additives, such as ETBE, has also been studied (ACL 52).

2.3.4. Synthetic fuels from coal, natural gas and biomass Liquid fuels can be synthesized using an adapted Fischer-Tropsch process. We have studied the kinetics of oxidation of reformulated jet fuels in the project CALIN (supported by the Pôle de compétitivité Aerospace Valley). Experiments in a JSR and kinetic modelling were also performed within the ongoing FP7 European project Alfabird (ALternative Fuels And Biofuels for aIRcraft Development). These studies yielded a unique data base for the kinetics of reformulated jet fuels and are continuing.

2.4 New combustion technologies for energy production

ICARE is involved in several projects related to currently emerging technologies for energy production with a common objective to reduce the environmental impact while preserving process efficiency. These studies are also good examples of intense co-operations within ICARE teams contributing to Chemical kinetics and Dynamics of combustion (see below the Groupe Thématique on Combustion Dynamics).

2.4.1. Combustion kinetics of lean mixtures Combustion in lean conditions allows the reduction of soot and NOx emissions, however it can generate instabilities leading to flame extinction and production of harmful oxygenated compounds. In order to better understand the combustion reaction mechanisms in lean conditions, an experimental and numerical study was undertaken on methane, ethylene, propane and propene flames (ACL18) in order to constitute a detailed database on intermediate species containing 1 to 3 carbon atoms, which control the combustion kinetics of heavier fuels.

2.4.2. Coupling of oxygen-enriched combustion and CO2 capture This study (CNRS PIE research project COCASE in collaboration with LRGP Nancy, CORIA Rouen and LCD Poitiers) aims at investigating a new technological solution for CO2 capture from fossil fuel burning power plants. It consists of coupling an oxygen-enriched combustion (typically 30-80% O2) with a CO2 capture by membrane separation processes (developed by LRGP, Nancy). This combination offers a CO2 capture process with a largely reduced energetic cost compared to conventional post-combustion or oxy-combustion processes. The overall purpose of the present work is to maximize the energy production by combustion while ensuring a correct operation of the global process in compliance with environmental legislations. First, a feasibility study was performed with numerical simulations of the energy

11

required for this “hybrid” process. In parallel, combustion kinetics simulations were performed at ICARE in order to determine the best suited combustion conditions (ACTI 13, AFF 6). This numerical approach is now under experimental validation at CORIA (in a model gas turbine chamber) and LCD (in counter flow flames).

2.4.3. NO-hydrocarbons interaction at low temperatures Recent auto-ignition engine concepts (HCCI, LTC) use exhausts gas recirculation (EGR) to control ignition timing. Under such conditions, EGR chemically affects ignition through interactions of fresh fuel-air mixture and unburned species or nitrogen oxides. Several studies were undertaken at ICARE in collaboration with engine research groups at PRISME-Univeristy of Orléans and IFP to better understand these chemical interactions and propose chemical kinetic models. These kinetic studies concerned simple fuels and reference fuels and demonstrated the need for further investigations to better understand NOx-hydrocarbons interactions (ACL5, ACL8-9, ACL17, ACL20, ACL31, ACL53, ACL67) and the chemical impact of unburned species (ACL34, ACL51).

12

Thematic Research Group II: Atmospheric reactivity

1 Research context and objectives

Chemical processes play a central role in altering chemical species entering the atmosphere. They may lead to the formation of ozone and other photooxidants and secondary organic aerosols, which impact climate and air quality. They can also affect the oxidative capacity of the atmosphere, which is one of the major determinants of the concentration of organic compounds in the atmosphere. The laboratory kinetic and mechanistic parameters are of crucial importance to improve the quality of the atmospheric chemical models. The activities of the atmospheric reactivity group of ICARE span from accurately measuring reaction rate parameters and determining chemical mechanisms to field measurements of some keys atmospheric players. The main themes that we dealt with within last few years are: * Atmospheric degradation of volatile and semi-volatile organic compounds and secondary organic aerosols formation * Gas-surface interactions (atmospheric aerosols and ‘depolluting materials’) * Reactions influencing the oxidative capacity of the troposphere * Field measurements and instrument intercalibration.

2. Research activities and key results

2.1 Atmospheric degradation of volatile and semi-volatile organic compounds and secondary organic aerosols formation

2.1.1 Atmospheric degradation of Volatile organic Compounds (VOCs) The degradation of Volatile Organic Compounds (VOCs) in the troposphere leads to the production of a range of secondary pollutants such as ozone, peroxyacyl nitrate, secondary organic aerosols and other components of the photochemical smog in urban areas. VOCs are emitted directly into the atmosphere from biogenic and anthropogenic sources. The main gas phase removal process of most VOCs is the reaction with OH radical, the oxidation by O3 and NO3 being other important degradation pathways for unsaturated VOCs. In order to assess the impact of these chemical species on air quality, a detailed understanding of the kinetics and mechanisms of their atmospheric degradation is required. The kinetics and the atmospheric oxidation mechanisms of a number of VOCs have been studied. Using absolute and relative methods, the rate coefficients for the reactions of OH and O3 with a series of esters (methyl methacrylate, ethyl propionate, ethyl isobutyrate…), alcohols (6-methyl-5-hepten-2-ol, allyl alcohol …), fluorinated (trifluoroacetaldehyde hydrate, trifluoropropene, …) and amides (N-methyl pyrrolidinone, N-formyl pyrrolidinone) have been reported (for the first time for most of the studied compounds). Mechanistic studies have also been conducted. Most compounds were found to have short atmospheric lifetimes leading mainly to carbonyls as oxidation products (e.g. ACL76, 78, 79, 80, 81). This work has been conducted within the LEFE (CNRS-INSU) and INSU-DFG programmes and Eurochamp 1 and 2 projects (FP6 and 7).

13

2.1.2 Semi-Volatile Organic Compounds (pesticides) The wide use of pesticides in agricultural applications is of some concern since they may have a significant environmental impact. Once a pesticide is applied in the field, it can be partitioned into the soil, water and atmosphere. Knowledge of the environmental fate of pesticides is important in order to assess the potential risks to human and animal health. The atmospheric fate in the gas phase of a series of pesticides (chloropicrine, hymexazol …) has been investigated using the large European outdoor simulation chamber (Euphore, Valencia). The rate coefficients for the reactions with OH and ozone have been measured and the photolysis investigated. The results obtained indicate that both photolysis and reaction with OH radicals are the main gas phase loss processes of these pesticides in the atmosphere. The kinetic parameters enable to conclude that the studied pesticides will be oxidized near their emission sources and will have an impact on the local and regional scales. Some of the degradation products have been identified and quantified which led us to derive the atmospheric degradation mechanisms for most of the studied pesticides. For example, phosgene (a highly toxic chemical) was found to be the major photolysis product of chloropicrine. (e.g. ACL75, 83, 101). This work has been supported by the INTERREG IIIC programme.

2.1.3 Secondary organic aerosols (SOA) formation The gas phase ozonolysis of a series of unsaturated biogenic or anthropogenic organic compounds (such as myrcene, linalool, ocimene, α-farnesene, unsaturated alcohols, unsaturated ethers…) has been investigated. The reaction rate coefficients have been determined which enabled to calculate the tropospheric lifetimes of these species. Most of the studied compounds have been found to be very short lived towards the reaction with ozone (less than 2 hours). The SOA formation yields were found to be in the range 1-30 % under atmospheric conditions. Nucleation thresholds have been determined for some of the reactions studied and aerosol formation mechanisms involving the Criege biradical intermediates have been suggested for some species. The chemical composition analysis of the SOA formed showed a significant amount of organic acids. These compounds are also very reactive towards hydroxyl and nitrate radicals. This high reactivity implies that large emissions of these species will play a significant role in the atmospheric boundary layer in terms of photooxydant and organic secondary aerosol formation. (e.g. ACL76, 77, 89, 93, 95, 97). These studies have been carried out within the LEFE (CNRS-INSU) and Primequal programme and the Eurochamp 1 and 2 projects (FP6 and 7).

2.2 Gas-surface reactions

2.2.1 Fate of Polycyclic Aromatic Hydrocarbons (PAH) in atmospheric soot particles. Two types of processes determining the atmospheric fate of soot-bound PAHs have been studied: PAH desorption from soot surface in relation with the PAHs partitioning between gas and particulate phases in the atmosphere and their heterogeneous oxidation reactions.

2.2.1.1 Thermal desorption of PAH from soot surface. Kinetics of thermal desorption of three to six-ring PAH from kerosene soot surface was studied over the temperature range 260-320 K in a flow reactor combined with an electron-impact mass spectrometer. The soot was prepared in the laboratory under controlled conditions. Two methods were used to measure the desorption rate constants: monitoring of the surface-bound PAH decays by off-line HPLC measurements of their concentrations in soot samples, and monitoring of the desorbed molecules in the gas phase by in situ mass spectrometry. The results obtained with the two methods were in good agreement and yielded the Arrhenius expressions for desorption kinetics of 16 PAH. The derived desorption enthalpies are close to the corresponding sublimation enthalpies, which is consistent with the structural similarity of PAH

14

molecules and soot. The obtained experimental data were applied to the calculations of PAH partitioning in the atmosphere using available theoretical models (ACL 90, 102, 109, 105).

2.2.1.2 Heterogeneous reactions of soot surface-bound PAH with atmospheric oxidants O3, NO2, OH

Kinetic studies were performed in the flow reactor with off-line particulate PAH analysis by HPLC. No measurable decay of PAHs due to the reaction with NO2 was observed under experimental conditions which allowed to determine the upper limits of the first-order rate constants for the heterogeneous reactions of 17 soot-bound PAHs with NO2: k < 5.0×10-5 s-1. Regarding the heterogeneous reactions of particulate PAHs with ozone, the first-order rate constants measured for individual PAHs ranged from 0.004 to 0.008 s-1 and were found to be independent of the ozone concentration and temperature. The rate of the heterogeneous reaction of PAHs with OH radicals was found to be in the range (0.02 - 0.04) s-1 at T = 290 K, independent of the OH concentration and of the molecular structure of the PAH. The results of this work indicate that the reactions of PAHs adsorbed on soot surface with O3 and OH can be important pathways of particulate PAHs degradation in the atmosphere (ACL99, 104, 106).

2.2.2 Interactions of HO2 radicals with sea salt aerosol. Laboratory study of the interactions of HO2 radicals with sea salt aerosol was carried out in relation with the potential influence of this process on the HOx (OH + HO2) budget and oxidizing capacity of the marine troposphere. The uptake coefficients of HO2 radicals on synthetic sea salt, NaCl, NaBr and MgCl2×6H2O dry solid films were measured over the temperature range 240 to 340 K and at 1 Torr pressure of helium using a discharge flow reactor coupled to a modulated molecular beam mass spectrometer. H2O2 was observed as a main product of HO2 interaction with salt surface indicating a heterogeneous HO2 self reaction mechanism. The results show that the HO2 loss through heterogeneous interaction with salt surface is not sufficiently rapid to explain the observed differences between modelled and measured HO2 concentrations in remote coastal areas. (ACL 99)

2.2.3 Interaction of water vapour with MgCl2 × 6H2O et NaCl surfaces This work deals with the laboratory study of interactions of water vapour with sea salt particles and includes the measurements of the uptake of water to dry solid films of MgCl2×6H2O and NaCl over the temperature range 240 to 340 K using a flow reactor coupled to a modulated molecular beam mass spectrometer. The following Arrhenius expression (calculated with specific BET surface area) was obtained for the initial uptake coefficient of H2O on MgCl2×6H2O films: 0 (MgCl2) = (6.5 1.0)10-6 exp[(470 40)/T]. The rate of H2O adsorption on NaCl was found to be much lower than on MgCl2×6H2O, and only an upper limit was determined for the corresponding uptake coefficient: (NaCl) 5.610-6 at T = 300K. The experimental data on H2O adsorption to MgCl2×6H2O salt surface was found to be well described by Freundlich isotherm with the heterogeneity parameter close to 0.5. The isosteric heat of adsorption was determined to be (44.7 1.2) kJ mol-1 independent of the salt surface coverage in the range (0.8 – 30) 1015 molecule cm-2. An empirical equation is proposed for the amount of water adsorbed on MgCl2×6H2O as a function of relative humidity. The observed results suggest that the rate of H2O adsorption to salt surfaces is drastically dependent on the salt sample composition and that under atmospheric conditions sea salt particles are probably enveloped by a MgCl2×6H2O brine (ACL103).

2.2.4 Heterogeneous photochemistry. This research activity currently being developed at ICARE is part of two ongoing projects. The ANR project PHOTODUST "Photocatalytic properties of mineral dust" aims to investigate the physico-chemical interactions of pure and organic coated mineral aerosols (authentic and synthetic) with trace gases from several chemical families (NOx, O3, SO2,…) under varying

15

conditions corresponding to the real atmospheric environment (humidity, gas phase concentration and irradiation intensity and type). The second project (French-German, INSU-DFG programme) PHOTONA "Photochemical Formation of nitrous acid in the atmosphere" is devoted to the identification and quantification of heterogeneous photochemical sources of nitrous acid (HONO) in relation with the oxidizing capacity of troposphere. Nitrous acid has attracted significant attention during the last few years since recent field measurements have demonstrated that the photolysis of HONO can be the dominant source of OH radicals in the lower atmosphere, the OH radical being the primary oxidant in the atmosphere, responsible for the oxidation and removal of most natural and anthropogenic trace gases.

2.2.5 Photo-catalytic self-cleaning and “de-polluting” materials : sink or source of pollutants ? Recent research work has shown that materials containing titanium dioxide (TiO2) could have a “de-polluting” effect through photocatalytic phenomena which led to the development of environmental friendly materials by adding TiO2 to ordinary building materials such as concrete, cement and glass. Although various photocatalytic materials are already on the market, very little reliable information is available, except for limited technical data, regarding their impact on air quality considering the potential formation of harmful intermediates. Within different projects, we have undertaken a systematic study on the behaviour of typical atmospheric pollutants when exposed to materials containing TiO2. Experiments have been conducted on TiO2 coated glass using a new built and well equipped outdoor 3.4 m3 simulation chamber made of Teflon. In agreement with previous studies performed under artificial light, the results obtained show that while NO uptake on the TiO2 coated glass is enhanced under irradiation, the NO2 concentration-time profile exhibits a maximum, suggesting that it is produced from the photocatalytic oxidation of NO and then converted to nitrous and nitric acids. Interestingly, ozone was observed to be formed in a high yield during the course of the experiment. In addition, the experiments have also shown a substantial formation of nitrous acid (HONO). In combination with other experiments performed using complementary experimental systems at IRCELYON and LISA, a chemical mechanism has been proposed to explain the observed ozone profiles involving nitrate radicals (ACL110). This work has been conducted within three projects (Primequal, ANR, Life+).

2.3 Reactions influencing the oxidative capacity of the troposphere

These studies concern the formation of nitric acid and organic nitrates, RONO2 (R = alkyl group) in the minor channels (b) of the reactions between the peroxy radicals, HO2 or RO2, with NO: HO2 (or RO2) + NO → OH (or RO) + NO2 (a) HO2 (or RO2) + NO → HNO3 (or RONO2) (b) Nitric acid and organic nitrates play an important role in the tropospheric ozone budget, as “sink” or “reservoir” species for both NOx and HOx (OH, HO2). They, therefore, influence the oxidative capacity of the troposphere and the concentrations of reactive greenhouse gases (methane, ozone, hydrofluorocarbons…). The formation yields of HNO3 or RONO2 (or branching ratios kb/ka) are determined using a turbulent flow reactor coupled with a chemical ionisation mass spectrometer (CIMS). This technique allows measurements in the whole range of tropospheric temperatures and pressures (220-300 K, 70-760 Torr), and in the presence of water vapor. The combination of CIMS

16

analysis in both positive and negative modes provides a sensitive and selective detection of the species, in particular HNO3 and RONO2 which are produced at very low yields (less than a few percents).

2.3.1 Formation of HNO3 in the HO2 + NO reaction The formation of HNO3 in the HO2 + NO reaction has been observed for the first time and the HNO3 yield has been determined in the whole ranges of tropospheric temperatures and pressures. This yield ranges from 0.5% at the Earth surface to 0.9% in the tropopause region (ACL 82). The integration of these data in chemistry-transport atmospheric models indicates that they have a significant impact on the concentrations of species like HOx, NOx, HNO3 and O3, in particular in the tropical upper troposphere (ACL 85). Numerous and complex experiments due partly to CIMS detection complications in the presence of H2O, have led to observe a H2O enhancement of the HNO3 formation yield in the HO2 + NO reaction (for example an increase by a factor 8 at 50% relative humidity at 298 K and 200 Torr). This effect has been confirmed by a theoretical study, and it has been interpreted as a fast HNO3 formation in the reaction of NO with the HO2·H2O complex (ACL 94).

2.3.2 Organic nitrate formation in the RO2 + NO reactions The studies on organic nitrate formation in the RO2 + NO reactions focused on the short chain alkyl nitrates C2H5ONO2 and i-C3H7ONO2. The related peroxy radicals RO2 are derived from the atmospheric oxidation of ethane and propane, respectively, and from larger hydrocarbons. The ongoing study concerns the formation of hydroxypropyl nitrate isomers in the reaction of NO with the hydroxypropyl peroxy radicals derived from the OH-initiated oxidation of propene. The formation yields of these different nitrates have been determined as a function of pressure and also as a function of temperature for C2H5ONO2 (ACL 107, 108). All these yields, which are lower than 3%, could be precisely determined by using a novel CIMS detection process of the nitrates (ionisation by the F- ion). The obtained data are available to be included in chemical mechanisms of atmospheric models, either explicitly or indirectly by contributing to improve the structure-activity relationships used to reduce these mechanisms. The direct integration of our data in chemistry-transport models should allow assessing the impact of the studied organic nitrates on the VOC/NOx/ozone chemistry in urban plumes and in the whole troposphere. These studies have been carried out within the EU FP6 SCOUT integrated project, the LEFE programme of CNRS-INSU and the ongoing Primequal programme of the French Ministry of Ecology (MEEDDM).

2.4 Field measurements and instruments intercalibration

2.4.1 Calibration of intrumentation for laboratory and field measurements The indoor and outdoor ICARE atmospheric simulation chambers have been used within different research projects to intercalibrate instrumentations used both in laboratory studies and field measurements. The large indoor chamber equipped with in-situ FTIR was used along with the SPIRIT instrument (SPectromètre Infra-Rouge In situ Troposphérique) developed by LPC2E to determine the absolute intensity of the 2912.09 cm-1 line in order to derive reliable atmospheric HCHO concentrations using SPIRALE (Spectroscopie Infra-Rouge par Absorption de Laser Embarqué). The same chamber was used to calibrate the SAMU instrument (Spectromètre de masse Aéroporté MULti-espèces par réactions ion-molécule, ACL 91) of Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), for in-situ atmospheric measurements of OH and total peroxy (HO2 + organic peroxy) radicals. On the other hand, the recently developed outdoor chamber was used to calibrate the NITROMAC instrument of the

17

Laboratoire Inter-universitaire des Systèmes Atmosphériques (LISA-Créteil) for HONO measurements.

2.4.2 Field measurements of key atmospheric species (HONO, HCHO, VOCs, peroxy radicals) The peroxy radical chemical amplification (PERCA) instrument of ICARE has been employed in a field campaign aimed at studies of radical chemistry in polluted environment influenced by urban outflow within a project supported by LEFE/INSU programme. The measurements were performed during June-July 2007 on the agricultural site of Grignon situated 20 km to the west of Paris. Two other campaigns were conducted recently (2009 and 2010) in the same site within the PHOTONA project (CNRS-DFG programme) to measure HONO, O3 and NOx. Within a collaborative project between ICARE, Fudan university and CAS, an intensive field measurement study was conducted at a site at the Fudan University (Shanghai) during October 2009. Ambient air pollutants measured included HONO, NO, NO2, O3, carbonyls. The purpose is to improve our understanding of the local air pollution in Shanghai in order to plan future campaigns for understanding the interplay among local and regional air pollutants in the Shanghai area, and the influence of regional transport on local air pollutants.

18

Thematic Research Group III : Dynamics of combustion and reactive systems

1. Research context and objectives

The laboratory studies on the dynamics of combustion and reactive systems aim to provide data for model and numerical simulation validations developed in the various sub-topics and also to improve our knowledge on energy systems under conditions relevant for applications, such as high pressure conditions. Such data and knowledge are important for energy production and chemical propulsion systems development and optimisation but also for safety analysis of chemically reactive systems. The studies concern combustion systems under laminar, turbulent and accelerated flame regimes. Various unique experimental facilities and their corresponding, mainly optical and laser, diagnostics are mobilized to determine relevant flame parameters both in premixed and non-premixed configurations. Stretch and pressure effects as well as those of H2 addition and CO2 dilution on laminar flame parameters, such as zero stretch flame propagation velocities, Marsktein numbers, flame surface density and turbulent burning rates are determined, mainly for methane-air flames; but also for other mixtures such as syngas. Several flame configurations and experimental methodologies are used to benefit from their respective advantages. When possible, both chemical kinetics and flame dynamics modelling and numerical simulations are used to analyse the experimental results. For laminar diffusion flames, an original approach is developed; it consists of taking advantage of the magnetic susceptibility of oxygen to monitor air – fuel mixing and to improve the stability features of diffusion flames, for example by reducing the lift-off height and therefore the emission properties, such as CO, by the action of magnetic forces. An important aspect of combustion dynamics studies of ICARE concern chemical explosion dynamics and the determination of flame acceleration and transition to detonation criteria. The recent studies in this area have mainly focused on gaseous or two-phase mixtures containing hydrogen, essentially for safety analyses in nuclear power plants and for the perspective of hydrogen transport in natural gas pipelines. Several reactive multiphase systems are also studied at ICARE. In recent years, studies on liquid fuel droplet vaporisation have focused on droplet interaction effects and progressively on droplet cloud vaporisation and combustion. Metal combustion studies have been oriented on novel propellants such as nano aluminum particles and their mixtures with water. Such studies are necessary to progress in the analysis of two-phase propulsion systems for example for liquid or solid rocket motors. More recently, the expertise of ICARE in metal combustion studies has been used for on-demand H2 generation investigations by exploring low temperature oxidation of aluminium particles in water. Finally, other recent orientations have consisted in syngas or hydrogen generation from biomass or other organic materials through allo-thermal gasification processes, such as plasma-aided gasification or hydrothermal decomposition in supercritical water. The common features of all these studies are their use of original experimental facilities, allowing high pressure explorations using optical diagnostics and the integration of the chemical kinetics expertise of ICARE into the studies on the dynamics of combustion and other reactive systems. Also, all of these studies are conducted in the frame of national and European projects, most of the time including industrial partners or national agencies.

19

2 Research activities and key results

2.1 Dynamics of laminar and turbulent flames

2.1.1 Laminar premixed flames

2.1.1.1 Freely expanding spherical flames One of the major fundamental properties of combustion is the laminar flame velocity, which despite its very straightforward definition must be carefully assessed. Among the different techniques, the outwardly spherical flame proves to be very valuable since the stretch at which the flame is submitted is perfectly known and can be then accounted for. ICARE has designed a high pressure spherical chamber that can be operated over a wide range of temperatures and initial pressures. The imaging of the flame propagation is used to derive SL° correctly and to detect the onset of flame wrinkling due to instabilities. In the framework of the ANR project PANH-HYDROMEL (2006-2010), the effect of methane addition to hydrogen / air mixtures has been investigated. Along with auto-ignition delay times (see §2.2.1) a detailed kinetic mechanism has been validated which can be applicable to safety assessment (ACL12, AFF68). The impact of the initial pressure on the flame propagation of methane-hydrogen air mixtures has been studied in the framework of the national program PIE CNRS « Hytag » (2005-2008). A collaboration with TOTAL aims at the determination of the effect of automotive fuel additives on laminar flame velocities for gasoline (ACL52, 58) and F1 racing cars (confidential project). A collaboration between ICARE, GREMI and the company CILAS is aiming at the development of a laser based ignition device in the case of biogas mixtures (Program Région-Centre 2008-2010).

2.1.1.2 Counter flow flames A facility allowing the study of flame propagation velocities in opposed jet flames has been developed. The flow field has been determined by particle imaging velocimetry and flame velocities as well as stretch rates have been extracted. Zero stretch rate flame velocities have thus been deduced. The set-up and the methodology were first validated using well known atmospheric pressure methane-air flames and then applied to premixed synga – air flames (TH33, AFF63, ACTI60, ACTI62). The same technique is also coupled to the determination of laminar flame thicknesses (or density/temperature gradients) using the laser induced Rayleigh scattering technique in the framework of an ongoing PhD thesis.

2.1.1.3 Conical flames In order to study the influence of CO2 addition on a methane-air flame we used the Bunsen flame (conical flame) configuration and compared several methods of extracting laminar flame propagation velocities. One method relies on flame cone area determination and the application of mass conservation principle. Another method uses the velocity field obtained by the PIV technique. The two techniques are also compared for syngas – air flames in cooperation with the Pennsylvania State Univeristy (TH33). Laminar flame stability domains with CO2 addition are also determined; it is shown that high pressures allow obtaining stable flames at lower equivalence ratios (ACTI26, ACTI27, ACTI55, ACTI72).

2.1.2 Laminar diffusion flames with and without magnetic forces Magnetic forces can be used to control the stability of laminar diffusion flames capitalising on the magnetic susceptibility of oxygen. Permanent magnets (ACL126) and an electromagnet (ACL140) are used at ICARE for this purpose together with laser flame tomography and laser velocimetry. Dynamics of laminar methane – air flames with and without magnetic forces have been compared. In parallel, numerical simulations have been performed taking into account the heat release, magnetic forces and the radiation effects (ACTI35, ACTI71). The results show

20

that for lifted fames, the lift-off height is reduced by the application of magnetic forces (ACL126, ACTI43). For high velocity flames, a stabilising effect of the magnetic forces on the fuel-air mixing layer instabilities has been demonstrated (ACL140, ACTI54, ACTI58). An extension of this research towards oxygen enriched air flames is ongoing.

2.1.3 Turbulent flames

2.1.3.1 Non-premixed turbulent flames Turbulent hydrogen – air non premixed flames (or hydrogen enriched methane – air flames) are of interest because of their lowest risk potential in burners or gas turbines, compared to premixed hydrogen mixtures. An experimental study has been conducted on the characterisation of high pressure H2/air and H2 enriched methane – air flames in the framework of a joint PhD with the Polytecnico di Milano (TH1). A specific burner has been developed for this purpose and adapted to the ICARE high pressure turbulent combustion facility. The role of pressure and hydrogen enrichment rate has been identified on flame dynamics and sooting characteristics. These flames have also been studied numerically using the FLUENT code with adapted mixing and turbulence models and chemical kinetics for the studied flames (ACL, 116, 130).

2.1.3.2 Premixed turbulent flames During the last years, research at ICARE on turbulent premixed flames has concentrated on the structure and dynamics of high pressure methane-air flames, either enriched by hydrogen or diluted by CO2. The high pressure turbulent combustion facility of ICARE has been used for this purpose together with relevant diagnostics such as LDV and PIV and laser induced Mie and Rayleigh scattering techniques. For H2 enriched flames, the increase of the flame surface density both by the increase of pressure and the enrichment rate has been demonstrated and analysed using several turbulent combustion models (ACTN1, COM22, ACL118, ACL119, ACL125, ACL129). For CO2 diluted flames, the pressure effect remained the same, but the detailed structure of the flame was found insensitive to the dilution rate, except of course the reduction of the laminar flame propagation velocity and the ensuing reduction of the global combustion rate (TH6; ACTI27, ACL128). These studies were mainly conducted in the framework of the FP5 project AFTUR (2003-2008) and the PIE CNRS project HyTAG (2005-2007), both coordinated by ICARE. This research axis is presently continuing namely in the context of turbulent syngas – air flames studies and by using biplanar laser induced Rayleigh scattering technique in order to resolve the 3D effects when determining the instantaneous flame front thicknesses.

2.2 Dynamics of chemical explosions

2.2.1 Fundamental explosion properties

2.2.1.1 Methane – hydrogen and natural gas – syngas mixtures Among the fundamental properties of combustion, SL° is very important not only as a tool of chemical kinetic validation (see §2.1.1) but also because it leads to other parameters very important in chemical explosions: flammability limits, maximum overpressure rise, appearance of instabilities, Markstein length, etc. By using a detailed kinetic mechanism coupled with the experimental data, the Zeldovich number can then be derived. These fundamental studies are mandatory in order to analyze the different regimes a flame can undergo (see §2.2.2). These parameters have been determined for different hydrogen based mixtures for a wide range of initial conditions in terms of pressure, temperature and equivalence ratios. These studies have

21

been carried out in collaboration with IRSN for H2 – air – water vapor (2005-2009; 2009-2012) and INERIS/IRSN for natural gas and syngas mixtures (2008-2011). Moreover, by using high pressure shock tubes and detonation tubes, auto-ignition delay times and dynamic parameters of detonation have been determined in the case of H2-CH4-air mixtures. These data along with the aforementioned ones have been used in order to validate a kinetic mechanism applicable to detonation evaluation (TH26, ACL12; ACTI24-25, ACTI61, COM1, COM29, COM31; AFF67, AFF68, AFF70).

2.2.1.2 Hydrogen – N2O mixtures Silane-nitrous oxide mixtures are widely used in some industries such as semiconductor manufacturing and also constitute a safety hazard in nuclear waste storage. Since the decomposition of silane is faster than that of N2O and involves the formation of H2, the H2-N2O system might be an important sub-system of the silane oxidation mechanism. A fundamental study has been performed in order to assess the explosion properties of such mixtures and auto-ignition delay times, laminar flame velocities and detonation properties have been determined (TH28; ACL48, 65; ACTI46, 47, 56, 65, 73, 74, 75; AFF5, 62).

2.2.1.3 Hydrogen – dust mixtures A new study has been initiated in collaboration with IRSN (2010-2013) which is aimed at a better assessment of the explosion hazards in the International Thermonuclear Experimental Reactor (ITER). During normal operating conditions, several kilograms of dust (graphite, tungsten and beryllium) can be produced due to the erosion of the ITER chamber walls. A cloud of combustible particles can then be formed and it is critical to assess its explosive properties such as the maximum overpressure, the maximum pressure rise rate in case of combined mixtures of hydrogen and dust. In the framework of a PhD thesis these parameters are assessed as well as the flammability limits of these mixtures for various dust concentration, average particle size, and initial temperature and pressure (AFF73).

2.2.2 Strongly accelerated flames and transition to detonation

2.2.2.1 Criteria for flame acceleration For more than a decade, ICARE has been involved in different programs with industrial partners (EDF, AREVA) as well as organisms (CEA, IRSN) concerned about the safety of nuclear power plants. In order to address the case of a severe accident involving hydrogen explosions, a highly instrumented facility (ENACCEF) has been developed in order to study the risk of flame acceleration and to propose a criteria that can identify potentially destructive mixtures. The criterion that has been proposed is based on different properties of the mixture (expansion factor, Lewis and Zeldovich numbers). The effect of hydrogen concentration gradients on this criterion has been studied (TH26; ACTI24-25). Moreover, in the framework of the OECD committee on the safety of nuclear installations, this study has been chosen as a test case for more than 15 countries in the framework of International Standard Problem (ISP-49). Within the ANR project PAN-H Hydromel aiming at evaluating explosion hazards related to the transport of hydrogen using the existing network for natural gas, one solution we explored was to mitigate its explosive properties by adding methane. For this purpose, the inhibitor effect of methane for strongly reactive mixtures has been investigated (COMM28), using also the fundamental explosion parameters acquired in §2.2.1.

2.2.2.2 Flame / water droplet interactions In the case of a severe accident in a nuclear power plant, the safety procedures include the use of water sprays in order to abate the radioactive aerosols and reduce the pressure inside the reactor building. A two phase mixture of H2/air/steam/water droplets is then formed which could be inside the flammability limits. In addition, the presence of water can create a short electric circuit which can act as an ignition source. It is therefore crucial to understand whether

22

the water spray will extinguish the flame or on the contrary accelerate it. This work has been conducted in collaboration with IRSN and AREVA (TH26; ACL176; ACTI44, 79). The behavior of the flame of H2-air-H2Ovap mixtures near the flammability limits is investigated as a function of the initial temperature (ACTI61, 78).

2.2.2.3 Detonation properties of liquid fuels In order to select a liquid fuel that is easily stored and capable of achieving a transition from deflagration to detonation in a very short distance, for pulsed detonation engines applications, the sensitivity to detonation of heptane when mixed with oxygen or air was studied (see also Thematic Research Group IV §2.1.2.1). A detailed kinetic mechanism has been proposed to describe its explosive properties (ACL44). During this study, a novel technique of enhancement of DDT have been proposed by coupling a Schelkin spiral and hot gas jet injection as well as the construction of an electro-spray device capable of producing droplets with an average diameter below 0.5 µm. In this case, detonation transition was successfully obtained (TH23, ACTI45).

2.3 Multiphase gasification and combustion phenomena

2.3.1 Vaporisation of liquid droplets and clouds This research axis concerns the vaporisation of liquid fuel droplets after the primary and secondary atomisation phases, and is important for reactive mixture formation analysis in liquid fuel combustion systems, such as liquid rocket engines or lean prevaporized premixed gas turbine applications. Our global objectives are to experimentally characterize and model the vaporization properties of various liquid fuel droplets at high pressure and temperature conditions. High pressure enhanced natural convection effects are reduced by conducting the experiments under reduced gravitational acceleration conditions. During the last years, emphasis was put on droplet interaction effects. A specific apparatus was developed to observe and characterise high temperature vaporisation of a droplet network. This set-up is also adapted for parabolic flight experiments in order to achieve reduced gravity conditions. n-Heptane droplets are deposited at the intersections of two cross wires of 0.014 mm in diameter, reducing drastically the fibre effect on the droplet vaporisation characteristics, as was inevitably observed with the classical large diameter fibre suspended droplet experiments. By comparing the two techniques, the effect of the heat transfer from the fibre was clearly identified and quantified. Correlations for the vaporisation rate were proposed allowing the unification of earlier results. Droplet interaction effects were investigated for n-decane droplets. The vaporisation rate of the centre droplet in a 3D droplet network was measured and a reduction of about 60% was observed compared to single droplet vaporisation rates under identical surrounding conditions. These results, conducted within the CNRS-CNES coordinated action (GDR) on “Transport phenomena in microgravity” allows detailed comparisons with the numerical simulations of the literature (ACTI15, 23, 51). This work is presently extended to the vaporisation of droplet clouds.

2.3.2 Combustion of aluminum particles Studies on the combustion of metallic particles such as aluminium and magnesium are motivated by their use, actual or potential, in solid rocket propulsion applications. In the continuation of our past work on this topic, a study was conducted in cooperation with SME/SNPE (2006-2008) concerning the combustion properties of nanosized aluminium particle clouds. A new experimental set-up was developed which allows determining the flame propagation velocities in a cloud of aluminium nanoparticles. Emission spectroscopy measurements also permitted to estimate gas and condensed phase temperatures. Experiments

23

were conducted parametrically in terms of particles nature and concentrations and the behaviour of clouds of nanoparticles versus micron sized particles were determined. An associated numerical modeling and simulation study permitted to estimate the particle burning time versus the particle size and showed that the agglomeration of nanoparticles may hinder their beneficial size effect (TH11; AFF60; ACTI36-39; AFF65; ACTI68; ACLN6, ACL132). A prospective study on the development of “frozen propellants based on passivated aluminium nanoparticles and water” was conducted in cooperation with CNES and SME. When initiated by a hot wire, this novel propellant exhibits a stable and autonomous combustion even in an inert atmosphere. Its burning rate was determined under various conditions for the propellant composition, nature and size distribution of the particles and the initial pressure, using the high pressure droplet combustion facility of ICARE. This “Cold Solid Propellant” was also successfully tested at the CRB/SNPE test facilities under real fire conditions (ACTI40; ACLN7). The previous study has clearly shown the feasibility of the (2Al + 3H2O Al2O3 + 3H2) reactions under low temperature conditions. We capitalized on this information to study low temperature (40°C<T<90°C) reactions between nanosized aluminum particles and water as an innovative on demand H2 generation process. We have examined the effects of water temperature, chlorine content and pH and the particles nature on the hydrogen yield. We have shown that the reaction (Al + 2H2O AlO(OH) + 3/2 H2) starts after an induction period corresponding to the hydration-dissolution-precipitation time of the alumina layer covering the aluminium particle and the generation of H2 occurs steadily until complete conversion of the metal. The induction period and the maximum H2 yield were determined for all explored conditions (ACTI48). This study is presently ongoing by investigating alternative ways of de-passivating (or activating) the low temperature reactions of nano and microsized aluminium particles in water.

2.3.3 Biomass gasification by allothermal processes A promising way to convert various biomass resources into new fuels (such as syngas or hydrogen) concerns the gasification of their non-comestible ligno-cellulosic fractions but also of various agricultural, forestry and municipal residues and wastes, including those having high humidity. The syngas produced can be either used as a gaseous fuel in gas engines or gas turbines or mixed with natural gas, or converted into liquid fuels by catalytic processes such as the well known Fischer-Tropsch process. For wet biomass or organic resources, conventional auto-thermal gasification processes are too much energy consuming as it is necessary to dry them prior to their partial oxidation or gasification. Allo-thermal gasification processes consist in aiding the gasification process by some additional external energy source and are alternative technologies that are developed presently. If optimized they may increase the H2/CO ratio in the produced gas, increase its LHV and also help gas cleaning especially abating tars. One such process is plasma aided gasification of liquid bioresources such as bio-oils issuing from the pyrolysis of the original biomass. In the context of the ANR/PNRB project GALACSY (2006-2009), coordinated by CEA Cadarache, ICARE determined the thermo-chemical parameters of a model bio-oil (see §2.1.2 in Thematic Research Group I) and modeled the injection of the bio-oil into the plasma (Bodele, E., Gökalp I., Numerical study of liquid spray formation by interaction between a plasma and liquid Jet. ILASS Europe 2008 Lake Como, Italy 8-10 Septembre 2008) Another innovative gasification process adapted for wet biomass is hydrothermal decomposition or gasification of biomass in supercritical water. In the context of the ANR/PNRB project SUPERBIO (2008-2010) and the Region Centre project SUPERGAZ (2010-2011), both coordinated by ICARE, several partners including CEA-Marcoule, Veolia, UNGDA, ICMCB of Bordeaux, LaTEP of PAU and CEMHTI and CRMD in Orleans, are characterizing and optimizing this process applied to wet residues of alcohol distillation processes and wet organic municipal waste and also macro-algae. The role of ICARE in these projects is again the determination of the thermo-chemical parameters of model resources such

24

as glucose (see §2.1.2 in Thematic Research Group I) and the observation and analysis of the supercritical gasification processes of various organic resources using the Hydrothermal Diamond Anvil Cell set-up equipped with optical diagnostics, jointly developed with the McGill University, Montreal, Canada (AFF72; ACL133-135). This research axis is ongoing and is now aiming to design and optimize a continuous flow pilot reactor in cooperation with the orleanaise partners of ICARE. Thematic Research Group IV : Space propulsion & high-speed flows

1 Research context and objectives

This topic encompasses two kinds of closely related activities, namely rocket and spacecraft propulsion on the one hand and high-speed flights in upper layers of planetary atmospheres on the other hand. The first activity concerns the development of chemical engines for launchers and ion thrusters for satellites and space probes. The second one covers hypersonic aircraft and supersonic flight of capsules during entry stage in atmosphere of e.g. the Earth, Mars and Titan. Experimental works are carried out in dedicated ground-based test-chambers, which form a singular facility set within Europe. The PIVOINE chamber with cryogenic pumping system is employed for electric propulsion studies. An ensemble of large wind-tunnels with cold gas jet as well as high-enthalpy flows allow reentry and flow control studies. Besides, several high performance numerical tools have been developed such as 3D Euler and Navier-Stokes codes for reactive compressible flows and a 3D code for linear stability analysis of a laminar-turbulent boundary layer.

2 Research activities and key results

2.1 Space propulsion

2.1.1 Electric propulsion Research activities of the Electric Propulsion team are mostly focused on the in-depth examination of the physics of various low-pressure discharges. The aims are twofold and concern on the one hand, the improvement of existing thrusters for satellites and interplanetary spacecrafts and, on the other hand, the design of innovative ion sources for the next generation of electric propulsion devices.

2.1.1.1 Physics of Hall effect thrusters A Hall effect thruster is an advanced propulsion device that uses a low-pressure magnetized discharge to ionize and accelerate a propellant gas. All activities related to this subject are performed in the frame of a joint-research program (GDR 3161, Propulsion à Plasma dans l’Espace) between the CNRS, the CNES, the Snecma company and several Universities. * Transport phenomena of ions and atoms within the E×B discharge as well as in the plume near-field of various thrusters are investigated by means of Laser Induced Fluorescence spectroscopy (TH14). Measurements of the ion velocity allow to reconstruct the electric field distribution. Parts of these studies were carried out in the frame of the ANR project Teliopeh. Last year, we managed to reveal the time evolution of the electric field at low-frequency by way of a pulse-counting technique. Recently, we characterized the ion azimuthal trajectory and

25

we proposed a comprehensive picture of the atom flow in a Hall thruster (ACL138, 139, 148, 149, 153, 154, 157, 159, 160 ; ACLN10, ASCL7). * The influence of the magnetic field topology, a key parameter, is examined by measuring discharge properties (electron parameters, ion energy, plasma potential…) and thruster performances for various configurations of the Snecma-built PPS®1350-ML thruster (ACL149. In a few months, the PPS-Flex, a dedicated source especially built to provide “exotic” field maps, will be available. * The electron density and temperature as well as the plasma potential are determined in the plume far field using Langmuir probes and emissive probes. Such data are crucial for critically assessing plasma-spacecraft interactions. We are currently developing a technique for time-resolved measurements as well as an original setup to realize measurements in the high-energy core of the discharge (ACL136; ACLN11). * The construction of scaling laws and the development of sizing methodology presently represent a large part of the ICARE activities in the electric propulsion area. Dedicated experiments are carried out in the recently-built NExET test-bench with a low-power thruster equipped with magnets. Besides, in the frame of the EU FP7 HiPER project, we are responsible for the design of a 20 kW Hall thruster able to deliver 1 N of thrust (ACL137). * Other activities are the following: thermal imaging of HET cavity and assessment of power deposited to the dielectric walls (ACL144, 145), analysis of electron turbulence and plasma fluctuations (ACL152; ACLN11) and development of plasma plume diagnostics for facilities of the European Space Agency.

2.1.1.2 Investigation of innovative Hall thruster designs In order to improve the performance level of a HET, we suggested in 2006 to add energy in the thruster cavity by means of a Radio Frequency wave. The idea of a RF-enhanced HET was investigated within an EU FP6 INTAS project (2006-2009) that included several Russian laboratories. The consortium demonstrated that localized energy injection has a significant impact on the thrust and the beam divergence. A low-power thruster with inductive RF coupling is now under development at ICARE to pursue along that promising path. Such a concept may also be of great interest for propellants with high ionization energy.

2.1.1.3 Ion-ion plasma-based thrusters Both Hall effect thrusters and gridded ion engines, although based on two different ion acceleration strategies, suffer from two main drawbacks: the need of an external electron gun to neutralize the ion beam and the creation of slow ions that interact with the spacecraft elements like solar panels. A new concept termed PEGASES and patented in 2007 by P. Chabert from the Ecole Polytechnique, avoids the two obstacles thanks to the use of both positive and negative ions. In 2009 we initiated a collaborative research program with the LPP to further develop the PEGASES concept and to build, on a long range, a flight demonstrator. These activities are presently supported by Astrium. Our task mostly consists in studying the continuous (opposed to pulsed) production of a high-density ion-pair plasma from an electronegative gas. For that purpose, an inductively-coupled RF reactor equipped with a versatile magnetic trap was constructed. In addition, a second prototype of the PEGASES with an acceleration stage will soon be tested in the cryogenic NExET bench which was especially built for these experiments.

2.1.1.4 Other activities in the field of plasma physics Cooperation with LPIIM (Marseille): Investigation by LIF spectroscopy of de-excitation of metastable atoms on a metal surface in a low-pressure multipolar device.

Cooperation with LPP (Ecole Polytechnique): Study of neutral depletion phenomenon in a helicon device; measurements of Ar atom temperature as a function of the magnetic field strength and comparison with numerical simulations.

26

Cooperation with the University of Opole (Poland): Hyperfine structure of several Xe and Kr atomic lines (ACL14)]; physics of expanding plasmas (ACL147, 161; ACLN9).

2.1.2 Chemical propulsion

2.1.2.1 Studies on propulsion by detonation waves This study is part of collaboration between ICARE and MBDA France and concerns both pulsed and continuous detonation wave engines. One aim is the evaluation, via numerical simulation, of the performance of a continuous detonation wave engine (CDWE). In CDWE, the propellants are injected into an annular cylindrical chamber and form a layer of fresh mixture, which is consumed by one or more detonation waves. Detonation waves continuously propagate in the azimuthal direction and generate hot gases exhausted through the other end of the chamber. CDWE has two important features: i) in the detonation waves, combustion occurs at a higher pressure than the average pressure in the chamber thus resulting in a potential gain in performance compared to the constant pressure thermodynamic cycle; ii) the flow structure is such that the flow becomes supersonic at the exit of a cylindrical chamber which allows the use of a nozzle without geometrical throat.

Three numerical models are developed to study a CDWE fed with hydrogen-oxygen mixtures: i) a global model to estimate the performances of an ideal CDWE; this model was used to demonstrate the theoretical advantage of a CDWE over a conventional engine; ii) a model based on 2D Euler equations, with which a parametric study was performed by varying the injection conditions and chamber geometry (ACLN4); and iii) a model based on 3D Euler equations coupled with a method of adaptive mesh refinement (AMR) is employed to simulate the flow in the chamber. In addition, propulsion by pulsed detonation waves is also studied. In one study, detonation properties of n-heptane in air or oxygen are determined as an example of storable liquid fuel for pulsed detonation applications (see §2.2.2.3 in Thematic Research Group III). Another study was conducted in cooperation with CNES, MBDA and ROXEL in order to determine the detonation properties of liquid oxygen and liquid hydrogen mixtures. Two experimental facilities have been developed: one for non-reactive atomization studies and the other for detonation studies (TH29). In particular, the effect of the size distribution of LOX droplets on the initiation and propagation of the detonation wave is determined ACTI32).

2.1.2.2 Safety of storable liquid propellant systems A study was conducted on the reactivity of hydrazine with various lubricants used in the micro pumps of spacecraft propulsion systems, in collaboration with CNES and the company CSTM. The objectives were to verify the non-explosive character of the mixture between hydrazine and the lubricants and to study the chemical behaviour of the lubricant subjected to a hydrazine saturated atmosphere. Presently, desorption kinetics of helium in ergols (monomethyldydrazine and MON) is studied. The objective is to gain understanding on the behaviour helium pressurized ergols during temperature variations and pressure drops which may create bubles in the propellant transport channels.

2.1.2.2 Laminar-turbulent transition predictions of a hypersonic spacecraft forebody This study is developed in the framework of the LEA program conducted by ONERA and MBDA France, with the objective of building and launching a scramjet powered hypersonic vehicle able to fly from Mach 4 to Mach 8, fuelled with either hydrogen or a mixture of methane and hydrogen. For this type of engine, a well-adapted air inlet is a crucial issue and depends on the state of the boundary layer on the forebody, which serves as a compression ramp. It is highly desirable to have a turbulent boundary layer. Hence, it is important to know whether natural transition occurs or not, and if not how to initiate it.

27

A numerical code based on the local modal linear stability theory has been developed and validated (TH16). This code applied to different flight conditions (Mach number, altitude, angle of attack...), allows to detect different instability mechanisms and to predict the transition with the semi-empirical "eN" method. An original method has been proposed for the integration of amplification rates (ACL156). The stability code was also used to predict the transition during ground tests in two different hypersonic wind tunnels at ITAM, Novosibirsk, Russia : the blow-down T-313 wind tunnel (adiabatic wall, Mach 4 and 6), and the AT-303 impulse wind tunnel (isothermal wall, Mach 6 and 8). The preparation of experiments, their realization and the comparison between calculations and experimental results have been conducted during another thesis (ACTI122, ACTI123, TH34). The flow field around the forebody for the different experimental conditions has been simulated in order to provide the mean flow profiles for the stability calculations, and to design the gauges for the experiments. The application of empirical criteria allowed designing efficient roughness parameters to trigger transition during the less favorable Mach 8 tests. In addition, a partnership with Tatiana Elizarova from the Russian Academy of Sciences is currently undertaken for the application of the Quasi-Gas Dynamics approach to the direct numerical simulation of the transition on the LEA forebody.

2.1.2.3 The MILES approach for compressible, multicomponent reacting flows Since about ten years, a numerical activity is conducted at ICARE for the simulation of turbulent flows with complex physics using higher order methods. The final goal is to simulate the turbulent mixing and combustion of a hydrogen jet in co-flowing air, under conditions typical for supersonic combustion chambers. This activity is supported by CNRS-IDRIS with computational time offered on massively parallel supercomputers.

Two numerical codes have been developed for fundamental studies aiming at comparing different numerical schemes for the simulation of turbulent reacting flows (ACLN2). A Direct Numerical Simulation code based on higher order compact schemes with spectral-like resolution has been written and applied to different test cases (TH8). The code is 3D, vectorized and parallelized through task sharing with OpenMP. A second code based on WENO scheme of order 3 to 9 has also been developed in 2D for the simulation of shocked flows. The extension of the WENO code to 3D along with its compilation on various platforms is now achieved. This dissipative code allows the large eddy simulation of compressible, shocked, reacting turbulent flows with (LES) or without (MILES) explicit subgrid models; hence the possibility to analyze the relative performances and merits of these approaches for the physics of complex flows.

2.2 High-speed flows

2.2.1 Atmospheric reentry Activities of ICARE in this area are oriented towards the development of experimental research topics in connection with the ICARE facilities (Phedra, Marhy and Edith), whereas the numerical developments are conducted thanks to the collaborations established with the “Fluid Dynamics and Thermophysics” team of Marseille and the LEEM of Evry.

2.2.1.1 Supersonic plasma flows in thermal non equilibrium Vehicles moving at high speed in a planetary atmosphere generate shock waves capable of emitting radiation. Due to high temperatures and low pressures, non-equilibrium effects occur behind the shock wave. They can lead to strong radiative fluxes that form a large part of the overall heat flux. This activity focuses on the study of radiative models of the created plasma and on the coupling between the involved physico-chemical processes. For high velocities, the

28

presence of electrons leads to additional physico-chemical processes: electronic collisions can be very efficient for electronic excitation and ionization of atoms, and electronic and vibrational excitation of molecules. The Phedra facility allows reproducing some of theses properties. Besides, it provides experimental data, which are useful to validate calculations of the emission spectra, non-equilibrium effects and modelling of the thermodynamic and transport properties. In the framework of the ANR project RAHYEN (2008-2011), our principal task is the development of an exhaustive and accurate spectroscopic database for terrestrial and Martian entries and the development of reliable physical models to simulate radiation and thermo-chemical non-equilibrium in atmospheric entry flows. To comply with the objectives, we have developed IR and VUV spectral diagnostics techniques and we have developed a theoretical spectral database necessary to analyze experimental results (ACL141, ACT I118).

2.2.1.2 Modelling of expanding plasmas For polyatomic gases at high temperature, degrees of freedom other than the translational one must be taken into account and assigned a specific temperature: rotational, vibrational and electronic. Under atmospheric reentry conditions, the thermal nonequilibrium can reach 20% between translational temperature and rotational, vibrational or electronic ones. In wind tunnels, model flows are generated by mean of arc-jet nozzles, and from the inlet to the outlet of the throat, the flow can be heated from room temperature to more than 10 000K at trans-sonic speeds. Currently we are able to simulate a flow for realistic conditions of entry. The modeling of the Joule heating source gives quite consistent temperatures with the overall energy balance. More precise comparisons will be possible as soon as temperature measurements will be available. Different models of arc (more or less stable) were tested and compared. The dissipation of the energy, especially in chemical reactions has been demonstrated for a power ranging from 6 to 10 kW. The calculations also helped to highlight the influence of the heating source on the stability of the plasma jet. These computations have been applied to different atmospheres: Earth (N2, N2-O2), Titan (N2-CH4) and Mars (CO2-N2). The strong coupling between different species and their internal energies (electronic, vibrational and rotational) has been recently achieved (TH24). The evolution towards thermodynamic equilibrium between the translational and electronic temperatures in the collar has been demonstrated and validated for pure gas as Argon. We also considered the problem of the presence of species that once in their excited state, contribute significantly to the properties of the plasma. To examine the importance of these effects, a first study on Argon at low pressure in the arc-jet was carried out with four states: Ar, Ar (4s), Ar (4p) and Ar+ (ACL140, 150, 151, 163; ASCL8-10).

2.2.2 Supersonic flow control

Two approaches are developed at ICARE for supersonic flow control: the uses of plasma actuators and the application of standard mechanical methods.

2.2.2.1 Flow control with plasmas This activity was initiated in 2004 concerning the effects of a surface electrical discharge over a flat plate. The discharge is created by two electrodes glued on the surface of the plate. Experiments were performed in the MARHy wind tunnel operating with air at Mach 2 under low density conditions. Heating of the cathode has been observed by an infrared camera. This heating, due to ionic bombarding and recombination at the surface is higher as the electrical potential increases. Pitot probe measurements demonstrated a thickening of the boundary layer when the upstream electrode is the cathode. The effect is weak or even inexistent when the downstream electrode is active. It is thus inferred that the discharge effect is directly connected to the heating of the plate. When the upstream part of the plate is hot, the boundary layer is more influenced by the heating. This study was supported by the Region Centre and the EPEE

29

federation; it also benefited from collaboration with the Laboratorio de Fluidodinámica, Universidad de Buenos Aires (TH15; ACL146, ACL155, ACL158, ACL162, ACTI84, ACTI87, ACTI89, ACTI90, ACTI104, ACTI105, ACTI110, ACTI118, ACTI119, ACTI120, ACTN4, ACTN5, ACTN6).

2.2.2.2 Thrust vectorization of an axisymmetric nozzle An experimental and numerical investigation is ongoing to examine the possibilities of fluid-based thrust vectorization in an axisymmetric nozzle through the injection of a secondary gas into a supersonic primary stream. Experiments are performed in the super/hypersonic wind-tunnel EDITH with a Mach 3 nozzle. By way of a Schlieren flow vizualisation technique it was so far shown that side gas flow injection induces a shock inside the nozzle, the latter being at the origin of a change in the main stream direction. This activity is the subject of a PhD thesis in the framework of a cooperation with the LEEM (Université d’Evry); it is supported by the CNES (ACTI127).

2.3 Non-continuing research activities

Three research programs have come to an end with the retirement of J. P. Martin, J. C. Lengrand and A. Lebehot in years 2008 and 2009.

2.3.1 Plasma-aided combustion. The aim of this program was to investigate theoretically and experimentally the kinetics and mechanisms of non-conventional combustion at the presence of electronically excited singlet oxygen molecules. This work was the subject of a collaboration with Lehrsthul Strömungsmechanik und für Strömungstecknik (LSS) at the University of Magdeburg); it was supported by an INTAS program (ACL143, ACTI81, ACTI82, ACTI93, ACTI94, ACTI95, ACTI96, ACTI107, TH25).

2.3.2 Simulation of rarefied gas flows by the Monte Carlo method. The code DISIRAF was updated in order to take into account physical models of internal modes relaxation to simulated rarefied hot gases in thermal non equilibrium. This study was financially supported by CNES.

2.3.3 Interaction of atomic oxygen with surfaces. This research activity was conducted in the plasma wind tunnel Pelican which is now dismantled.

30

Thematic Research Group V : Chemical vapor deposition and inductive processes for materials elaboration The CVD and other material sciences activities of ICARE are presented here. They will not be continued in the coming years because the CVD activities ended with the retirement of L. Vandenbulcke (in August 2010). S. de Persis has integrated the Flame Structure Team since 2008 and she is now fully involved in combustion studies. In addition, the activities of Pascale Gillon in the materials science area are now conducted only in cooperation with GREMI.

1 Research context and objectives

The research activities in the materials sciences area at ICARE concerned the following topics: * Gas phase in situ characterizations were performed by i) optical emission spectroscopy (collaboration with V. Lago, ICARE); ii) by molecular beam mass spectrometry for plasma assisted and thermal chemical vapor depositions (collaboration with J.L. Delfau and C. Vovelle, ICARE); and iii) by microwave interferometry (national collaboration with Laboratoire de Physique des Milieux Ionisés et Applications, Nancy) and double Langmuir probes * Modelling studies concerned mainly i) the investigation of reaction mechanisms that develop in the gas phase during a CVD process; ii) the use of a three-step procedure of construction-analysis-reduction, in order to better understand reaction mechanisms and to integrate them in reactor; and iii) the use and development of chemical kinetics tools stemming from the combustion field, but almost unknown in CVD, in order to model reactive gas-phases. * Elaboration of thin films and nanoparticles in Plasma Assisted Chemical Vapor Deposition reactors under reduced pressure * Solid characterizations in collaboration with several regional and national laboratories and concerning observations and characterizations using TEM, HRTEM, XPS, IMS, EELS, Raman spectroscopy, IR and UV, X ray diffraction and tribological tests * Development of inductive processes to elaborate and transform metallic materials with specific properties.

2 Research activities and key results

2.1 Experimental and kinetic studies of C-H-O plasmas for polycrystalline and nano-smooth diamond deposition

CH4–CO2 microwave plasmas have been studied by optical emission spectroscopy, microwave interferometry, Langmuir probing and molecular beam mass spectrometry. The variations of plasma parameters and the concentration variations of both stable species and radicals in the plasma have been reported as a function of the power density and the total inlet flow rate. While the power density influences directly the plasma kinetics, the flow rate changes the residence time in the plasma and then the degree of conversion of the chemical system that is the extent to which the gas composition moves toward its steady-state composition. This is studied by modelling of plasma kinetics taking into account the coupled fluid dynamics of the gaseous species and the gas-phase chemistry including electron dissociation and surface recombination at the reactor wall. The experimental and modelling studies are used to correlate the relative concentration of important hydrocarbon radicals and etching radicals in the plasma and the gradients of all these species in front of the surface to the deposition domain, the structure (polycrystalline or nanocrystalline) and the quality of diamond films, which is the ratio of sp3 to (sp3 + sp2)-hybridized carbon in the film.

31

All results show the plasma kinetic effect on the diamond deposition domain and the diamond deposition quality and structure, due to different degrees of conversion of the chemical system. The deposition of diamond coating from CH4–CO2 is shown to be a versatile process that permits deposition of a great variety of diamond films. However it requires particular attention because of the variation of the deposition conditions and then diamond quality and structure of the deposits depending on the extent of conversion of the inlet species to various intermediate and finally stable species formed in the plasma chemical system (ACL172, 176, 177, 180; COM27, 33)

2.2 Elaboration of carbon nanoparticles in plasmas

A decrease in electron density and a strong increase of electron energy, which induce the enhancement of excitation rates, have been observed in CH4-CO2 plasmas when the inlet methane concentration is high enough and the input microwave power sufficiently low. Together with the decrease in the electron density with plasma duration, they are characteristic of dust formation in these plasmas. In these conditions, the formation of hydrocarbon radicals which are well known precursors of soot and the formation of first stable aromatics have been reported, as observed by molecular beam mass spectrometry. Modelling of the chemistry in the plasma has been carried out, which can also predict the formation of low concentrations of polyaromatic hydrocarbons. These species could be involved in the homogeneous nucleation process of carbon. As a function of the plasma duration, various carbon nanostructures are observed in the particles collected downstream of the plasma. For short durations, nanodiamond grains are formed with the size range 15-100 nm. They are composed of diamond nanocrystals of about 2-10 nm in size; these values are generally observed for all diamond nanocrystals formed in extraterrestrial and terrestrial conditions. For longer plasma durations, sp(2)-hybridized carbons are obtained. Their structure varies from soot to more ordered graphitic carbons nearly similar to 'onions' and structures similar to those observed in tokamaks. The control of the size and the microstructure of the nanodiamond grains are especially important as this could open possibilities for applications in a wide range of fields (ACL178, 179; COM31, 32; AP4).

2.3 Optimization of diamond films properties for mechanical, biomechanical and electronic applications

2.3.1 Polarized micro-Raman spectroscopy for studying stresses in as-grown and tensile-tested diamond films The determination of the stress/strain level in diamond films was carried out here by polarized Raman spectroscopy. For as-grown polycrystalline films, a classical shift and splitting of the Raman spectra was evidenced. A polarized Raman study in two directions allowed confirming the isotropic biaxial nature of the stresses which are principally from thermal origin. In case of stresses measured after a tensile test, the polarized Raman study permitted us to evidence the anisotropic nature of the biaxial stresses. These stresses were unambiguously determined by the averaging method of Anastassakis. Very high compressive values were obtained in the direction perpendicular to the tensile one while the stresses from thermal origin were just over-compensated in the tensile direction. These high anisotropic stresses resulting from the initial thermal stresses and the plastic deformation of the substrate after the tensile test explain the surprising positive Raman shifts of the splitted diamond bands after such a tensile test. While these high anisotropic stresses are determined with a fairly good accuracy, the average Raman spectrum of the film could not be modelled by the averaging procedure of Anastassakis. The influence of the numerous possible orientation of each grain relatively to the stress directions

32

was shown experimentally, especially in perpendicular direction to the tensile one, the direction of high compressive stresses. This local crystallographic influence however does not hamper studying the local stresses, as shown near the edge of a diamond film which had partially peeled off after a tensile test. Polarized micro-Raman spectroscopy is therefore of particular interest for evaluating the stress variations in such regions and then for inferring information about the adhesion of the films after mechanical tests.

2.3.2 Superlow Friction of Nano-smooth Diamond Coatings The friction behaviour of nano-smooth diamond coatings under high vacuum and with various added gases has been studied to elucidate the influence of different test environments. Glycerol, water, hydrogen and deuterium were introduced into the vacuum chamber at room temperature and 80°C. Specifically, the friction of nano-smooth fine-grained diamond coatings deposited on titanium alloys substrates by a MWPECVD method was studied. These nano-smooth diamond coatings display a smooth surface roughness in the 15-35 nm range coupled with high hardness and Young’s modulus. Their structure is revealed by transmission electron microscopy studies. While the friction coefficient is high under ultra high vacuum with diamond/diamond couples, ultralow friction with no wear is obtained in presence of OH-containing gases. Superlow friction (friction below 0.01) was also observed in presence of H2 and D2. The gas phase lubrication allows a better identification of the friction mechanism from advanced surface characterizations. The use of these green lubricants evidences the potentiality of these coatings for decreasing the energy consumption in various mechanical systems (ACL173, 174, 175, 180; ACTI111; ACTN8; COM26, 28, 29, 30).

2.4 Development of inductive processes to elaborate and transform metallic materials with specific properties

Massive metallic alloys of 5 to 12 elements such as the amorphous Zr-based alloys or the high entropy alloys present remarkable properties either on the mechanic, tribologic or adherence point of view. Their elaboration by fusion is particularly tricky as it is essential to produce a homogeneous liquid phase which respects the exact composition and a high purity level. We have developed an induction furnace with a levitation cold crucible working under inert gas atmosphere. In a first step, the metals are introduced in the furnace and degassed under vacuum before being melted. The cold crucible induction melting is particularly well adapted in the case of several elements alloys elaboration: it provides fast melting limiting the evaporation of the light elements while melting the refractory ones, homogeneity is obtained by the electromagnetic stirring and purity is improved by the use of a cold crucible. Alloys are analyzed by XRD and EBM to qualify the materials quality and structure. The foundry step is obtained by adding a pouring system at the bottom of the cold crucible. The molten alloy is then superheated in levitation before being poured into moulds of different shapes. We collaborate with the GREMI group to adapt a PVD process to deposit thin films of alloys from massive targets realized by induction melting. The process and different alloy compositions have been patented (AP3). Both thin films of amorphous alloys (ACL165) and high entropy alloys have been manufactured and their properties studied (ACL169, ACL173). These studies were conducted in cooperation with GREMI, CRMD and CEMHTI in Orléans, with LMPM in Poitiers and also with the Pôle de Compétitivité Cosmetic Valley and companies such as Téfal, Delphi, SASA, Titacreuset.

33

LISTE DES PUBLICATIONS ICARE – (2006-2010) (Cette liste est classée par groupes thématiques) Thématique Cinétique Chimique de la Combustion ACL : Articles dans des revues internationales ou nationales avec comité de lecture ACL : 1 Catoire L., Chaumeix N., Pichon S. and Paillard C., “Visualizations of gas-

phase NTO/MMH reactivity”, Journal of Propulsion and Power, 22 (1), pp. 120-126, (2006).

ACL : 2 Catoire L., Paulmier S. and Naudet V., “Experimental determination and estimation of closed cup flash points of mixtures of flammable solvents”, Process Safety Progress, 25 (1), pp. 33-39, (2006).

ACL : 3 Catoire L., Paulmier S. and Naudet V., “Estimation of closed cup flash points of combustible solvent blends”, Journal of Physical and Chemical Reference Data, 35 (1), pp. 9-14, (2006).

ACL : 4 Dagaut P. and Cathonnet M., “The ignition, oxidation, and combustion of kerosene: A review of experimental and kinetic modeling”, Progress in Energy and Combustion Science, 32 (1), pp. 48-92, (2006).

ACL : 5 Dagaut P. and Dayma G., “Mutual Sensitization of the oxidation of nitric oxide and a natural gas blend in a JSR at elevated pressure: Experimental and detailed kinetic modeling study”, Journal of Physical Chemistry A, 110 (21), pp. 6608-6616, (2006).

ACL : 6 Dagaut P. and Dayma G., “Hydrogen-enriched natural gas blend oxidation under high-pressure conditions: Experimental and detailed chemical kinetic modeling”, International Journal of Hydrogen Energy, 31 (4), pp. 505-515, (2006).

ACL : 7 Dagaut P., El Bakali A. and Ristori A., “The combustion of kerosene: Experimental results and kinetic modelling using 1-to 3-component surrogate model fuels”, Fuel, 85 (7-8), pp. 944-956, (2006).

ACL : 8 Dayma G. and Dagaut P., “Effects of air contamination on the combustion of hydrogen - Effect of NO and NO2 addition on hydrogen ignition and oxidation kinetics”, Combustion Science and Technology, 178 (10-11), pp. 1999-2024, (2006).

ACL : 9 Moreac G., Dagaut P., Roesler J.F. and Cathonnet M., “Nitric oxide interactions with hydrocarbon oxidation in a jet-stirred reactor at 10 atm”, Combustion and Flame, 145 (3), pp. 512-520, (2006).

ACL : 10 Nicolle A. and Dagaut P., “Occurrence of NO-reburning in MILD combustion evidenced via chemical kinetic modeling”, Fuel, 85 (17-18), pp. 2469-2478, (2006).

ACL : 11 Yahyaoui M., Djebaili-Chaumeix N., Dagaut P., Paillard C.E. and Gail S., “Kinetics of 1-hexene oxidation in a JSR and a shock tube: Experimental and modelin study”, Combustion and Flame, 147 (1-2), pp. 67-78, (2006).

ACL : 12 Chaumeix N., Pichon S., Lafosse F. and Paillard C.E., “Role of chemical kinetics on the detonation properties of hydrogen/natural gas/air mixtures”, International Journal of Hydrogen Energy, 32 (13), pp. 2216-2226, (2007).

ACL : 13 Dagaut P., “Kinetics of jet fuel combustion over extended conditions: Experimental and modeling”, Journal of Engineering for Gas Turbines and Power-Transactions of the Asme, 129 (2), pp. 394-403, (2007).

34

ACL : 14 Dagaut P. and Gail S., “Kinetics of gas turbine liquid fuels combustion: Jet-A1 and bio-kerosene”, Proceedings of the Asme Turbo Expo, Vol 2, pp. 93-101, 2007.

ACL : 15 Dagaut P. and Gail S., “Chemical kinetic study of the effect of a biofuel additive on Jet-A1 combustion”, Journal of Physical Chemistry A, 111 (19), pp. 3992-4000, (2007).

ACL : 16 Dagaut P., Gail S. and Sahasrabudhe M., “Rapeseed oil methyl ester oxidation over extended ranges of pressure, temperature, and equivalence ratio: Experimental and modeling kinetic study”, Proceedings of the Combustion Institute, 31, pp. 2955-2961, (2007).

ACL : 17 Dayma G., Hadj-Ali K. and Dagaut P., “Experimental and detailed kinetic modeling study of the high pressure oxidation of methanol sensitized by nitric oxide and nitrogen dioxide”, Proceedings of the Combustion Institute, 31, pp. 411-418, (2007).

ACL : 18 Delfau J.L., Biet J., Idir M., Pillier L. and Vovelle C., “Experimental and numerical study of premixed, lean ethylene flames”, Proceedings of the Combustion Institute, 31, pp. 357-365, (2007).

ACL : 19 Dollet A. and De Persis S., “Pressure-dependent rate coefficients of chemical reactions involving Si2H4 isomerization from QRRK calculations”, Journal of Analytical and Applied Pyrolysis, 80 (2), pp. 460-470, (2007).

ACL : 20 Dubreuil A., Foucher F., Mounaim-Rousselle C., Dayma G. and Dagaut P., “HCCI combustion: effect of NO in EGR”, Proceedings of the Combustion Institute, 31, pp. 2879-2886, (2007).

ACL : 21 Gail S. and Dagaut P., “Oxidation of m-xylene in a JSR: Experimental study and detailed chemical kinetic modeling”, Combustion Science and Technology, 179 (5), pp. 813-844, (2007).

ACL : 22 Gail S., Thomson M.J., Sarathy S.M., Syed S.A., Dagaut P., Dievart P., Marchese A.J. and Dryer F.L., “A wide-ranging kinetic modeling study of methyl butanoate combustion”, Proceedings of the Combustion Institute, 31, pp. 305-311, (2007).

ACL : 23 Le Cong T. and Dagaut P., “Kinetics of natural gas, natural gas/syngas mixtures oxidation and effect of burnt gas recirculation: Experimental and detailed modeling”, Proceedings of the Asme Turbo Expo 2007, Vol 1, pp. 387-395, 2007.

ACL : 24 Mati K., Ristori A., Gail S., Pengloan G. and Dagaut P., “The oxidation of a diesel fuel at 1-10 atm: Experimental study in a JSR and detailed chemical kinetic modeling”, Proceedings of the Combustion Institute, 31, pp. 2939-2946, (2007).

ACL : 25 Mati K., Ristori A., Pengloan G. and Dagaut P., “Oxidation of 1-methylnaphthalene at 1-13 atm: Experimental study in a JSR and detailed chemical kinetic modeling”, Combustion Science and Technology, 179 (7), pp. 1261-1285, (2007).

ACL : 26 Ogura T., Sakai Y., Miyoshi A., Koshi M. and Dagaut P., “Modeling of the oxidation of primary reference fuel in the presence of oxygenated octane improvers: Ethyl tert-butyl ether and ethanol”, Energy & Fuels, 21 (6), pp. 3233-3239, (2007).

ACL : 27 Osmont A., Catoire L., Gokalp I. and Swihart M.T., “Thermochemistry of C-C and C-H bond breaking in fatty acid methyl esters”, Energy & Fuels, 21 (4), pp. 2027-2032, (2007).

35

ACL : 28 Osmont A., Catoire L., Gokalp I. and Yang V., “Ab initio quantum chemical predictions of enthalpies of formation, heat capacities, and entropies of gas-phase energetic compounds”, Combustion and Flame, 151, pp. 262-273, (2007).

ACL : 29 Rutar T., Lee J.C.Y., Dagaut P., Malte P.C. and Byrne A.A., “NOx formation pathways in lean-premixed-prevapourized combustion of fuels with carbon-to-hydrogen ratio between 0.25 and 0.88”, Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy, 221 (A3), pp. 387-398, (2007).

ACL : 30 Sarathy S.M., Gail S., Syed S.A., Thomson M.J. and Dagaut P., “A comparison of saturated and unsaturated C-4 fatty acid methyl esters in an opposed flow diffusion flame and a jet stirred reactor”, Proceedings of the Combustion Institute, 31, pp. 1015-1022, (2007).

ACL : 31 Sivaramakrishnan R., Brezinsky K., Dayma G. and Dagaut P., “High pressure effects on the mutual sensitization of the oxidation of NO and CH4-C2H6 blends”, Physical Chemistry Chemical Physics, 9 (31), pp. 4230-4244, (2007).

ACL : 32 Yahyaoui M., Djebaili-Chaumeix N., Dagaut P., Paillard C.E. and Gall S., “Experimental and modelling study of gasoline surrogate mixtures oxidation in jet stirred reactor and shock tube”, Proceedings of the Combustion Institute, 31, pp. 385-391, (2007).

ACL : 33 Yahyaoui M., Djebaili-Chaumeix N., Dagaut P., Paillard C.E., Heyberger B. and Pengloan G., “Ignition and oxidation of 1-hexene/toluene mixtures in a shock tube and a jet-stirred reactor: Experimental and kinetic modeling study”, International Journal of Chemical Kinetics, 39 (9), pp. 518-538, (2007).

ACL : 34 Alseda D., Montagne X. and Dagaut P., “Homogeneous Charge Compression Ignition: Formulation effect of a Diesel fuel on the initiation and the combustion potential of olefin impact in a Diesel base fuel”, Oil & Gas Science and Technology-Revue de l'Institut Francais du Petrole, 63 (4), pp. 419-432, (2008).

ACL : 35 Cances J., Commandre J.M., Salvador S. and Dagaut P., “NO reduction capacity of four major solid fuels in reburning conditions - Experiments and modeling”, Fuel, 87 (3), pp. 274-289, (2008).

ACL : 36 Catoire L., Yahyaoui M., Osmont A. and Gokalp I., “Thermochemistry of Compounds Formed during Fast Pyrolysis of Lignocellulosic Biomass”, Energy & Fuels, 22 (6), pp. 4265-4273, (2008).

ACL : 37 Dagaut P., Glarborg P. and Alzueta M.U., “The oxidation of hydrogen cyanide and related chemistry”, Progress in Energy and Combustion Science, 34 (1), pp. 1-46, (2008).

ACL : 38 Dagaut P. and Togbe C., “Oxidation kinetics of butanol-gasoline surrogate mixtures in a jet-stirred reactor: Experimental and modeling study”, Fuel, 87 (15-16), pp. 3313-3321, (2008).

ACL : 39 Dagaut P. and Togbe C., “Experimental and modeling study of the kinetics of oxidation of ethanol-gasoline surrogate mixtures (E85 surrogate) in a jet-stirred reactor”, Energy & Fuels, 22 (5), pp. 3499-3505, (2008).

ACL : 40 Dayma G., Gail S. and Dagaut P., “Experimental and kinetic modeling study of the oxidation of methyl hexanoate”, Energy & Fuels, 22 (3), pp. 1469-1479, (2008).

36

ACL : 41 De Iuliis S., Chaumeix N., Idir M. and Paillard C.E., “Scattering/extinction measurements of soot formation in a shock tube”, Experimental Thermal and Fluid Science, 32 (7), pp. 1354-1362, (2008).

ACL : 42 Gail S., Dagaut P., Black G. and Simmie J.M., “Kinetics of 1,2-dimethylbenzene oxidation and ignition: Experimental and detailed chemical kinetic modeling”, Combustion Science and Technology, 180 (10-11), pp. 1748-1771, (2008).

ACL : 43 Gail S., Sarathy S.M., Thomson M.J., Dievart P. and Dagaut P., “Experimental and chemical kinetic modeling study of small methyl esters oxidation: Methyl (E)-2-butenoate and methyl butanoate”, Combustion and Flame, 155 (4), pp. 635-650, (2008).

ACL : 44 Imbert B., Lafosse F., Catoire L., Paillard C.E. and Khasainov B., “Formulation reproducing the ignition delays simulated by a detailed mechanism: Application to n-heptane combustion”, Combustion and Flame, 155 (3), pp. 380-408, (2008).

ACL : 45 Le Cong T. and Dagaut P., “Experimental and detailed kinetic modeling of the oxidation of methane and methane/syngas mixtures and effect of carbon dioxide addition”, Combustion Science and Technology, 180 (10-11), pp. 2046-2091, (2008).

ACL : 46 Le Cong T. and Dagaut P., “Effect of Water Vapor on the Kinetics of Combustion of Hydrogen and Natural Gas: Experimental and Detailed Modeling Study”, Proceedings of the Asme Turbo Expo 2008, Vol 1, pp. 319-328, 2008.

ACL : 47 Le Cong T., Dagaut P. and Dayma G., “Oxidation of natural gas, natural gas/syngas mixtures, and effect of burnt gas recirculation: Experimental and detailed kinetic modeling”, Journal of Engineering for Gas Turbines and Power-Transactions of the Asme, 130 (4), (2008).

ACL : 48 Mevel R., Lafosse F., Catoire L., Chaumeix N., Dupre G. and Paillard C.E., “Induction delay times and detonation cell size prediction of hydrogen-nitrous oxide-diluent mixtures”, Combustion Science and Technology, 180 (10-11), pp. 1858-1875, (2008).

ACL : 49 Osmont A., Catoire L., Klapotke T.M., Vaghjiani G.L. and Swihart M.T., “Thermochemistry of species potentially formed during NTO/MMH hypergolic ignition”, Propellants Explosives Pyrotechnics, 33 (3), pp. 209-212, (2008).

ACL : 50 Osmont A., Yahyaoui M., Catoire L., Gokalp I. and Swihart M.T., “Thermochemistry of C-O, (CO)-O, and (CO)-C bond breaking in fatty acid methyl esters”, Combustion and Flame, 155 (1-2), pp. 334-342, (2008).

ACL : 51 Piperel A., Montagne X. and Dagaut P., “The trapping system for the recirculated gases at different locations of the exhaust gas recirculation (EGR) pipe of a homogeneous charge compression ignition (HCCI) engine”, Measurement Science & Technology, 19 (10), (2008).

ACL : 52 Yahyaoui A., Djebaili-Chaumeix N., Dagaut P. and Paillard C.E., “Ethyl Tertiary Butyl Ether Ignition and Combustion Using a Shock Tube and Spherical Bomb”, Energy & Fuels, 22 (6), pp. 3701-3708, (2008).

ACL : 53 Anderlohr J.M., Piperel A., Da Cruz A.P., Bounaceur R., Battin-Leclerc F., Dagaut P. and Montagne X., “Influence of EGR compounds on the oxidation of an HCCI-diesel surrogate”, Proceedings of the Combustion Institute, 32, pp. 2851-2859, (2009).

37

ACL : 54 Dagaut P. and Hadj-Ali K., “Chemical Kinetic Study of the Oxidation of Isocetane (2,2,4,4,6,8,8-Heptamethylnonane) in a Jet-stirred Reactor: Experimental and Modeling”, Energy & Fuels, 23, pp. 2389-2395, (2009).

ACL : 55 Dagaut P., Sarathy S.M. and Thomson M.J., “A chemical kinetic study of n-butanol oxidation at elevated pressure in a jet stirred reactor”, Proceedings of the Combustion Institute, 32, pp. 229-237, (2009).

ACL : 56 Dagaut P. and Togbe C., “Experimental and Modeling Study of the Kinetics of Oxidation of Butanol-n-Heptane Mixtures in a Jet-stirred Reactor”, Energy & Fuels, 23 (7), pp. 3527-3535, (2009).

ACL : 57 Dayma G., Togbe C. and Dagaut P., “Detailed Kinetic Mechanism for the Oxidation of Vegetable Oil Methyl Esters: New Evidence from Methyl Heptanoate”, Energy & Fuels, 23, pp. 4254-4268, (2009).

ACL : 58 Dubois T., Chaumeix N. and Paillard C.E., “Experimental and Modeling Study of n-Propylcyclohexane Oxidation under Engine-relevant Conditions”, Energy & Fuels, 23, pp. 2453-2466, (2009).

ACL : 59 Javoy S., Mevel R. and Paillard C.E., “A Study of N2O Decomposition Rate Constant at High Temperature: Application to the Reduction of Nitrous Oxide by Hydrogen”, International Journal of Chemical Kinetics, 41 (5), pp. 357-375, (2009).

ACL : 60 Le Cong T. and Dagaut P., “Experimental and Detailed Modeling Study of the Effect of Water Vapor on the Kinetics of Combustion of Hydrogen and Natural Gas, Impact on NOx”, Energy & Fuels, 23 (1), pp. 725-734, (2009).

ACL : 61 Le Cong T. and Dagaut P., “Oxidation of H-2/CO2 mixtures and effect of hydrogen initial concentration on the combustion of CH4 and CH4/CO2 mixtures: Experiments and modeling”, Proceedings of the Combustion Institute, 32, pp. 427-435, (2009).

ACL : 62 Marchal C., Delfau J.L., Vovelle C., Moreac G., Mounaim-Rousselle C. and Mauss F., “Modelling of aromatics and soot formation from large fuel molecules”, Proceedings of the Combustion Institute, 32, pp. 753-759, (2009).

ACL : 63 Matynia A., Delfau J.L., Pillier L. and Vovelle C., “Comparative study of the influence of CO2 and H2O on the chemical structure of lean and rich methane-air flames at atmospheric pressure”, Combustion Explosion and Shock Waves, 45 (6), pp. 635-645, (2009).

ACL : 64 Metcalfe W.K., Togbe C., Dagaut P., Curran H.J. and Simmie J.M., “A jet-stirred reactor and kinetic modeling study of ethyl propanoate oxidation”, Combustion and Flame, 156 (1), pp. 250-260, (2009).

ACL : 65 Mevel R., Javoy S., Lafosse F., Chaumeix N., Dupre G. and Paillard C.E., “Hydrogen-nitrous oxide delay times: Shock tube experimental study and kinetic modelling”, Proceedings of the Combustion Institute, 32, pp. 359-366, (2009).

ACL : 66 Pichon S., Black G., Chaumeix N., Yahyaoui M., Simmie J.M., Curran H.J. and Donohue R., “The combustion chemistry of a fuel tracer: Measured flame speeds and ignition delays and a detailed chemical kinetic model for the oxidation of acetone”, Combustion and Flame, 156 (2), pp. 494-504, (2009).

ACL : 67 Piperel A., Dagaut P. and Montagne X., “Impact of acetaldehyde and NO addition on the 1-octene oxidation under simulated HCCI conditions”, Proceedings of the Combustion Institute, 32, pp. 2861-2868, (2009).

38

ACL : 68 Sarathy S.M., Thomson M.J., Togbe C., Dagaut P., Halter F. and Mounaim-Rousselle C., “An experimental and kinetic modeling study of n-butanol combustion”, Combustion and Flame, 156 (4), pp. 852-864, (2009).

ACL : 69 Sun H.Y., Catoire L. and Law C.K., “Thermal Decomposition of Monomethylhydrazine: Shock Tube Experiments and Kinetic Modeling”, International Journal of Chemical Kinetics, 41 (3), pp. 176-186, (2009).

ACL : 70 Togbe C., Ahmed A.M. and Dagaut P., “Experimental and Modeling Study of the Kinetics of Oxidation of Methanol-Gasoline Surrogate Mixtures (M85 Surrogate) in a Jet-Stirred Reactor”, Energy & Fuels, 23, pp. 1936-1941, (2009).

ACL : 71 Vovelle C., Delfau J.L. and Pillier L., “Laminar hydrocarbon flame structure”, Combustion Explosion and Shock Waves, 45 (4), pp. 365-382, (2009).

ACL : 72 Dagaut P. and Togbe C., “Experimental and modeling study of the kinetics of

oxidation of ethanol-n-heptane mixtures in a jet-stirred reactor”, Fuel, 89 (2), pp. 280-286, (2010).

ACL : 178 Mathieu O., Frache G., Djebaieli-Chaumeix N., Paillard C.E., Krier G., Muller J.F., Douce F. and Manuelli P., “Characterization of adsorbed species on soot formed behind reflected shock waves”, Proceedings of the Combustion Institute, 31, pp. 511-519, (2007).

ACL : 179 Mathieu O., Frache G., Djebaili-Chaumeix N., Paillard C.E., Krier G., Muller J.F., Douce F. and Manuelli P., “Laser desorption-ionization time-of-flight mass spectrometry for analyses of heavy hydrocarbons adsorbed on soot formed behind reflected shock waves”, Proceedings of the Combustion Institute, 32, pp. 971-978, (2009).

ACL : 180 Mathieu O., Djebaili-Chaumeix N., Paillard C.E. and Douce F., “Experimental study of soot formation from a diesel fuel surrogate in a shock tube”, Combustion and Flame, 156 (8), pp. 1576-1586, (2009).

ACTI : Communications avec actes dans un congrès international. ACTI : 1 Hadj Ali K., Minetti R., Ribaucour M., Chaumeix N. and Dagaut P., “Study of

dimethylether oxidation and auto-ignition in the negative temperature coefficient”, 19th international Symposium on Gas Kinetics, Orléans, France, 22-27 July, (2006).

ACTI : 2 Alseda D., Montagne X. and Dagaut P., “Homogeneous Charge Compression Ignition: formulation effect of a Diesel fuel on the initiation and the combustion. Potential of acetal impact in a Diesel base fuel - SAE 2007-24-0018”, 8th International Conference on Engines and Automobile, Capri, Italy, September 16-20, (2007).

ACTI : 3 Biet J., Delfau J.-L., Pillier L. and Vovelle C., “Influence of CO2 and H2 on the Chemical Structure of a Premixed, Lean Methane-Air Flame”, 3rd European Combustion Meeting (ECM2007), Chania, Crete, (2007).

ACTI : 4 Black G., Pichon S., Curran H.J., Simmie J.M., Donohue R. and Djebaili-Chaumeix N., “An experimental and modelling study of the combustion of acetone”, 3rd European Combustion Meeting (ECM2007), Crete, Greece, 11-13 April, (2007).

ACTI : 5 De Iuliis S., Chaumeix N. and Paillard C.-E., “Scattering-extinction measurements of soot formation in a shock tube”, 5th Mediteranean Combustion Symposium, Monastir, Tunisia, (2007).

39

ACTI : 6 Dubois T., Chaumeix N., Douce F., Manuelli P. and Paillard C.-E., “Experimental study of the oxidation of surrogates for diesel fuels at HCCI conditions”, 3rd European Combustion Meeting (ECM2007), Crete, Greece, 11-13 April, (2007).

ACTI : 7 Marchal C., Delfau J.-L., Vovelle C., Moréac G., Ravet F. and Mounaim-Rousselle C., “Modelling of benzene Formation in Rich premixed Flames”, SAE Technical Paper Series 2007-01-0052, (2007).

ACTI : 8 Mathieu O., Djebaili-Chaumeix N., Douce F., Manuelli P. and Paillard C.-E., “Study of early soot formation from alkyl-aromatic fuels”, 3rd European Combustion Meeting (ECM2007), Crete, Greece, 11-13 April, (2007).

ACTI : 9 Matynia A., Delfau J.-L., Pillier L. and Vovelle C., “Comparative study of the influence of CO2 and H2O on the chemical structure of lean and rich methane/air flames at atmospheric pressure”, 6th International Seminar on Flame Structure, Brussels, Belgium, (2008).

ACTI : 10 Dubois T., Chaumeix N., Barret A. and Paillard C.-E., “Experimental and Modeling study of cyclohexane oxidation under engine relevant conditions”, 4th European Combustion Meeting (ECM2009), Vienna, Austria, 14-17 April, (2009).

ACTI : 11 Mathieu O., Wen J.Z., Djebaili-Chaumeix N., Paillard C.-E. and Thomson M., “Modeling study of the soot formation process from toluene pyrolysis behind reflected shock-waves”, 4th European Combustion Meeting (ECM2009), Vienna, Austria, 14-17 April, (2009).

ACTI : 12 Matynia A., Pillier L., Idir M., Delfau J.-L., Chauveau C. and Vovelle C., “Study of high pressure counter-flow methane flames”, 4th European Combustion Meeting (ECM2009), Vienna, Austria, 14-17 April, (2009).

ACTI : 13 Pillier L., De Persis S., Cabot G., Bounaceur R., Liu Y., Boukhalfa A., Most J.-M., Gökalp I. and Favre E., “Coupling of oxygen-enriched combustion and CO2 capture by membrane processes”, 4th European Combustion Meeting (ECM2009), Vienna, Austria, 14-17 April, (2009).

COM : Communications orales sans actes dans un congrès international ou national. COM : 1 Chaumeix N., Pichon S., Lafosse F. and Paillard C.-E., “Role of Chemical

Kinetics on the Detonation Properties of Hydrogen/Natural Gas/ Air Mixtures”, Workshop Energy and Hydrogen Safety, Pisa, Italy, (2006).

COM : 2 Dubois T., Chaumeix N. and Paillard C.-E., “Etude expérimentale et de modélisation de l’oxydation du n-propylcyclohexane dans des conditions proches des moteurs HCCI”, Réunion annuelle de cinétique et photochimie, Strasbourg, France, 9-10 Juin, (2008).

COM : 3 Catoire L., Chambreau S.D. and Vaghijiani G., “Room Temperature Ionic Liquid-Based Systems for Chemical Propulsion”, High Energy Materials, Biarritz, France, (2009).

AFF : Communications par affiche dans un congrès international ou national. AFF : 1 Biet J., Delfau J.-L., Idir M., Pillier L. and Vovelle C., “Structure of Premixed,

Laminar, Lean Ethylene Flames at Atmospheric Pressure and Modelling”, 19th International Symposium on Gas Kinetics, (eds. P. Dagaut and A. Mellouki), p. 249, Orléans, France, (2006).

40

AFF : 2 Darius D., Chaumeix N. and Paillard C.-E., “Pyrolysis and Oxidation of n-decane, n-propylbenzene and kerosene surrogate behind reflected shock waves”, International Workshop on Combustion Generated Fine Carbon Particles, Anacapri, Italy, 13-16 Mai, (2007).

AFF : 3 Dubois T., Chaumeix N. and Paillard C.-E., “Etude expérimentale et de modélisation de l’oxydation de molécules références des gazoles dans des conditions proches des moteurs HCCI”, Réunion du Groupe Français de Cinétique et Photochimie, Marseille, France, 4 - 5 Juin, (2007).

AFF : 4 Matynia A., Delfau J.-L., Pillier L. and Vovelle C., “Analyse de l'influence des ajouts de CO2 et H2 sur les structures de flammes prémélangées méthane/air riches”, Journées des Doctorants en Combustion, Groupement Français de Combustion, Orléans, France, (2007).

AFF : 5 Mével R., Lafosse F., Catoire L., Chaumeix N., Dupré G. and Paillard C.-E., “Etude cinétique des délais d’auto-inflammation de mélanges H2-N2O-Ar”, Réunion du Groupe Français de Cinétique et Photochimie, Marseille, France, 4 - 5 Juin, (2007).

AFF : 6 Boukhalfa A., Cabot G., Favre E., Gökalp I. and Pillier L., “PHYCAP: Procédé Hybride de Capture du Dioxyde de Carbone”, Colloque Energie, Programme Interdisciplinaire Energie du CNRS, Futuroscope, Poitiers, France, (2008).

AFF : 7 Dubois T., Chaumeix N. and Paillard C.-E., “Experimental and kinetic modelling study of n-propylcyclohexane oxidation under engine relevant conditions”, 32nd International Symposium on Combustion, Montreal, Canada, (2008).

AFF : 8 De Persis S., Pillier L., Gökalp I., Osorio V., Gabot G., Boukhalfa A., Most J.-M., Belassaioui B. and Favre E., “COCASE: Optimisation du couplage des procédés de combustion et de capture du CO2 par membranes"”, Colloque Energie, Programme Interdisciplinaire Energie du CNRS, Nantes, France, (2009).

AFF : 9 Echard F., Dubois T., Chaumeix N. and Paillard C.-E., “The effect of fuel structure on the burning velocity of naphtenic Compounds”, 6th Mediterranean Combustion Symposium, Porticcio, Corsica, France, 7-11 juin, (2009).

AFF : 10 Matynia A., Pillier L., Idir M., Delfau J.-L., Chauveau C. and Vovelle C., “Study of high pressure counter-flow methane flames”, 6th Mediterranean Combustion Symposium, Porticcio, Corsica, France, 7-11 juin, (2009).

INV : Conférences données à l’invitation du Comité d’organisation dans un congrès national ou international. INV : 1 Dagaut P., “Chemical Kinetics of Sustainable Fuels Combustion: Bio-Diesel

and Surrogates”, 4th COE 21 International Symposium on Human-Friendly Materials Based on Chemistry: Frontier of Human-friendly Materials and Processes for Sustainable Society, The University of Tokyo, Japan, October 10-11, (2006).

INV : 2 Djebaili-Chaumeix N., “Étude cinétique de formation des suies dans les conditions de moteurs automobiles”, Réunion du Groupe Français de Cinétique et Photochimie,, LCE, Marseille, 4-5 juin, (2007).

41

INV : 3 Dagaut P., “Chemical Kinetics of Bio-Fuels Combustion: Bio-Diesel, Biokerosene, and Surrogates”, British Section of the Combustion Institute Annual Meeting, "Transportation Biofuels", Leeds University, Great Britain, March 19, (2008).

INV : 4 Dagaut P., “Combustion of Alternative Fuels for Aeronautics: A Chemical Kinetic Perspective”, International conference on alternative fuels, The Royal Aeronautical Society, London, 24-26 November, (2008).

INV : 5 Dagaut P., “Kinetics of combustion of renewable fuels for energy production and transportation”, 6th International Seminar on Flame Structure, Vrije Universiteit Brussel, Belgium, September 14-17, (2008).

INV : 6 Paillard C.-E., “La place de la combustion dans la production d’énergie. Analyse cinétique de concepts susceptibles de réduire l’émission de polluants”, Conférence annuelle de Cinétique et Photochimie, Strasbourg, 9-10 juin, (2008).

INV : 7 Vovelle C., Delfau J.-L. and Pillier L., “Laminar Flame Structure”, 6th International Seminar on Flame Structure, Brussels, Belgium, (2008).

INV : 8 Chaumeix N., “Kinetics of Soot Formation at Combustion Engines Conditions”, 6th Mediterranean Combustion Symposium, Ajaccio, France, June 7-11, (2009).

INV : 9 Dagaut P., “Combustion of bio- and biomass-derived fuels to address security of supply and efficiency challenges: A chemical kinetic prospective”, British - French Flame Days: Challenges in Combustion Technology: Security of Supply, Efficiency and Development, the IFRF French section and British Flame, Lille, 9-10 March, (2009).

INV : 10 Dagaut P., “The combustion of sustainable fuels for air and ground transportation: A chemical kinetic perspective”, 20th National Conference on Combustion and Energy, Kun Shan University, Tainan, Taiwan, 20 March, (2010).

DO : Directions d’ouvrages ou de revues. DO : 1 Dagaut P. ed., Proceedings of the Combustion Institute: Elsevier, 32, (1-2),

p. 3238, (2009).

42

Thématique Réactivité Atmosphérique ACL : Articles dans des revues internationales ou nationales avec comité de lecture ACL : 73 Butkovskaya N., Pouvesle N., Kukui A. and Le Bras G., “Mechanism of the

OH-initiated oxidation of glycolaldehyde”, Journal of Physical Chemistry A, 110, pp. 13492-13499, (2006).

ACL : 74 Butkovskaya N., Pouvesle N., Kukui A., Mu Y. and Le Bras G., “Mechanism of the OH-initiated oxidation of hydroxyacetone over temperature range 236-298 K”, Journal of Physical Chemistry A, 110 (21), pp. 6833-6843, (2006).

ACL : 75 Feigenbrugel V., Le Person A., Le Calve S., Mellouki A., Munoz A. and Wirtz K., “Atmospheric fate of dichlorvos: Photolysis and OH-initiated oxidation studies”, Environmental Science & Technology, 40 (3), pp. 850-857, (2006).

ACL : 76 O'connor M.P., Wenger J.C., Mellouki A., Wirtz K. and Munoz A., “The atmospheric photolysis of E-2-hexenal, Z-3-hexenal and E,E-2,4-hexadienal”, Physical Chemistry Chemical Physics, 8 (44), pp. 5236-5246, (2006).

ACL : 77 Sadezky A., Chaimbault P., Mellouki A., Rompp A., Winterhalter R., Le Bras G. and Moortgat G.K., “Formation of secondary organic aerosol and oligomers from the ozonolysis of enol ethers”, Atmospheric Chemistry and Physics, 6, pp. 5009-5024, (2006).

ACL : 78 Solignac G., Magneron I., Mellouki A., Munoz A., Reviejo M.M. and Wirtz K., “A study of the reaction of OH radicals with N-methyl pyrrolidinone, N-methyl succinimide and N-formyl pyrrolidinone”, Journal of Atmospheric Chemistry, 54 (2), pp. 89-102, (2006).

ACL : 79 Solignac G., Mellouki A., Le Bras G., Barnes I. and Benter T., “Reaction of Cl atoms with C6F13CH2OH, C6F13CHO, and C3F7CHO”, Journal of Physical Chemistry A, 110 (13), pp. 4450-4457, (2006).

ACL : 80 Teruel M.A., Lane S.I., Mellouki A., Solignac G. and Le Bras G., “OH reaction rate constants and UV absorption cross-sections of unsaturated esters”, Atmospheric Environment, 40 (20), pp. 3764-3772, (2006).

ACL : 81 Thiault G. and Mellouki A., “Rate constants for the reaction of OH radicals with n-propyl, n-butyl, iso-butyl and tert-butyl vinyl ethers”, Atmospheric Environment, 40 (29), pp. 5566-5573, (2006).

ACL : 82 Butkovskaya N., Kukui A. and Le Bras G., “Study of the HNO3 forming channel of the HO2 + NO reaction as a function of pressure and temperature in the ranges 72-600 Torr and 223-323 K”, Journal of Physical Chemistry A, 111, pp. 9047-9053, (2007).

ACL : 83 Le Person A., Mellouki A., Munoz A., Borras E., Martin-Reviejo M. and Wirtz K., “Trifluralin: Photolysis under sunlight conditions and reaction with HO radicals”, Chemosphere, 67 (2), pp. 376-383, (2007).

ACL : 84 Solignac G., Mellouki A., Le Bras G., Yujing M. and Sidebottom H., “The gas phase tropospheric removal of fluoroaldehydes (CxF2x +1CHO, x=3, 4, 6)”, Physical Chemistry Chemical Physics, 9 (31), pp. 4200-4210, (2007).

ACL : 85 Cariolle D., Evans M.J., Chipperfield M.P., Butkovskaya N., Kukui A. and Le Bras G., “Impact of the new HNO3-forming channel of the HO2 + NO reaction on tropospheric HNO3, NOx, HOx and ozone”, Atmospheric Chemistry and Physics, 8, pp. 4061-4068, (2008).

43

ACL : 86 Cometto P.M., Dalmasso P.R., Taccone R.A., Lane S.I., Oussar F., Daele V., Mellouki A. and Le Bras G., “Rate coefficients for the reaction of OH with a series of unsaturated alcohols between 263 and 371 K”, Journal of Physical Chemistry A, 112 (19), pp. 4444-4450, (2008).

ACL : 87 El Dib G., Chakir A., Daele V. and Mellouki A., “Gas-phase reaction of the Cl atoms with dimethylbenzaldehyde isomers”, Chemical Physics Letters, 455 (4-6), pp. 151-155, (2008).

ACL : 88 El Dib G., Chakir A. and Mellouki A., “UV absorption cross-sections of a series of dimethylbenzaldehydes”, Journal of Physical Chemistry A, 112 (37), pp. 8731-8736, (2008).

ACL : 89 Eyglunent G., Le Person A., Dron J., Monod A., Voisin D., Mellouki A., Marchand N. and Wortham H., “Simple and reversible transformation of an APCI/MS/MS into an aerosol mass spectrometer: Development and characterization of a new inlet”, Aerosol Science and Technology, 42 (3), pp. 182-193, (2008).

ACL : 90 Guilloteau A., Nguyen M.L., Bedjanian Y. and Le Bras G., “Desorption of Polycyclic Aromatic Hydrocarbons from Soot Surface: Pyrene and Fluoranthene”, Journal of Physical Chemistry A, 112 (42), pp. 10552-10559, (2008).

ACL : 91 Kukui A., Ancellet G. and Le Bras G., “Chemical ionisation mass spectrometer for measurements of OH and peroxy radical concentrations in moderately polluted atmospheres”, Journal of Atmospheric Chemistry, 61, pp. 133-154, (2008).

ACL : 92 Le Person A., Eyglunent G., Daele V., Mellouki A. and Mu Y., “The near UV absorption cross-sections and the rate coefficients for the ozonolysis of a series of styrene-like compounds”, Journal of Photochemistry and Photobiology a-Chemistry, 195 (1), pp. 54-63, (2008).

ACL : 93 Sadezky A., Winterhalter R., Kanawati B., Rompp A., Spengler B., Mellouki A., Le Bras G., Chaimbault P. and Moortgat G.K., “Oligomer formation during gas-phase ozonolysis of small alkenes and enol ethers: new evidence for the central role of the Criegee Intermediate as oligomer chain unit”, Atmospheric Chemistry and Physics, 8 (10), pp. 2667-2699, (2008).

ACL : 94 Butkovskaya N., Rayez M.T., Rayez J.C., Kukui A. and Le Bras G., “Water vapor effect on the HNO3 yield in the HO2 + NO reaction: experimental and theoretical evidence”, Journal of Physical Chemistry A, 113, pp. 11327-11342, (2009).

ACL : 95 Coeur-Tourneur C., Tomas A., Guilloteau A., Henry F., Ledoux F., Visez N., Riffault V., Wenger J.C. and Bedjanian Y., “Aerosol formation yields from the reaction of catechol with ozone”, Atmospheric Environment, 43 (14), pp. 2360-2365, (2009).

ACL : 96 Cometto P.M., Daele V., Idir M., Lane S.I. and Mellouki A., “Reaction Rate Coefficients of OH Radicals and Cl Atoms with Ethyl Propanoate, n-Propyl Propanoate, Methyl 2-Methylpropanoate, and Ethyl n-Butanoate”, Journal of Physical Chemistry A, 113 (40), pp. 10745-10752, (2009).

ACL : 97 Le Person A., Solignac G., Oussar F., Daele V., Mellouki A., Winterhalter R. and Moortgat G.K., “Gas phase reaction of allyl alcohol (2-propen-1-ol) with OH radicals and ozone”, Physical Chemistry Chemical Physics, 11 (35), pp. 7619-7628, (2009).

44

ACL : 98 Loukhovitskaya E., Bedjanian Y., Morozov I. and Le Bras G., “Laboratory study of the interaction of HO2 radicals with the NaCl, NaBr, MgCl2 x 6H(2)O and sea salt surfaces”, Physical Chemistry Chemical Physics, 11 (36), pp. 7896-7905, (2009).

ACL : 99 Nguyen M.L., Bedjanian Y. and Guilloteau A., “Kinetics of the reactions of soot surface-bound polycyclic aromatic hydrocarbons with NO2”, Journal of Atmospheric Chemistry, 62, pp. 139-150, (2009).

ACL : 100 Wang H.T., Hu C.J., Mu Y.J. and Mellouki A., “Measurement of Near-UV Absorption Cross Sections of CS2”, Spectroscopy and Spectral Analysis, 29 (6), pp. 1586-1589, (2009).

ACL : 101 Yusa V., Coscolla C., Mellouki W., Pastor A. and De La Guardia M., “Sampling and analysis of pesticides in ambient air”, Journal of Chromatography A, 1216 (15), pp. 2972-2983, (2009).

ACL : 102 Andrade-Eiroa A., Leroy V., Dagaut P. and Bedjanian Y., “Determination of Polycyclic Aromatic Hydrocarbons in Kerosene and Bio Kerosene Soot”, Chemosphere, 78 (11), pp. 1342-1349, (2010).

ACL : 103 Bedjanian Y. and Loukhovitskaya E., “Water interaction with MgCl2×6H2O and NaCl surfaces: measurements of the uptake coefficient”, Journal of Atmospheric Chemistry, 63 (2), pp. 97-108, (2010).

ACL : 104 Bedjanian Y. and Nguyen M.L., “Kinetics of the reactions of soot surface-bound polycyclic aromatic hydrocarbons with O3”, Chemosphere, 79 (4), pp. 387-393, (2010).

ACL : 105 Bedjanian Y., Nguyen M.L. and Guilloteau A., “Desorption of Polycyclic Aromatic Hydrocarbons from Soot Surface: Five- and Six-Ring (C-22, C-24) PAHs”, Journal of Physical Chemistry A, 114 (10), pp. 3533-3539, (2010).

ACL : 106 Bedjanian Y., Nguyen M.L. and Le Bras G., “Kinetics of the reactions of soot surface-bound polycyclic aromatic hydrocarbons with the OH radicals”, Atmospheric Environment, 14, pp. 1754-1760, (2010).

ACL : 107 Butkovskaya N., Kukui A. and Le Bras G., “Pressure and temperature dependence of ethyl nitrate formation in the C2H5O2 + NO reaction”, Journal of Physical Chemistry A, 114, pp. 956-964, (2010).

ACL : 108 Butkovskaya N., Kukui A. and Le Bras G., “Pressure dependence of iso-propyl nitrate formation in the i-C3H7O2 + NO reaction”, Zeitschrift für Physikalische Chemie, 224, pp. 1025-1038, (2010).

ACL : 109 Guilloteau A., Bedjanian Y., Nguyen M.L. and Tomas A., “Desorption of Polycyclic Aromatic Hydrocarbons from a Soot Surface: Three- to Five-Ring PAHs”, Journal of Physical Chemistry A, 114 (2), pp. 942-948, (2010).

ACL : 110 Monge M.E., George C., D’anna B., Doussin J.-F.O., Jammoul A., Wang J., Eyglunent G.G., Solignac G.R., Daële V.R. and Mellouki A., “Ozone Formation from Illuminated Titanium Dioxide Surfaces”, Journal of the American Chemical Society, 132 (24), pp. 8234-8235, (2010).

ACLN : Articles dans des revues avec comité de lecture non répertoriées dans des bases de données internationales. ACLN : 1 Mellouki A., “Atmospheric fate of unsaturated ethers”, Environmental

Simulation Chambers: Application to Atmospheric Chemical Processes, 62, (eds. I. Barnes and K. J. Rudzinski), pp. 163-169, 2006.

45

COM : Communications orales sans actes dans un congrès international ou national. COM : 4 Eyglunent G., Marchand N., Monod A., Wortham H., Le Person A., Mellouki

A., Solignac G., Le Bras G., Chiappini L., Picquet-Varrault B., Perraudin E. and Doussin J.F., “Développement d’un nouveau spectromètre de masse pour l’analyse de l’aérosol organique : application à l’étude de la composition de l’aérosol organique secondaire obtenu en chambre de simulation”, Réunion du Groupe Français de Cinétique et Photochimie et du Groupement Français de Combustion, Nancy-France, 2006.

COM : 5 Le Person A., Mellouki A., Solignac G., Daële V., Le Bras G., Chiappini L., Picquet-Varrault B., Perraudin E., Doussin J.F., Eyglunent G., Marchand N., Monod A. and Wortham H., “Etudes des cinétiques et mécanismes des réactions d’ozonolyse de composés aromatiques (styrène, indène, α-méthylstyrène et 2-méthylstyrène) et mesures de leurs spectres d’absorption UV-visible”, Réunion du Groupe Français de Cinétique et Photochimie et du Groupement Français de Combustion, Nancy-France, 2006.

COM : 6 Mellouki A., “Environmental smog chambers for studying atmospheric processes”, Photocat2006, Agadir Morocco, 2006.

COM : 7 Picquet-Varrault B., Chiappini L., Eyglunent G., Le Person A., Marchand N., Mellouki A., Perraudin E. and Solignac G., “Secondary Organic Secondary Organic Aerosol from the ozonolysis of Aromatic Compounds: smog chamber experiments and multi-tools particle-phase chemical analysis”, European Geophysical Union Annual Symposium, Vienna-Austria, 2006.

COM : 8 Rickard A.R., Pilling M.J., Davey J.B., Smith S.C., Bloss W.J., Heard D.E., Wirtz K., Carrascosa A., Solignac G. and Mellouki A., “Development and validation of the tropospheric degradation mechanisms of ethylene glycol mono-vinyl and di-vinyl ethers”, European Geophysical Union Annual Symposium, Vienna-Austria, 2006.

COM : 9 Butkovskaya N., Kukui A. and Le Bras G., “Formation of nitric acid in the gas phase HO2 + NO reaction studied by high pressure turbulent flow reactor/chemical ionisation mass spectrometry”, Meeting of the working committee of the Hungarian Academy of Sciences on Photochemistry and Reaction Kinetics, Gyöngyöstarjan-Hungary, 2007.

COM : 10 Cometto P.M., Dalmasso P., Taccone R.A., Nieto J., Lane S.I., Mellouki A. and Le Bras G., “Tropospheric degradation of unsaturated alcohols by reaction with OH radicals: rate constants in the 263-371K range and Atmospheric implication”, XVe Argentine Meeting of Physical Chemistry and Inorganic Chemistry, Tandi-Argentina, 2007.

COM : 11 Eyglunent G., Bernard F., Catoire V., Robert C., Mebarki Y., Daële V., Kukui A. and Mellouki A., “Ozonolyse de l’éthylène : mesure du rendement en formaldéhyde par IRTF et Spectroscopie Infra- Rouge à haute résolution”, Réunion annuelle du Groupe de Cinétique et Photochimie, Marseille-France, 2007.

COM : 12 Guilloteau A., Nguyen M.L. and Bedjanian Y., “Désorption thermique des Hydrocarbures Aromatiques Polycycliques de la surface de suie”, Réunion annuelle du groupe de cinétique et photochimie, Marseille - France, 2007.

COM : 13 Vera Espallardo T., Munoz A., Mellouki A., Rodenas M. and Vazquez M., “The use of Euphore facility for studying the atmospheric fate of pesticides”, XIII Symposium in Pesticide Chemistry, Piacenza-Italy, 2007.

46

COM : 14 Eyglunent G., Daële V., Sabatier J. and Mellouki A., “Développement d’une chambre de simulation atmosphérique à irradiation naturelle à Orléans (HELIOS)”, Colloque Expérimentation et Instrumentation, Toulouse-France, 2008.

COM : 15 Kukui A., Butkovskaya N. and Le Bras G., “Oxidation reactions at the low temperatures of the upper troposphere”, Workshop on Atmospheric Chemical Mechanisms, University of California, Davis-USA, 2008.

COM : 16 Le Bras G., “HNO3 formation in the HO2 + NO reaction (pressure, temperature and H2O effect)”, IGAC/SPARC workshop on Laboratory Atmospheric Kinetics, Cambridge-UK, 2008.

COM : 17 Vera Espallardo T., Munoz A., Ródenas M., Vázquez M., Borras E., Marques M., Mellouki A. and Sidebottom H., “Atmospheric fate of Hymexazol: simulation chamber studies”, 11th Symposium on Chemistry and Fate of Modern Pesticides, Marseille-France, 2008.

COM : 18 Bernard F., Cazaunau M., Winterhalter R., Sadezky A., Daële V., Moortgat G.K. and Mellouki A., “Etudes de la dégradation atmosphérique de quelques COVs biogéniques”, Réunion annuelle du Groupe de Cinétique et Photochimie, Paris-Créteil-France, 2009.

COM : 19 Butkovskaya N., Kukui A. and Le Bras G., “Water vapor enhancement of the HNO3 yield in the HO2 + NO reaction and its impact on the atmospheric composition”, European Geophysical Union Annual Symposium, Vienna-Austria, 2009.

COM : 20 Butkovskaya N., Kukui A. and Le Bras G., “Pressure and temperature dependence of the ethyl nitrate formation in the C2H5O2 + NO reaction”, Workshop on Atmospheric Chemistry : kinetics and spectroscopy, Bayreuth-Germany, 2010.

COM : 21 Kukui A., Butkovskaya N. and Le Bras G., “Chemical ionisation mass spectrometer for atmospheric measurements of OH and peroxy radicals”, Colloque Interdisciplinaire en Instrumentation, Le Mans-France, 2010.

AFF : Communications par affiche dans un congrès international ou national. AFF : 11 Butkovskaya N., Kukui A., Pouvesle N. and Le Bras G., “Further

parametrization in the formation of nitric acid in the gas phase HO2 + NO reaction”, 2nd SCOUT Annual Meeting, Jülich-Germany, 2006.

AFF : 12 Butkovskaya N., Pouvesle N., Kukui A. and Le Bras G., “Mechanism of the gas phase reaction of glycoladehyde with OH radicals in the presence of O2 over temperature range 233-296 K”, 19th International Symposium On Gas Kinetics, Orléans-France, 2006.

AFF : 13 El Dib G., Chakir A. and Mellouki A., “Kinetics of Cl atoms reaction with dimethyl benzaldehyde isomers at room temperature”, 19th International Symposium On Gas Kinetics, Orléans-France, 2006.

AFF : 14 Guilloteau A., Solignac G. and Mellouki A., “Reaction of N-methylpyrrolidine with OH radicals and O3 and its UV absorption spectra”, 19th International Symposium On Gas Kinetics, Orléans-France, 2006.

AFF : 15 Holloway A.L., Sidebottom H., Mellouki A., Le Bras G. and Wirtz K., “A kinetic and mechanistic study of the atmospheric oxidation of 1,3-diketones”, 19th International Symposium On Gas Kinetics, Orléans-France, 2006.

47

AFF : 16 Le Person A., Oussar F., Solignac G., Daële V., Mellouki A., Moortgat G.K. and Sidebottom H., “Kinetic and mechanistic study of the ractions of O3 with two unsaturated alcohols”, 19th International Symposium on gas kinetics, Orléans-France, 2006.

AFF : 17 Morgan E., Sidebottom H., Mellouki A., Daële V. and Le Bras G., “Kinetic and mechanistic studies of the reactions of the hydroxyl radicals with halogenated and oxygenated unsaturated compounds”, 19th International Symposium On Gas Kinetics, Orléans-France, 2006.

AFF : 18 Morris R., Kelly T., Sidebottom H., Mellouki A. and Le Bras G., “Kinetics and mechanistic study of the reaction of OH radicals and Cl atoms with fluorinated alcohols under atmospheric conditions”, 19th International Symposium On Gas Kinetics, Orléans-France, 2006.

AFF : 19 O'connor M.P., Termine-Roussel B., Wenger J.C., Doussin J.F. and Mellouki A., “Kinetics and mechanism for the atmospheric oxidation of unsaturated C6 aldehydes”, 19th International Symposium On Gas Kinetics, Orléans-France, 2006.

AFF : 20 Sadezky A., Winterhalter R., Kanawati B., Moortgat G.K., Mellouki A., Chaimbault P., Rompp A. and Le Bras G., “Formation of secondary organic aerosol and oligomers from the ozonolysis of unsaturated ethers and small alkenes”, 19th International Symposium On Gas Kinetics, Orléans-France, 2006.

AFF : 21 Sadezky A., Winterhalter R., Rompp A., Moortgat G.K., Mellouki A., Chaimbault P. and Le Bras G., “Formation of secondary organic aerosol and oligomers from the ozonolysis of unsaturated ethers”, European Geophysical Union Annual Symposium, Vienna-Austria, 2006.

AFF : 22 Solignac G., Guilloteau A., Mellouki A., Jensen N., Larsen B. and Hjorth J., “N-methyl-pyrrolidine : spectre d’absorption et reaction avec OH et O3”, Réunion du Groupe Français de Cinétique et Photochimie et du Groupement Français de Combustion, Nancy-France, 2006.

AFF : 23 Bernard F., Daële V., Mellouki A., Morris R., Borras E. and Sidebottom H., “Secondary organic aerosol formation and chemical composition”, Surface Emissions and Prediction of Atmospheric Composition Changes - Summer School, île d’Oléron, France, 2007.

AFF : 24 Bernard F., Daële V., Mellouki A., Morris R. and Sidebottom H., “Oxydation du myrcène : ozonolyse et réaction avec OH”, Réunion annuelle du Groupe de Cinétique et Photochimie, Marseille-France, 2007.

AFF : 25 Butkovskaya N., Kukui A. and Le Bras G., “Nitric acid formation in the HO2 + NO reaction : parametrisation in the pressure and temperature ranges of the troposphere”, 3rd SCOUT Annual Meeting, Heraklion-Greece, 2007.

AFF : 26 Butkovskaya N., Pouvesle N., Kukui A. and Le Bras G., “Compléments d’étude de la formation de HNO3 dans la reaction HO2 + NO”, Réunion du Groupe Français de Cinétique et Photochimie et du Groupement Français de Combustion, Nancy-France, 2007.

AFF : 27 Mellouki A., Le Bras G., Daële V., Le Person A. and Bernard F., “Génération, vieillissement et analyse des aérosols organiques secondaires”, Qualité de l’air et particules - PRIMEQUAL, Rouen-France, 2007.

AFF : 28 Mellouki A., Solignac G., Guilloteau A., Le Person A., Jensen N., Larsen B. and Hjorth J., “Aerosol formation from the atmospheric oxidation of nitrogen containing VOCs”, 2nd ACCENT Symposium, Urbino-Italy, 2007.

48

AFF : 29 Morris R., Kelly T., Sidebottom H., Le Bras G. and Mellouki A., “Atmospheric degradation of halogenated alcohols and aldehydes: a possible source of halogenated carboxylic acids”, Volatile Organic Compounds (VOC) in the Urban Atmosphere – Sources, Transformation and Impact, Wroclaw -Pologne, 2007.

AFF : 30 Morris R., Sidebottom H., Mellouki A., Le Bras G., Bernard F. and Vera Espallardo T., “Atmospheric degradation processes for a range of fluorinated organics”, 2nd ACCENT Symposium, Urbino-Italy, 2007.

AFF : 31 Sadezky A., Winterhalter R., Kanawati B., Rompp A., Mellouki A., Le Bras G., Chaimbault P. and Moortgat G.K., “The central role of Crieggee intermediate in the formation of oligomers in SOA from the gas phase ozonolysis of small unsaturated VOC”, European Geophysical Union Annual Symposium, Vienna-Austria, 2007.

AFF : 32 Solignac G., Guilloteau A., Le Person A. and Mellouki A., “Aerosol formation from the atmospheric oxidation of Nitrogen-containing VOCs”, Aerosols - Properties, Processes and Climate (APPC) Workshop, Heraklion-Greece, 2007.

AFF : 33 Bedjanian Y., Lukhovitskaya E., Nguyen M.L. and Le Bras G., “Etudes au laboratoire des interactions hétérogènes entre radicaux HO2 et aérosols marins”, Réunion annuelle du groupe de cinétique et photochimie, Strasbourg-France, 2008.

AFF : 34 Bernard F., Winterhalter R., Sadezky A., Eyglunent G., Daële V., Moortgat G.K. and Mellouki A., “Etude de la réaction de l’ozone avec une série de composés organiques volatils biogéniques”, Réunion annuelle du Groupe de Cinétique et Photochimie, Strasbourg-France, 2008.

AFF : 35 Bernard F., Winterhalter R., Sadezky A., Eyglunent G., Daële V., Moortgat G.K. and Mellouki A., “Study of the reaction of ozone with a series of biogenic VOCs”, 1st Sino-French Joint Workshop on Atmospheric Environment, Urban and Regional Air Quality: Emissions, Processes, Monitoring and Regulations, Beijing-China, 2008.

AFF : 36 Bernard F., Winterhalter R., Sadezky A., Eyglunent G., Daële V., Moortgat G.K. and Mellouki A., “Study of the reaction of ozone with a series of biogenic VOCs”, European Geosciences Union (EGU), General Assembly 2008, Vienna-Austria, 2008.

AFF : 37 Butkovskaya N., Kukui A. and Le Bras G., “Effect of humidity on nitric acid formation in the gas-phase HO2 + NO reaction”, 4nd SCOUT Annual Meeting, Postdam-Germany, 2008.

AFF : 38 Butkovskaya N., Kukui A. and Le Bras G., “Experimental study of the water effect on nitric acid formation in the HO2 + NO reaction”, 10th International Global Atmospheric Chemistry (IGAC) Symposium, Annecy-France, 2008.

AFF : 39 Butkovskaya N., Kukui A. and Le Bras G., “Effect of humidity on nitric acid formation in the gas-phase HO2 + NO reaction”, Réunion du Groupe Français de Cinétique et Photochimie, Strasbourg-France, 2008.

AFF : 40 Eyglunent G., Bernard F., Daële V. and Mellouki A., “Loss of NOx by photocatalyst TiO2 under atmospheric conditions”, First Sino-French Joint Workshop on Atmospheric Environment, Urban and Regional Air Quality: Emissions, Processes, Monitoring and Regulations, Beijing-China, 2008.

AFF : 41 Eyglunent G., Morris R., Daële V., Sidebottom H. and Mellouki A., “The atmospheric chemistry of a series of fluorinated VOCs”, 10th International Global Atmospheric Chemistry (IGAC) Symposium, Annecy-France, 2008.

49

AFF : 42 Guilloteau A., Nguyen M.L., Bedjanian Y. and Le Bras G., “Experimental study of PAH desorption from soot surface in relation with PAH partitioning in the atmosphere”, 10th International Global Atmospheric Chemistry (IGAC) Symposium, Annecy, France, 2008.

AFF : 43 Guilloteau A., Nguyen M.L., Bedjanian Y. and Le Bras G., “Experimental study of PAH desorption from soot surface in relation with PAH partitioning in the atmosphere”, 1st Sino-French Joint Workshop on Atmospheric Environment, Beijing-China, 2008.

AFF : 44 Le Person A., Liang P., Daële V., Mellouki A. and Le Bras G., “Études des cinétiques des réactions d’alcools insaturés initiées par les atomes Cl”, Réunion annuelle du Groupe de Cinétique et Photochimie, Strasbourg-France, 2008.

AFF : 45 Sadezky A., Winterhalter R., Kanawati B., Rompp A., Spengler B., Mellouki A., Le Bras G., Chaimbault P. and Moortgat G.K., “Oligomer Formation during gas−phase ozonolysis of small alkenes and enol ethers: evidence for the central role of the Criegee Intermediate as oligomer chain unit”, 10th International Global Atmospheric Chemistry (IGAC) Symposium, Annecy-France, 2008.

AFF : 46 Bernard F., Eyglunent G., Cazaunau M., Grosselin B., Mu Y., Daële V., Mellouki A. and Le Bras G., “Investigation of biogenic VOCs oxidation under atmospheric simulation chamber conditions”, EUROCHAMP1 final meeting, Binz Rügen-Germany, 2009.

AFF : 47 Coeur-Tourneur C., Tomas A., Guilloteau A., Henry F., Ledoux F., Visez N., Riffault V., Wenger J., Bedjanian Y. and Foulon V., “Secondary organic aerosol formation from the reaction of catechol with ozone”, European Geosciences Union General Assembly, Vienna-Austria, 2009.

AFF : 48 Coeur-Tourneur C., Tomas A., Guilloteau A., Henry F., Ledoux F., Visez N., Riffault V., Wenger J.C., Bedjanian Y. and Foulon V., “Secondary organic aerosol formation from the reaction of catechol with ozone”, Réunion annuelle du groupe de cinétique et photochimie, Paris-France, 2009.

AFF : 49 Vasiliev E.S., Loukhovitskaya E., Morozov I., Bedjanian Y. and Le Bras G., “Uptake of ClO et HO2 radicals on sea salt surface”, Conférence Internationale des Jeunes Chercheurs « La composition de l'atmosphère. Processus climatiques », Zvenigorod, Russia, 2009.

AFF : 50 Bedjanian Y. and Loukhovitskaya E., “Interaction de vapeur d'eau avec les surfaces de MgCl2 × 6H2O et NaCl”, Réunion annuelle du groupe de cinétique et photochimie, Wimereux-France, 2010.

AFF : 51 Bedjanian Y., Nguyen M.L. and Le Bras G., “Réactions hétérogènes d'hydrocarbures aromatiques polycycliques adsorbés sur les suies avec les oxydants atmosphériques”, Réunion annuelle du groupe de cinétique et photochimie, Wimereux-France, 2010.

AFF : 52 Bernard F., Quilgars A., Cazaunau M., Grosselin B., Daële V., Mellouki A., Winterhalter R. and Moortgat G.K., “Ozonolysis of biogenic organic volatile compounds and formation of secondary organic aerosol”, European Geosciences Union (EGU), General Assembly 2010, Vienna-Austria, 2010.

AFF : 53 Butkovskaya N., Kukui A. and Le Bras G., “Formation des nitrates d’alcoyles à courte chaîne dans les réactions RO2 + NO : effet de la pression et de la température”, Réunion annuelle du Groupe Français de Cinétique et photochimie en phase gazeuse, Wimereux-France, 2010.

50

AFF : 54 Cazaunau M., Bernard F., Grosselin B., Daële V., Mellouki A., Liang P., Zhang Y., Liu J., Mu Y., Zhou B., Ye X. and Chen J., “HONO and other trace gases in Shanghai”, European Geosciences Union (EGU), General Assembly 2010, Vienna-Austria, 2010.

AFF : 55 Chai F., Gao J., Wang S., Mu Y., Mellouki A., Yu P. and Zhang Y., “Observational Study on Seasonal Variation of Gaseous Pollutants and Fine Particle at a Rural Site in the Yangtze River Delta”, European Geosciences Union (EGU), General Assembly 2010, Vienna-Austria, 2010.

AFF : 56 Lendar M., Bernard F., Cazaunau M., Daële V. and Mellouki A., “Constantes de vitesse de la réaction de OH avec 1-pentanol, 2-pentanol et 3-pentanol”, Réunion annuelle du groupe français de cinétique et de photochimie, Wimereux -France, 2010.

AFF : 57 Loukhovitskaya E., Savelieva E. and Bedjanian Y., “Adsorption of water on the surface of MgCl2×6H2O”, XIV Conférence Internationale des Jeunes Chercheurs « La composition de l'atmosphère. Effets climatiques », 2010.

INV : Conférences données à l’invitation du Comité d’organisation dans un congrès national ou international. INV : 11 Bedjanian Y., “Heterogeneous reactions of atmospheric trace gases with

hydrocarbon flame soot”, ASEFI: Atmospheric soot: environmental fate and impact, 2006.

INV : 12 Le Bras G., “Fate and impact of volatile organic compounds in the atmosphere”, Photocat2006, Agadir Morocco, 2006.

INV : 13 Le Bras G., “Kinetics and mechanism of HOx (OH, HO2) reactions at the low temperatures of the upper troposphere”, 19th International Symposium On Gas Kinetics, Orléans-France, 2006.

INV : 14 Le Bras G., “Oxidation of oxygenated VOCs at the low temperatures of the UTLS: experimental studies”, The routes for organics oxidation in the atmosphere and its implication to the atmosphere, Alpe d’Huez-France, 2006.

INV : 15 Mellouki A., “Caractérisation et réactivité des composés atmosphériques”, Colloque de restitution PRIMEQUAL 2, Programme de recherche interorganisme pour une meilleure qualité de l’air à l’échelle locale, Strasbourg-France, 2006.

INV : 16 Mellouki A., “Gas phase oxidation of oxygenated VOCs”, The routes for organics oxidation in the atmosphere and its implication to the atmosphere, Alpe d’Huez-France, 2006.

INV : 17 Mellouki A., “Apport de l’étude des processus en laboratoire”, Séminaire INSU La recherche au service des préoccupations sociétales, Paris-France, 2007.

INV : 18 Mellouki A., “Pesticides dans l'Atmosphère : Etudes des Cinétiques et mécanismes de dégradation en laboratoire et mesures dans l’aTmosphère (PACT)”, Colloque de restitution « Evaluation et réduction des risques liés à l’utilisation des pesticides, Reims-France, 2007.

INV : 19 Mellouki A., “Atmospheric Chemical Processes Related to Air Quality and Climate Change”, Fourth China Forum on Environment and Development (CIFED4), Beijing-Chine, 2008.

INV : 20 Le Bras G., “Recent advances in gas phase chemistry influencing the oxidative capacity of the troposphere”, ESF-INTROP conference on Tropospheric chemistry, Portoroz-Slovénie, 2009.

51

INV : 21 Mellouki A., “New aspects of atmospheric oxidation of oxygenated volatile organics: Unsaturated Compounds”, Workshop on Chemistry in the Earth's Atmosphere, Tokyo-Japan, 2009.

DO : Directions d’ouvrages ou de revues. DO : 2 Mellouki A. and Ravishankara A.R. eds., “Regional Climate Variability and

its Impacts in the Mediterranean Area”, NATO Science Series, Dordrecht: Springer, (2007).

AP : Autres productions : bases de données, logiciels enregistrés, traductions, comptes rendus d’ouvrages, AP : 1 Mellouki A. and Daële V. "Atmospheric Fates & Impact of Pesticides

(AFIP)", http://www.era-orleans.org/AFIP/portail.html, 2007. AP : 2 Mellouki A. "Chemical Kinetics Database on oxygenated VOCs gas phase

reactions", http://www.era-orleans.org/eradb/, 2009.

52

Thématique Dynamique de la Combustion et des Systèmes Réactifs ACL : Articles dans des revues internationales ou nationales avec comité de lecture ACL : 111 Birouk M. and Gokalp I., “Current status of droplet evaporation in turbulent

flows”, Progress in Energy and Combustion Science, 32 (4), pp. 408-423, (2006).

ACL : 112 Osmont A., Gokalp I. and Catoire L., “Evaluating missile fuels”, Propellants Explosives Pyrotechnics, 31 (5), pp. 343-354, (2006).

ACL : 113 Sarou-Kanian V., Rifflet J.C., Millot F. and Gokalp I., “Aluminum combustion in wet and dry CO2: Consequences for surface reactions”, Combustion and Flame, 145 (1-2), pp. 220-230, (2006).

ACL : 114 Shafirovich E., Salomon M. and Gokalp I., “Mars hopper versus Mars rover”, Acta Astronautica, 59 (8-11), pp. 710-716, (2006).

ACL : 115 Sizaret S., Fedioun I., Barbanson L. and Chen Y., “Crystallization in flow - II. Modelling crystal growth kinetics controlled by boundary layer thickness”, Geophysical Journal International, 167 (2), pp. 1027-1034, (2006).

ACL : 116 Tabet-Helal F., Sarh B., Menou A. and Gokalp I., “A comparative study of turbulence modelling in hydrogen-air nonpremixed turbulent flames”, Combustion Science and Technology, 178 (10-11), pp. 1887-1909, (2006).

ACL : 117 Bocanegra P.E., Chauveau C. and Gokalp I., “Experimental studies on the burning of coated and uncoated micro and nano-sized aluminium particles”, Aerospace Science and Technology, 11 (1), pp. 33-38, (2007).

ACL : 118 Cohe C., Halter F., Chauveau C., Gokalp I. and Gulder O.L., “Fractal characterisation of high-pressure and hydrogen-enriched CH4-air turbulent premixed flames”, Proceedings of the Combustion Institute, 31, pp. 1345-1352, (2007).

ACL : 119 Halter F., Chauveau C. and Gokalp I., “Characterization of the effects of hydrogen addition in premixed methane/air flames”, International Journal of Hydrogen Energy, 32, pp. 2585-2592, (2007).

ACL : 120 Osmont A., Catoire L. and Gokalp I., “Thermochemistry of methyl and ethyl esters from vegetable oils”, International Journal of Chemical Kinetics, 39 (9), pp. 481-491, (2007).

ACL : 121 Sarou-Kanian V., Rifflet J.C., Millot F. and Gokalp I., “Dissolution kinetics of carbon in aluminum droplet combustion: Implications for aluminized solid propellants”, Combustion and Flame, 149 (4), pp. 329-339, (2007).

ACL : 122 Birouk M., Abou Al-Sood M.M. and Gokalp I., “Droplet evaporation in a turbulent environment at elevated pressure and temperature conditions”, Combustion Science and Technology, 180 (10-11), pp. 1987-2014, (2008).

ACL : 123 Dobrego K.V., Kozlov I.M., Vasiliev V.V., Martin J.P. and Gillon P., “Influence of fuel fraction gradient on triple flame velocity in plain and axis-symmetrical channels”, International Journal of Heat and Mass Transfer, 51 (7-8), pp. 1962-1969, (2008).

ACL : 124 Gilard V., Gillon P., Blanchard J.N. and Sarh B., “Influence of a horizontal magnetic field on a co-flow methane/air diffusion flame”, Combustion Science and Technology, 180 (10-11), pp. 1920-1935, (2008).

ACL : 125 Halter F., Chauveau C. and Gokalp I., “Investigations on the flamelet inner structure of turbulent premixed flames”, Combustion Science and Technology, 180 (4), pp. 713-728, (2008).

53

ACL : 126 Osmont A., Catoire L. and Gokalp I., “Physicochemical properties and thermochemistry of propellanes”, Energy & Fuels, 22 (4), pp. 2241-2257, (2008).

ACL : 127 Washburn E.B., Trivedi J.N., Catoire L. and Beckstead M.W., “The simulation of the combustion of micrometer-sized aluminum particles with steam”, Combustion Science and Technology, 180 (8), pp. 1502-1517, (2008).

ACL : 128 Cohe C., Chauveau C., Gokalp I. and Kurtulus D.F., “CO2 addition and pressure effects on laminar and turbulent lean premixed CH4 air flames”, Proceedings of the Combustion Institute, 32, pp. 1803-1810, (2009).

ACL : 129 Halter F., Chauveau C., Gokalp I. and Veynante D., “Analysis of flame surface density measurements in turbulent premixed combustion”, Combustion and Flame, 156 (3), pp. 657-664, (2009).

ACL : 130 Tabet F., Sarh B. and Gokalp I., “Hydrogen-hydrocarbon turbulent non-premixed flame structure”, International Journal of Hydrogen Energy, 34 (11), pp. 5040-5047, (2009).

ACL : 131 Yilmaz B., Ozdogan S. and Gokalp I., “Numerical Study on Flame-Front Characteristics of Conical Turbulent Lean Premixed Methane/Air Flames”, Energy & Fuels, 23, pp. 1843-1848, (2009).

ACL : 132 Escot Bocanegra P., Davidenko D., Sarou-Kanian V., Chauveau C. and Gökalp I., “Experimental and numerical studies on the burning of aluminum micro and nanoparticle clouds in air”, Experimental Thermal and Fluid Science, 34 (3), pp. 299-307, (2010).

ACL : 133 Escot Bocanegra P., Reverte C., Aymonier C., Loppinet-Serani A., Barsan M.M., Butler I.S., Kozinski J.A. and Gökalp I., “Gasification study of winery waste using a hydrothermal diamond anvil cell”, The Journal of Supercritical Fluids, 53 (1-3), pp. 72-81, (2010).

ACL : 134 Gillon P., Blanchard J.N. and Gilard V., “Magnetic field influence on coflow laminar diffusion flames”, Russian Journal of Physical Chemistry B, Focus on Physics, 4 (2), pp. 279-285, (2010).

ACL : 135 Osmont A., Catoire L., Escot Bocanegra P., Gokalp I., Thollas B. and Kozinski J.A., “Second generation biofuels: Thermochemistry of glucose and fructose”, Combustion and Flame, 157 (6), pp. 1230-1234, (2010).

ACL : 181 Joseph-Auguste C., Cheikhravat H., Djebaili-Chaumeix N. and Deri E., “On the use of spray systems: An example of R&D work in hydrogen safety for nuclear applications”, International Journal of Hydrogen Energy, 34 (14), pp. 5970-5975, (2009).

ACL : 182 Mevel R., Lafosse F., Chaumeix N., Dupre G. and Paillard C.E., “Spherical expanding flames in H-2-N2O-Ar mixtures: flame speed measurements and kinetic modeling”, International Journal of Hydrogen Energy, 34 (21), pp. 9007-9018, (2009).

ACLN : Articles dans des revues avec comité de lecture non répertoriées dans des bases de données internationales. ACLN : 2 Gougeon L. and Fedioun I., “DNS/MILES of reacting air/H-2 diffusion jets”,

Direct and Large-Eddy Simulation VI, 10, pp. 93-100, 2006.

54

ACLN : 3 Davidenko D., Jouot F., Kudryavtsev A., Dupré G., Gökalp I., Daniau E. and Falempin F., “Continuous detonation wave engine studies for space application”, Progress in Propulsion Physics, 1, (eds. L. T. DeLuca et al.), Torus Press, pp. 353-366, 2009.

ACLN : 4 Davidenko D.M., Gökalp I. and Kudryavtsev A.N., “Numerical Simulation of Continuous Detonation in a Layer of Hydrogen-Oxygen Mixture with Periodic Conditions”, Deflagrative and detonative combustion, (eds. G. D. Roy and S. M. Frolov), Torus Press, pp. 295-310, Moscow, 2009.

ACLN : 5 Davidenko D.M. and Mével R., “Numerical Simulation of Detonation in a Hydrogen-Nitrous Oxide-Argon Mixture Using a Realistic Thermochemical Model”, Progress in Pulsed and Continuous Detonations, (eds. G. D. Roy and S. M. Frolov), Torus Press, pp. 277-294, Moscow, 2009.

ACLN : 6 Escot Bocanegra P., Sarou-Kanian V., Davidenko D., Chauveau C. and Gökalp I., “Studies on the burning of micro- and nanoaluminium particle clouds in air”, Progress in Propulsion Physics, 1, (eds. L. DeLuca et al.), Torus Press, pp. 47-62, 2009.

ACLN : 7 Franson C., Orlandi O., Perut C., Fouin G., Chauveau C., Gökalp I. and Calabro M., “New high energetic composite propellants for space applications : refrigerated solid propellant (RSP)”, Progress in Propulsion Physics, 1, (eds. L. DeLuca et al.), Torus Press, pp. 31-46, 2009.

ASCL : Articles dans des revues sans comité de lecture. ASCL : 1 Mameri A., Fedioun I. and Boumaza M., “Simulation numérique d’une

flamme d’Hydrogène dans l’air - confrontation avec l’expérience”, Revue des Energies Renouvelables, 9 (3), pp. 229-236, (2006).

ASCL : 2 Mameri A., Gökalp I. and Boukeffa D., “Simulation numérique de la stabilisation d’une flamme turbulente de méthane en régime pauvre par ajout d’hydrogène”, Revue des Energies Renouvelables, 10 (1), pp. 39 - 48, (2007).

ASCL : 3 Tabet-Helal F., Sarh B. and Gökalp I., “Etude par simulation numérique des caractéristiques d’une flamme de diffusion turbulente avec co-courant d’air d’un mélange de CH4 - H2”, Revue des Energies Renouvelables, 10 (2), pp. 173 - 180, (2007).

ASCL : 4 Tabet-Helal F., Sarh B. and GoKalp I., “A comparative study of turbulence modelling in diluted hydrogen non-premixed flames”, IFRF Combustion Journal, pp. 1-41, (2008).

ASCL : 5 Soldi B., Gökalp I., Zeroual A., Aït Lachgar M. and Aymard A., “Conception et réalisation d’un système de production d’hydrogène à l’aide d’un dispositif de catalyse”, Revue des Energies Renouvelables, 12 (1), pp. 149 - 162, (2009).

ASCL : 6 Soldi B., Gökalp I., Zeroual A. and Aymard A., “Modélisation d’une électrolyse d’eau à membrane polymère pour la production d’hydrogène”, Revue des Energies Renouvelables, 12 (2), pp. 201 - 214, (2009).

ACTI : Communications avec actes dans un congrès international.

55

ACTI : 14 Chauveau C., Davidenko D., Sarh B., Gökalp I., Avrashkov V. and Fabre C., “PIV Measurements in an Underexpanded Hot Free Jet”, 13th International Symposium Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 26-29 June, (2006).

ACTI : 15 Chauveau C., Halter F. and Gökalp I., “Vaporization in three-dimensional droplet arrays : Effects of the fuel vapor saturation.”, 10th International Conference on Liquid Atomization and Spray Systems, ICLASS06, Kyoto, Japan, August 27- September 1, (2006).

ACTI : 16 Davidenko D.M. and Gökalp I., “Autoignition delay time correlations for methane-hydrogen mixtures in air”, 19th International Symposium on Gas Kinetics (GK2006), Orléans, France, 22-27 July, (2006).

ACTI : 17 Davidenko D.M., Gökalp I., Dufour E. and Magre P., “Systematic numerical study of the supersonic combustion in an experimental combustion chamber”, 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, AIAA-2006-7913, Canberra, Australia, 6-9 Novembre, (2006).

ACTI : 18 Delmaere T., Gillon P. and Sarh B., “On the magnetic field influence on the lift of a laminar diffusion flame”, International workshop on non equilibrium processes in combustion and plasma based technologies, Minsk, Belarus, (2006).

ACTI : 19 Gillon P., Khaldi F., Gilard V., Blanchard J.-N., Delmaere T. and Sarh B., “Magnetic field influence on combustion”, International workshop on non equilibrium processes in combustion and plasma based technologies, Minsk, Belarus, (2006).

ACTI : 20 Gougeon L., Lardjane N. and Fedioun I., “Actual performance of improved WENO schemes on a selection of test cases”, EFMC6 Euromech conference, Stockholm, 27th-30th June, (2006).

ACTI : 21 Lardjane N., Gougeon L. and Fedioun I., “Effective performances of improved WENO schemes”, 10th International Workshop on the Physics of Compressible Turbulent Mixing (IWPCTM10), Paris, 17-21 July, (2006).

ACTI : 22 Tabet-Helal F., Sarh B. and Gökalp I., “Comparative Study of Turbulence Modelling in Variable Density Jets and Diffusion Flames”, 6th Euromech Fluid Mechanics Conference, Stockholm, June 26-30, (2006).

ACTI : 23 Chauveau C., Birouk M. and Gökalp I., “Why d²-law does not hold during droplet vaporization in microgravity conditions?”, 21st Annual Conference on Liquid Atomization and Spray Systems (ILASS-Europe), Mugla, Turkey, September 10-12, (2007).

ACTI : 24 Cheikhravat H., Chaumeix N., Yahyaoui M. and Paillard C.-E., “Influence of hydrogen distribution on flame acceleration”, 3rd European Combustion Meeting (ECM2007), Chania, Crete, (2007).

ACTI : 25 Cheikhravat H., Yahyaoui M., Djebaili-Chaumeix N. and Paillard C.-E., “Influence of Hydrogen distribution on flame propagation”, 21st ICDERS, Poitiers, France, July 23-27, (2007).

ACTI : 26 Cohé C., Kurtuluş D.F., Chauveau C. and Gökalp I., “Investigation of laminar lean premixed methane-air flames at high pressures”, 3rd European Combustion Meeting (ECM2007), on CD, Chania, Greece, 11-13 April, (2007).

ACTI : 27 Cohé C., Kurtuluş D.F., Chauveau C. and Gökalp I., “Effect of Pressure and CO2 Dilution on the Stability and the Flickering of Conical Laminar Premixed Flames”, 21st International Colloquium on the Dynamics of Explosions and Reactive Systems, Poitiers, France, July 23-27, (2007).

56

ACTI : 28 Davidenko D., Chauveau C., Sarh B., Gökalp I., Avrashkov V. and Fabre C., “Experimental studies of underexpanded hot jets: free jet velocity field and jet impact on a flat plate”, 2nd European Conference for Aero-Space Sciences (EUCASS 2007), Brussels, Belgium, 1-6 July, (2007).

ACTI : 29 Davidenko D., Gökalp I., Dufour E. and Magre P., “Methodology and problems of numerical simulation of the supersonic combustion in an experimental combustion chamber”, 2nd European Conference for Aero-Space Sciences (EUCASS 2007), Brussels, Belgium, 1-6 July, (2007).

ACTI : 30 Davidenko D., Gökalp I. and Kudryavtsev A., “Numerical simulation of the continuous rotating hydrogen-oxygen detonation with a detailed chemical mechanism”, West-East High Speed Flow Field Conference (WEHSFFC 2007), Moscow, Russia, 19-22 November, (2007).

ACTI : 31 Davidenko D., Gökalp I. and Kudryavtsev A., “Numerical modeling of the rotating detonation in an annular combustion chamber fed with hydrogen-oxygen mixture”, 3rd European Combustion Meeting (ECM2007), Chania, Crete, 11-13 April, (2007).

ACTI : 32 Davidenko D., Jouot F., Kudryavtsev A., Dupré G., Gökalp I., Daniau E. and Falempin F., “Continuous detonation wave engine studies for space application”, 2nd European Conference for Aero-Space Sciences (EUCASS 2007), Brussels, Belgium, 1-6 July, (2007).

ACTI : 33 Davidenko D.M., Chauveau C., Sarh B., Gökalp I., Avrashkov V. and Fabre C., “Experimental Studies of Underexpanded Hot Jets : Free Jet Velocity Field and Jet Impact on a Flat Plane.”, European Conference for Aerospace Sciences, Elsevier France-Editions Scientifiques Medicales Elsevier, Bruxelles, 2-6 juillet, (2007).

ACTI : 34 Davidenko D.M., Kudryavtsev A.N. and Gökalp I., “Numerical simulation of H2/O2 continuous spin detonation with a detailed chemical mechanism”, 21st ICDERS, Poitiers, France, July 23-27, (2007).

ACTI : 35 Delmaere T., Gillon P. and Sahr B., “Numerical study of the magnetic influence on entrainment in laminar jets”, 21st ICDERS, Poitiers, France, July 23-27, (2007).

ACTI : 36 Escot-Bocanegra P., Sarou-Kanian V., Chauveau C. and Gökalp I., “Studies on the burning of micro- and nano-aluminum particle clouds”, 3rd European Combustion Meeting (ECM2007), on CD, Chania, Greece, 11-13 April, (2007).

ACTI : 37 Escot Bocanegra P., Davidenko D., Sarou-Kanian V., Chauveau C. and Gökalp I., “Experimental studies on the propagation velocity and temperature of flames in aluminum micro- and nanoparticle clouds”, 21st International Colloquium on the Dynamics of Explosions and Reactive Systems, Poitiers, France, July 23-27, (2007).

ACTI : 38 Escot Bocanegra P., Sarou-Kanian V., Davidenko D., Chauveau C. and Gökalp I., “Studies on the burning of micro and nano aluminum particle clouds in air”, 2nd European Conference for Aero-Space Sciences (EUCASS 2007), Brussels, Belgium, 1-6 July, (2007).

ACTI : 39 Escot Bocanegra P., Sarou-Kanian V., Thomé F., Chauveau C. and Gökalp I., “Experimental Studies On The Burning Of Complex Aluminium Particles For Space Propulsion Applications”, 7th International Symposium on Launcher Technologies, Barcelona, Spain, 2-5 April, (2007).

57

ACTI : 40 Franson C., Orlandi O., Chauveau C., Fouin G. and Renouard J., “Al/H2Oand Al/H2O/H2O2 frozen mixtures as examples of new composite propellants for space application”, 7th International Symposium on Launcher Technologies, Barcelona, Spain, 2-5 April, (2007).

ACTI : 41 Franson C., Orlandi O., Perut C., Fouin G., Chauveau C., Gökalp I. and Calabro M., “New high energetic composite propellants for space applications : Refrigerated Solid Propellant (RSP)”, 2nd European Conference for Aero-Space Sciences (EUCASS 2007), Bruxelles, Belgium, 1-6 July, (2007).

ACTI : 42 Gilard V., Delmaere T., Gillon P., Sarh S. and Blanchard J.N., “Magnetic influence on the behaviour of methane diffusion flames”, 3rd European Combustion Meeting (ECM2007), Chania, Crete, 11-13 April, (2007).

ACTI : 43 Gillon P., Gilard V. and Blanchard J.-N., “Magnetic influence on lift-off of diffusion flames”, 21st ICDERS, Poitiers, France, July 23-27, (2007).

ACTI : 44 Joseph-Auguste C., Cheikhravat H., Djebaïli-Chaumeix N. and Deri E., “On the use of spray systems: an example of R&D work in hydrogen safety for nuclear safety”, International conference on Hydrogen Safety, San Sebastian, Spain, (2007).

ACTI : 45 Lafosse F., Chaumeix N. and Paillard C.-E., “The effect of a hot gas jet behind incident shock wave on the detonation initiation”, 3rd European Combustion Meeting (ECM2007), Crete, Greece, 11-13 April, (2007).

ACTI : 46 Mével R., Lafosse F., Catoire L., Chaumeix N., Dupré G. and Paillard C.-E., “Auto−ignition delay times and detonation cell size of hydrogen−nitrous oxide−argon mixtures”, 21st ICDERS, Poitiers, France, July 27-31, (2007).

ACTI : 47 Mével R., Lafosse F., Catoire L., Chaumeix N., Dupré G. and Paillard C.-E., “Autoignition delays of hydrogen - nitrous oxide – argon mixtures”, 3rd European Combustion Meeting (ECM2007), Crete, Greece, 11-13 April, (2007).

ACTI : 48 Sarou-Kanian V., Ouazar S., Escot Bocanegra P., Chauveau C. and Gökalp I., “Low Temperature Reactivity of Aluminum Nanopowders with Liquid Water”, 3rd European Combustion Meeting (ECM2007), on CD, Chania, Greece, 11-13 April, (2007).

ACTI : 49 Tabet-Helal F., Sarh B., Birouk M. and Gökalp I., “A comparative study of turbulence modelling and combustion modelling in hydrogen-air non-premixed turbulent flame”, 2nd ECCOMAS Thematic Conference on Computational Combustion, (ed. D. Roekaerts), Delft, Netherlands, (2007).

ACTI : 50 Tabet-Helal F., Sarh B., Birouk M. and Gökalp I., “Numerical investigation on the near field region of a turbulent non premixed (CH4-H2-N2)/Air flame”, 3rd European Combustion Meeting (ECM2007), (ed. G. Skevis), #8.6, Chania, Greece, 11-13 April, (2007).

ACTI : 51 Chauveau C., Halter F., Lalonde A. and Gökalp I., “An experimental study on the droplet vaporization: effects of heat conduction through the support fiber.”, 22nd Annual Conference on Liquid Atomization and Spray Systems (ILASS-Europe'08), Como, Italy, September 8-10, (2008).

ACTI : 52 Davidenko D.M., Gökalp I. and Kudryavtsev A., “Numerical study of the continuous detonation wave rocket engine”, 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, AIAA-2008-2680, Dayton, Ohio, 28 April - 1 May, (2008).

ACTI : 53 Gilard V., Gillon P. and Blanchard J.-N., “Experimental investigation of magnetic effect on diffusion flames”, 13th International Symposium on Flow Visualization/FLUVISU12, Nice, France, (2008).

58

ACTI : 54 Gillon P., Blanchard J.-N. and Gilard V., “Magnetic Field Influence on Coflow Laminar Diffusion Flames”, 6th International Seminar on Flame Structure ISFS, Brussels, Belgique, (2008).

ACTI : 55 Kurtuluş D.F., Cohé C., Chauveau C. and Gökalp I., “Flowfield Measurements using PIV in High Pressure Lean Premixed Laminar Flames”, 10th International Combustion Symposium, ICS-2008, (2008).

ACTI : 56 Mével R., Davidenko D., Lafosse F., Dupré G. and Paillard C., “Prediction of detonation cell size in hydrogen-nitrous oxide-argon mixtures using chemical kinetics correlations and 2-d numerical simulation code”, 7th International Symposium on Hazards, Prevention, and Mitigation of Industrial Explosions, St. Petersburg, Russia, 7-11 July, (2008).

ACTI : 57 Yozgatligil A., Chauveau C., Gökalp I., Ersoy M., Olgun Z., Anaç S., Oran Ö., Özensoy B. and Gögce Ö.Ö., “Initial observations on combustion characteristics of levitated turkish lignite particles”, 10th International Combustion Symposium, ICS-2008, Sakarya, Turkey, October 9-10, (2008).

ACTI : 58 Blanchard J.-N., Chahine M., Gillon P. and Gilard V., “Methane/Air laminar diffusion flames in magnetic gradients”, 22nd ICDERS, Minsk, Belarus, July 27-31, (2009).

ACTI : 59 Blanchard J.-N., Gilard V. and Gillon P., “Experimental investigation on methane/air diffusion flame submitted to the influence of magnetic field gradients”, 6th Mediterranean Combustion Symposium, Ajaccio, France, (2009).

ACTI : 60 Bouvet N., Pillier L., Davidenko D., Chauveau C. and Gökalp I., “Particle Image Velocimetry for the Determination of Fundamental Flame Velocities: Methodology Validation and Application to Methane-Air Mixtures”, 4th European Combustion Meeting (ECM2009), Vienna, Austria, (2009).

ACTI : 61 Cheikhravat H., Chaumeix N. and Paillard C.-E., “Behavior of premixed hydrogen - air - steam flames near flammability limits”, 6th Mediteranean Combustion Symposium, Ajaccio, Corse, France, 7-11 June, (2009).

ACTI : 62 Davidenko D., Bouvet N., Pillier L. and Chauveau C., “Numerical Simulation of a Strained Laminar Flame Burner and Comparison with the Experiment”, 4th European Combustion Meeting (ECM2009), Vienna, Austria, (2009).

ACTI : 63 Davidenko D., Escot Bocanegra P., Chauveau C. and Gökalp I., “Global combustion model of micro- and nanosized aluminum particles in air”, High Energy Materials (HEM2009), Biarritz, France, 5-7 Octobre, (2009).

ACTI : 64 Davidenko D., Eude Y. and Falempin F., “Numerical Study on the Annular Nozzle Optimization for Rocket Application”, 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, AIAA-2009-7390, Bremen, Germany, 19-22 October, (2009).

ACTI : 65 Davidenko D., Mével R. and Dupré G., “Reduced kinetic mechanisms for the simulation of detonation in H2-N2O-Ar mixtures”, 4th European Combustion Meeting (ECM2009), Vienna, Austria, 14-17 April, (2009).

ACTI : 66 Davidenko D.M., Eude Y. and Falempin F., “Optimization of supersonic axisymmetric nozzles with a center body for aerospace propulsion”, 3rd European Conference for Aero-Space Sciences (EUCASS 2009), Versailles, France, 6-9 July, (2009).

ACTI : 67 Dobrego K.V., Kozlov I.M., Gnesdilov N.N., Shmelev E.S., Gillon P. and Blanchard J.-N., “Experimental and numerical investigation of non-stationary combustion in highly porous media”, 6th mediterranean combustion symposium, Ajaccio, France, (2009).

59

ACTI : 68 Escot Bocanegra P., Davidenko D., Sarou-Kanian V., Chauveau C. and Gökalp I., “Experimental and Numerical Studies on the of Aluminium Micro and Nanoparticule Clouds in Air”, Mediterranean Combustion Symposium, Ajaccio, France, June 7-11, (2009).

ACTI : 69 Gilard V., Gillon P. and Blanchard J.-N., “Effects of a Magnetic Field on the Stabilization of a Lifted Diffusion Flame”, 4th European Combustion Meeting (ECM2009), Vienna, Austria, (2009).

ACTI : 70 Gillon P., Sarh B. and Delmaere T., “A numerical study of the magnetic influence on coaxial jets flow”, 22nd ICDERS, Minsk, Belarus, July 27-31, (2009).

ACTI : 71 Haidn O., Davidenko D. and Gökalp I., “Clean Smart Grid: Primary Frequency Control Applying H2/O2 Rocket Combustor Technology”, 7th International Energy Conversion Engineering Conference, AIAA 2009-4569, Denver, Colorado, 3-5 August, (2009).

ACTI : 72 Kurtuluş D.F., Cohé C., Chauveau C. and Gökalp I., “Characterisation of Lean Premixed Laminar Flames in High Pressure using PIV”, 4th European Combustion Meeting (ECM2009), Vienna, Austria, 14-17 April, (2009).

ACTI : 73 Mével R., Davidenko D., Dupré G. and Paillard C., “Numerical study of the structure of detonation in very lean hydrogen-nitrous oxide mixtures”, 22nd ICDERS, Minsk, Belarus, July 27-31, (2009).

ACTI : 74 Mével R., Davidenko D., Lafosse F., Dupré G. and Paillard C.-E., “Experimental and numerical detonation cell in H2-N2O-Ar mixtures”, 4th European Combustion Meeting (ECM2009), Vienna, Austria, 14-17 April, (2009).

ACTI : 75 Mével R., Lafosse F., Chaumeix N., Dupré G. and Paillard C.-E., “Flame Speed measurements in H2-N2O-Ar mixtures”, 4th European Combustion Meeting (ECM2009), Vienna, Austria, 14-17 April, (2009).

ACTI : 76 Tabet F., Boland A., Mlaouah A., Sarh B. and Gökalp I., “Investigation of turbulence models capability in predicting mixing in the near-field region of hydrogen enriched natural gas turbulent non-premixed flames”, 4th European Combustion Meeting (ECM2009), Vienna, Austria, April 14-17, (2009).

ACTI : 77 Yozgatligil A., Chauveau C. and Gökalp I., “Combustion characteristics of levitated lignite particles”, 4th European Combustion Meeting (ECM2009), Vienna, Austria, 14-17 April, (2009).

ACTI : 78 Cheikhravat H., Chaumeix N., Bentaib A. and Paillard C.-E., “Flammability limits of Hydrogen/Air mixtures”, 2nd International Meeting of the Safety and Technology of Nuclear Hydrogen Production, Control and Management - ANS2010, San Diego, USA, 13-17 June, (2010).

ACTI : 79 Cheikhravat H., Chaumeix N., Bentaib A. and Paillard C.-E., “Evaluation of the Water Spray Impact on Premixed Hydrogen-Air-Steam Flames Propagation”, American Nuclear Society, San Diego, USA, 13-17 June, (2010).

ACTI : 80 Haidn O., Davidenko D. and Gökalp I., “Clean Smart Grid: H2/O2 Rocket Combustor Technology for Primary Frequency Control”, International Conference on Combustion and Energy Utilization (ICCEU2010), Mugla University, Turkey, 4-8 May, (2010).

ACTN : Communications avec actes dans un congrès national.

60

ACTN : 1 Cohé C., Halter F., Chauveau C. and Gökalp I., “Etude des flammes de prémélanges pauvres à l’aide de l’imagerie plane par diffusion Rayleigh induite par laser”, Congrès Francophone de Techniques Laser, CFTL 2006, Toulouse, 19 - 22 septembre, (2006).

ACTN : 2 Gilard V., Blanchard J.-N., Sarh B. and Gillon P., “Etude du comportement du lift lors de la combustion du mélange CH4/air soumis à un gradient magnétique”, 18ème Congrès Français de Mécanique, Grenoble, France, (2007).

ACTN : 3 Sarh B., Gillon P., Delmaere T., Chahine M. and Biard M., “Etude du décrochement d'une flamme laminaire sous l'effet d'un champ magnétique”, 19ème Congrès Français de Mécanique, Marseille, France, (2009).

COM : Communications orales sans actes dans un congrès international ou national. COM : 22 Halter F., Chauveau C. and Gökalp I., “Average and Instantaneous Structure

of Hydrogen Added Methane-Air Turbulent Premixed Flames”, 29th Meeting on Combustion of the Italian Section of the Combustion Institute, Pisa, Italy, (2006).

COM : 23 Tabet-Helal F., Sarh B. and Gökalp I., “Hydrogen-hydrocarbon Turbulent Nonpremixed Flame Structure and Pollutants Formation”, 29th Meeting on Combustion of the Italian Section of the Combustion Institute, Pisa, Italy, (2006).

COM : 24 Davidenko D.M., “Calcul parallèle d'écoulements réactifs compressibles”, 7e journée Calcul Scientifique et Modélisation des Universités d'Orléans et de Tours (CaSciModOT), Orléans, 6 décembre, (2007).

COM : 25 Cohé C., Chauveau C., Gökalp I. and Kurtulus D.F., “CO2 addition and pressure effects on laminar and turbulent lean premixed CH4 air flames”, 32th International Symposium on Combustion, Mc Gill University, Montreal, Canada, August 3-8, (2008).

COM : 26 Davidenko D.M., “Simulation des détonations dans le milieu gazeux sur des plateformes de calcul parallèle”, 9e journée Calcul Scientifique et Modélisation des Universités d'Orléans et de Tours (CaSciModOT), Orléans, 12 décembre, (2008).

COM : 27 Haidn O., Davidenko D. and Gökalp I., “Clean Primary Frequency Control for Turkish Electric Grids Applying Rocket Combustor Technology”, International Workshop on Energy from Space for a Sustainable Environment, Istanbul, Turkey, (2008).

COM : 28 Biet J., Chaumeix N. and Paillard C.-E., “Influence of addition of methane on hydrogen flame acceleration”, Joint Meeting of the Scandinavian-Nordic and French Sections of the Combustion Institute, Copenhagen, Denmark, 9-10 November, (2009).

COM : 29 Coudoro K., Chaumeix N. and Bentaib A., “Fundamental properties of natural gas combustion in closed vessels”, Annual Meeting of the Flacs User Group, Paris, France, 2 novembre, (2009).

COM : 30 Davidenko D.M., “Theoretical Study on the Continuous Detonation Mode Application to the Rocket Propulsion at ICARE-CNRS”, European-Russian Scientific Workshop on RDWE for Space Propulsion, ENSMA, Futuroscope, France, 6-8 December, (2009).

61

COM : 31 Coudoro K., Chaumeix N. and Bentaib A., “Vitesses fondamentales de Combustion des mélanges Gaz naturel/Air dans une enceinte sphérique”, Réunion du Groupement Francais de Combustion, 15 janvier, (2010).

AFF : Communications par affiche dans un congrès international ou national. AFF : 58 Davidenko D.M. and Gökalp I., “A method of kinetic mechanism reduction

and its application to the methane-hydrogen fuel oxidation”, 31st International Symposium on Combustion, Heidelberg, Germany, 6-11 August, (2006).

AFF : 59 Davidenko D.M., Gökalp I., Dufour E. and Magre P., “Modeling of air vitiation effects on hydrogen autoignition in a supersonic combustion chamber”, 31st International Symposium on Combustion, Heidelberg, Germany, 6-11 August, (2006).

AFF : 60 Escot Bocanegra P., Sarou-Kanian V., Chauveau C. and Gökalp I., “Studies on the burning of nanoaluminium particle clouds”, 31th Symposium (International) on Combustion, Work-In-Progress Poster, Heildelberg, Germany, 6 - 11 August, (2006).

AFF : 61 Gougeon L. and Fedioun I., “Advanced numerical simulation of high-speed multi-component reacting flows”, 31st International Symposium of Combustion, Heildelberg, Germany, 6-10 august, (2006).

AFF : 62 Mével R., Davidenko D., Lafosse F., Dupré G., Dupré G. and Paillard C.-E., “Detonation cell size in hydrogen-nitrous oxide-argon mixtures”, 32nd International Symposium on Combustion, Montreal, Canada, (2007).

AFF : 63 Bouvet N., Pillier L., Davidenko D., Chauveau C. and Gökalp I., “Laminar Flame Velocity Determination Using Particle Image Velocimetry And The Counterflow Flame Burner: Application To Syngas Combustion”, 32nd International Symposium on Combustion, Mc Gill University, Montreal, Canada, (2008).

AFF : 64 Davidenko D., Gökalp I. and Kudryavtsev A., “Numerical simulation of the transverse detonation in a layer of hydrogen-oxygen mixture with periodic conditions”, 32nd International Symposium on Combustion, Montreal, Canada, 3-8 August, (2008).

AFF : 65 Escot Bocanegra P., Davidenko D., Sarou-Kanian V., Chauveau C. and Gokalp I., “Experimental and numerical study of the flame propagation in aluminium micro- and nano-particle clouds”, 32nd International Symposium on Combustion, Montreal, Canada, 3-8 August, (2008).

AFF : 66 Gilard V., Gillon P., Blanchard J.-N. and Sarh B., “Magnetic field influence on a methane /air diffusion flame”, 32nd International Symposium on Combustion, Montréal, Canada, (2008).

AFF : 67 Coudoro K., Chaumeix N. and Bentaib A., “Laminar Combustion properties of Hydrogen / Methane / Air Mixtures”, 6th Mediterranean combustion symposium, Ajaccio, France, 7-11 juin, (2009).

AFF : 68 Yahyaoui M., Coudoro K., Chaumeix N. and Paillard C.-E., “Laminar Combustion Properties of Hydrogen / Methane / Air”, 6th Mediterranean combustion symposium, Ajaccio, France, 7-11 juin, (2009).

AFF : 69 Coudoro K., Chaumeix N. and Bentaib A., “Etude expérimentale et modélisation de la propagation de flamme en mileu confiné et semi confiné”, Journée de la Coopération scientifique IRSN/CNRS, Cadaraches, France, 19 mars, (2010).

62

AFF : 70 Coudoro K., Chaumeix N. and Bentaib A., “Etude expérimentale et modélisation de la propagation de flamme en mileu confiné et semi confiné”, Journée des thèses INERIS, Compiègne, France, 25 juin, (2010).

AFF : 71 Coudoro K., Chaumeix N. and Bentaib A., “Experimental study and modeling of flame propagation in confined obstructed areas”, Ecole de Combustion 2010, Porticcio, France, (2010).

AFF : 72 Escot Bocanegra P., Barsan M.M., Butler I.S., Kozinski J.A. and Gokalp I., “Hydrothermal gasification of distillery wastes”, Proceedings of the 18th European Biomass Conference and Exhibition (EBCE), Lyon, France, 3-7 May, (2010).

AFF : 73 Sabard J., Chaumeix N., Catoire L. and Bentaib A., “Etude de l'explosion de mélanges diphasiques hydrogène et poussières métalliques”, Ecole de Combustion 2010, Porticcio, France, (2010).

AFF : 78 Ponty L., Bouvet N., Halter F., Chauveau C. and Gökalp I., “Characterization of premixed laminar syngas flame using PIV and Rayleigh scattering diagnostics.”, Sixth Mediterranean Combustion Symposium, Porticcio, Corsica, France, June 7-11, (2009).

INV : Conférences données à l’invitation du Comité d’organisation dans un congrès national ou international. INV : 22 Gillon P., “Applications of magnetic fields: from electromagnetic processing

of new materials to influence on combustion phenomena”, EPM 2006, Sendai, Japon, (2006).

INV : 23 Djebaili-Chaumeix N., “Studies on Hydrogen Safety at ICARE”, Workshop GDRE-H2, Turin, Italy, 20 juin, (2008).

63

Thématique Propulsion et Ecoulements à Grande Vitesse ACL : Articles dans des revues internationales ou nationales avec comité de lecture ACL : 136 Albarede L., Mazouffre S., Bouchoule A. and Dudeck M., “Low-frequency

electron dynamics in the near field of a Hall effect thruster”, Physics of Plasmas, 13 (6), (2006).

ACL : 137 Barral S., Jayet Y., Veron E., Mazouffre S., Echegut P. and Dudeck A., “Hall Effect Thruster with an ALN chamber”, Plasma 2005, 812, (eds. M. J. Sadowski et al.), pp. 427-430, 2006.

ACL : 138 Boniface C., Garrigues L., Hagelaar G.J.M., Boeuf J.P., Gawron D. and Mazouffre S., “Anomalous cross field electron transport in a Hall effect thruster”, Applied Physics Letters, 89 (16), (2006).

ACL : 139 Gawron D., Mazouffre S. and Boniface C., “A Fabry-Perot spectroscopy study on ion flow features in a Hall effect thruster”, Plasma Sources Science & Technology, 15 (4), pp. 757-764, (2006).

ACL : 140 Izrar B., Dudeck M., Andre P., Elchinger M.F. and Aubreton J., “Supersonic argon flow in an arc plasma source”, Plasma 2005, 812, pp. 355-358, (2006).

ACL : 141 Lago V., Barbosa E., Passarinho F. and Martin J.P., “Electron and vibrational temperatures in hypersonic CO2-N2 plasma jets”, Plasma Sources Science & Technology, 16 (1), pp. 139-148, (2007).

ACL : 142 Mazouffre S., Pawelec E., Bich N.T. and Sadeghi N., “Doppler-free spectroscopy measurements of isotope shifts and hyperrine components of near-IR xenon lines”, Plasma 2005, 812, (eds. M. J. Sadowski et al.), pp. 457-460, 2006.

ACL : 143 Bourig A., Lago V., Martin J.P., Pliavaka K., Gorbatov S., Chemukho A. and Naumov V., “Generation of Singlet Oxygen in HV pulsed + DC atmospheric pressure for Oxygen-enhanced combustion”, International Journal of plasma Environmental Science & Technology, 1 (1), (2007).

ACL : 144 Mazouffre S., Dannenmayer K. and Perez-Luna J., “Examination of plasma-wall interactions in Hall effect thrusters by means of calibrated thermal imaging”, Journal of Applied Physics, 102 (2), (2007).

ACL : 145 Mazouffre S., Echegut P. and Dudeck M., “A calibrated infrared imaging study on the steady state thermal behaviour of Hall effect thrusters”, Plasma Sources Science & Technology, 16 (1), pp. 13-22, (2007).

ACL : 146 Menier E., Leger L., Depussay E., Lago V. and Artana G., “Effect of a dc discharge on the supersonic rarefied air flow over a flat plate”, Journal of Physics D-Applied Physics, 40 (3), pp. 695-701, (2007).

ACL : 147 Pawelec E., Caubet-Hilloutou V. and Mazouffre S., “Fabry-Perot lineshape analysis in an optically thick expanding plasma”, Plasma Sources Science & Technology, 16 (3), pp. 635-642, (2007).

ACL : 148 Adam J.C., Boeuf J.P., Dubuit N., Dudeck M., Garrigues L., Gresillon D., Heron A., Hagelaar G.J.M., Kulaev V., Lemoine N., Mazouffre S., Luna J.P., Pisarev V. and Tsikata S., “Physics, simulation and diagnostics of Hall effect thrusters”, Plasma Physics and Controlled Fusion, 50 (12), (2008).

ACL : 149 Gawron D., Mazouffre S., Sadeghi N. and Heron A., “Influence of magnetic field and discharge voltage on the acceleration layer features in a Hall effect thruster”, Plasma Sources Science & Technology, 17 (2), (2008).

64

ACL : 150 Kaminska A., Lopez B., Barbosa E., Izrar B. and Dudeck M., “Non-equilibrium effects in an argon DC arc plasma source”, High Temperature Material Processes, 12 (1-2), pp. 121-141, (2008).

ACL : 151 Kaminska A., Lopez B., Izrar B. and Dudeck M., “Modelling of an argon plasma jet generated by a dc arc”, Plasma Sources Science & Technology, 17 (3), (2008).

ACL : 152 Lazurenko A., Coduti G., Mazouffre S. and Bonhomme G., “Dispersion relation of high-frequency plasma oscillations in Hall thrusters”, Physics of Plasmas, 15 (3), (2008).

ACL : 153 Mazouffre S., Gawron D., Kulaev V., Luna J.P. and Sadeghi N., “A laser spectroscopic study on Xe+ ion transport phenomena in the E x B discharge of a Hall effect thruster”, Plasma 2007, 993, (eds. H. J. Hartfuss et al.), pp. 447-454, 2008.

ACL : 154 Mazouffre S., Gawron D., Kulaev V. and Sadeghi N., “Xe+ Ion Transport in the Crossed-Field Discharge of a 5-kW-Class Hall Effect Thruster”, Ieee Transactions on Plasma Science, 36 (5), pp. 1967-1976, (2008).

ACL : 155 Sosa R., Kelly H., Grondona D., Marquez A., Lago V. and Artana G., “Electrical and plasma characteristics of a quasi-steady sliding discharge”, Journal of physics. D. Applied physics., 41 (3), (2008).

ACL : 156 Ferrier M., Fedioun I., Orlik E. and Davidenko D., “Modal Linear Stability of the Near-Wall Flow on a Hypersonic Forebody”, Journal of Spacecraft and Rockets, 46 (1), pp. 51-66, (2009).

ACL : 157 Garrigues L., Perez-Luna J., Lo J., Hagelaar G.J.M., Boeuf J.P. and Mazouffre S., “Empirical electron cross-field mobility in a Hall effect thruster”, Applied Physics Letters, 95 (14), (2009).

ACL : 158 Leger L., Depussay E. and Lago V., “D. C. Surface Discharge Characteristics in Mach 2 Rarefied Airflow”, Ieee Transactions on Dielectrics and Electrical Insulation, 16 (2), pp. 396-403, (2009).

ACL : 159 Mazouffre S., Gawron D. and Sadeghi N., “A time-resolved laser induced fluorescence study on the ion velocity distribution function in a Hall thruster after a fast current disruption”, Physics of Plasmas, 16 (4), (2009).

ACL : 160 Mazouffre S., Kulaev V. and Luna J.P., “Ion diagnostics of a discharge in crossed electric and magnetic fields for electric propulsion”, Plasma Sources Science & Technology, 18 (3), (2009).

ACL : 161 Mazouffre S. and Pawelec E., “Metastable oxygen atom velocity and temperature in supersonic CO2 plasma expansions”, Journal of Physics D-Applied Physics, 42 (1), (2009).

ACL : 162 Parisse J.D., Leger L., Depussay E., Lago V. and Burtschell Y., “Comparison between Mach 2 rarefied airflow modification by an electrical discharge and numerical simulation of airflow modification by surface heating”, Physics of Fluids, 21 (10), (2009).

ACL : 163 Andre P., Aubreton J., Clain S., Dudeck M., Duffour E., Elchinger M.F., Izrar B., Rochette D., Touzani R. and Vacher D., “Transport coefficients in thermal plasma. Applications to Mars and Titan atmospheres”, European Physical Journal D, 57 (2), pp. 227-234, (2010).

65

ACLN : Articles dans des revues avec comité de lecture non répertoriées dans des bases de données internationales. ACLN : 8 Kurzyna J., Makowski K., Lazurenko A., Mazouffre S., Dudeck M.,

Bonhomme G. and Peradzynski Z., “Search for the frequency content of hall effect thruster HF electrostatic wave with the Hilbert-Huang method”, Plasma 2005, 812, (eds. M. J. Sadowski et al.), pp. 411-414, 2006.

ACLN : 9 Mazouffre S., Pawelec E., Tran Bich N. and Sadeghi N., “Doppler-free spectroscopy measurements of isotope shifts and hyperfine components of near infrared xenon lines”, Plasma 2005, 812, (eds. M. J. Sadowski et al.), American Institute of Physics, p. 457, 2006.

ACLN : 10 Mazouffre S., Gawron D., Kulaev V., Pérez-Luna J. and Sadeghi N., “A laser spectroscopy study on Xe+ ion transport phenomena in the ExB discharge of a Hall effect thruster”, Plasma 2007, 993, (eds. H.-J. Hartfuss et al.), American Institute of Physics, p. 447, 2007.

ACLN : 11 Kurzyna J., Makowski K., Peradzynski Z., Lazurenko A., Mazouffre S. and Dudeck M., “Where is the breathing mode ? High voltage Hall effect thruster studies with EMD method”, Plasma 2007, 993, (eds. H. J. Hartfuss et al.), pp. 443-446, 2008.

ASCL : Articles dans des revues sans comité de lecture. ASCL : 7 Gawron D., Mazouffre S., Albarède L. and Sadeghi N., “Examination of Hall

effect thruster acceleration layer characteristics by laser spectroscopy and retarding potential analyzer”, 42nd Joint Propulsion Conference, (ed. AIAA), pp. 06-4473, Sacramento, Californie, (2006).

ASCL : 8 Lopez B., Barbosa E., Dudeck M., Izrar B. and Kaminska A., “Modelling of a DC arc plasma source for the simulation of mars atmosphere around a spacecraft”, European Space Agency, (Special Publication) ESA SP, 629 SP, November 2006, (2006).

ASCL : 9 André P., Clain S., Dudeck M., Izrar B., Rochette D., Touzani R. and Vacher D., “First step in theoretical approach in study of mars and titan atmospheres with an inductively coupled plasma torch”, European Space Agency, (Special Publication) ESA SP, 667 SP, (2009).

ASCL : 10 Lopez B., Izrar B. and Dudeck M., “Modeling of a DC arc plasma source for the simulation of mars atmospheric entry”, European Space Agency, (Special Publication) ESA SP, 667 SP, (2009).

ACTI : Communications avec actes dans un congrès international. ACTI : 81 Bourig A., Lago V., Martin J.-P., Pliavako K., Pliavako F., Gorbatov S.,

Chernukho A. and Naumov V., “Generation of singlet oxygen in HV pulsed cross discharge at atmospheric and reduced pressure for oxygen-enhanced combustion”, The fifth International Symposium on Non Thermal Plasma Technology, Oléron, 23 au 29 juin 2006, (2006).

ACTI : 82 Bourig A., Martin J.-P., Lago V., Thévenin D. and Zähringer K., “Hydrogen combustion in presence of excited oxygen produced by non thermal plasma: Experimental and numerical study”, Nonequilibrium Processes in Combustion and Plasma Based Technologies, Intern. Workshop, Contrib. Papers, Luikov HMTI, 51-55, Minsk, Belarus, (2006).

66

ACTI : 83 Ferrier M., Fedioun I. and Davidenko D., “Boundary layer transition prediction on a hypersonic vehicle forebody”, 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, AIAA-2006-8092, pp. 1867-1878, Canberra, Australia, 6-9 Novembre, (2006).

ACTI : 84 Lago V., Grondona D., Kelly H., Sosa R., Marquez A. and Artana G., “Sliding Discharge Characteristics”, Proceedings of the International Symposium on Electrohydrodonamics (ISEHD2006), 4-6 December, (2006).

ACTI : 85 Léger L., Artana G., Gallot-Lavallée O. and Moreau E., “Electrical properties of a sliding discharge in supersonic air flow”, International Symposium on Electro-hydrodynamics, Buenos Aires, Argentine, December, (2006).

ACTI : 86 Mazouffre S., Gawron D. and Sadeghi N., “Potentiel distribution in the near field of a Hall effect thruster: A laser spectroscopy study”, 18th European Conference on Atomic & Molecular Physics of Ionized Gases, Lecce, Italie, (2006).

ACTI : 87 Menier E., Artana G., Léger L., Lago L., Depussay E. and Lengran J.C., “Modification of a rarefied supersonic flow over a flat plate using an electrical discharge”, 25th international symposium on rarefied gas dynamics, Saint-Petersbourg, Russie, 21-28 juillet 2006, (2006).

ACTI : 88 Menier E., Depussay E., Lago V., Leger L. and Artana G., “Influence of a high-voltage discharge on the supersonic rarefied flow along a flat plate”, Proceedings of the International Symposium ISEHD2006, Buenos Aires, Argentina, 4-6 December, (2006).

ACTI : 89 Menier E., Lengrand J.C., Depussay E., Lago V. and Léger L., “Direct Simulation Monte Carlo method applied to the Ionic Wind in Supersonic Rarefied Conditions”, 3rd AIAA Flow Control Conference, San Francisco, (2006).

ACTI : 90 Menier E., Lengrand J.C. and Lago V., “DSMC estimate of the ionic wind effect on a supersonic low-density flow”, 25th International Conference on Rarefied Gas Dynamics, St-Petersburg, Russie, 15-21 juillet 2006, (2006).

ACTI : 91 Barbosa E., Lopez E., Dudeck M., Kaminska A. and Izrar B., “Numerical Simulation of Non-Equilibrium Hypersonic Flow in a Convergent-Divergent Nozzle: Application to Mars Atmospheric Entry Simulation”, 8th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows, Paper reference: ISAIF8-0041, Lyon, July, (2007).

ACTI : 92 Bonhomme G., Lemoine N., Brochard F., Lazurenko A., Mazouffre S. and Dudeck M., “Characterization of High Frequency plasma oscillations in a Hall effect thruster”, 30th International Electric Propulsion Conference, p. 247, Florence, Italy, (2007).

ACTI : 93 Bourig A., Lago V., Martin J.-P., Pliavaka K., Pliavako F. and Gorbatov S., “Plasma generation of excited oxygen for combustion enhancement”, 18th Intern. Symp. on Plasma Chemistry – ISPC'2007, Kyoto, Japan, 26-31 August, (2007).

ACTI : 94 Bourig A., Martin J.P., Lago V., Thévenin D. and Zähringer K., “Modelling of the production of excited oxygen molecules in a crossed discharge (barrier discharge and CW discharge”, 18th International Symposium on Plasma Chemistry, Kyoto, Japan, (2007).

67

ACTI : 95 Bourig A., Martin J.P., Lago V., Thévenin D., Zähringer K., Pliavaka K.F., Pliavako F.V. and Gorbatov S.V., “Application of a non-self-sustained nanosecond pulsed discharge to a diffusion flame”, Aerospace Thematic Workshop "Fundamentals of Aerodynamic Flow and Combustion Control by Plasmas", Varenna, Italy, 28-31 May, (2007).

ACTI : 96 Bourig A., Martin J.P., Thévenin D., Lago V. and Zähringer K., “Plasma assisted combustion ; application to a diffusion flame”, Aerospace Thematic Workshop on "Fundamentals of Aerodynamic-Flow and Combustion Control by Plasmas", Varenna, Italy, 28 to 31 May, (2007).

ACTI : 97 Coduti G., Lazurenko A., Cavoit C., Krasnosselskikh V. and S. M., “A novel approach for assessing the electron transport properties in plasma thrusters”, 28th International Conference on Phenomena in Ionized Gases, Prague, Czech Republic, (2007).

ACTI : 98 Coduti G., Lazurenko A., Mazouffre S., Dudeck M., Dudock De Wit T., Cavoit C., Krasnoselskikh V. and Bouchoule A., “Investigation of electron transport properties in Hall thrusters through measurements of magnetic field fluctuations”, 30th International Electric Propulsion Conference, p. 143, Florence, Italy, (2007).

ACTI : 99 Dussart R., Thomann A.-L., Semmar N., Pichon L.E., Lagrange J.-F., Mathias J. and Mazouffre S., “Global evaluation and direct measurement of the energy transfer between an ICP argon plasma and a surface”, 18th International Symposium on Plasma Chemistry, Kyoto, Japan, (2007).

ACTI : 100 Ferrier M., Orlik E., Fedioun I. and Davidenko D., “Three dimensional linear stability analysis of the boundary and entropy layers on a hypersonic vehicle forebody”, 2nd European Conference for Aero-Space Sciences (EUCASS 2007), Brussels, Belgium, 1-6 July, (2007).

ACTI : 101 Mazouffre S., Gawron D., Kulaev V. and N. S., “A laser spectroscopic study on Xe+ ion transport phenomena in a 5 kW-class Hall effect thruster”, 30th International Electric Propulsion Conference, p. 160, Florence, Italy, (2007).

ACTI : 102 Mazouffre S., Gawron D., Lazurenko A., Dudeck M., D’escrivan S. and O. D., “Performance and physical characteristics of a 5 kW-class Hall effect thruster for space missions”, 2nd European Conference for Aerospace Sciences, Brussels, Belgium, (2007).

ACTI : 103 Mazouffre S., Lazurenko A., Lasgorceix P., Dudeck M., D’escrivan S. and O. D., “Expanding frontiers: Towards high power Hall effect thrusters for interplanetary journeys”, 7th International Symposium on Launcher Technologies, pp. Paper O-25, Barcelona, Spain, (2007).

ACTI : 104 Menier E., Depussay E., Lago V., Léger L., Martin J.P. and Lengrand J.C., “Experimental and numerical study of the influence of an electrical discharge on a mach 2 rarefied flow”, Aerospace Thematic Workshop on "Fundamentals of Aerodynamic-Flow and Combustion Control by Plasmas", Varenna, ITALY, 28-31 may, (2007).

ACTI : 105 Menier E., Lago V., Depussay E. and Lengrand J.C., “Influence of a DC Discharge on a supersonic rarefied air flow over a flat plate: experimental study”, 2nd European Conference for Aero-Space Sciences (EUCASS 2007), Bruxelles, Belgium, 1-6 july, (2007).

ACTI : 106 Pawelec E. and Mazouffre S., “Metastable oxygen atom velocity and temperature in expanding CO2 plasma jets”, 28th International Conference on Phenomena in Ionized Gases, Prague, Czech Republic, (2007).

68

ACTI : 107 Pliavaka K., Bourig A., Lago V., Martin J.-P., Pliavaka F., Gorbatov S. and Chernukho A., “Development of a HV pulsed power supply and a crossed discharge reactor for excited O2 generation”, Aerospace Thematic Workshop "Fundamentals of Aerodynamic Flow and Combustion Control by Plasmas", Varenna, Italy, 28-31 May, (2007).

ACTI : 108 Ferrier M., Orlik E., Fedioun I. and Davidenko D., “Transition Prediction of the 3D Boundary Layer Under a Hypersonic Vehicle Forebody”, 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, AIAA paper 2008-2599, Dayton, Ohio, 28 april - 1 may, (2008).

ACTI : 109 Kulaev V., Mazouffre S., Gawron D. and Sadeghi N., “Examination of the Xe+ ion velocity distribution functions in a high power Hall effect thruster”, 5th International Spacecraft Propulsion Conference, pp. 42-051, Heraklion, Crete, (2008).

ACTI : 110 Léger L., Depussay E. and Lago V., “Comparison of D.C. discharge and surface heater effect on supersonic rarefied air flow around a flat plate”, 19th ESCAMPIG (European Conference on Atomic and Molecular Physics of Ionized Gases), Grenade, Espagne, (2008).

ACTI : 111 Mazouffre S., Dudeck M., Kralkina E., Pavlov V., Rukhadze A., Vavilin K., Alexandrov A., Savinov V., Tarakanov V., Kim V., Kozlov V., Skrylnikov A., Bugrova A., Bugrov G., Kharchevnikov V., Lipatov A., Desyatskov A., Kroesen G., D’escrivan S. and S. Z., “Supplying the discharge of a Hall effect thruster with RF power: A novel approach to enhance thruster performances”, 5th International Spacecraft Propulsion Conference, pp. 42-068, Heraklion, Crete, (2008).

ACTI : 112 Mazouffre S., Kulaev V., Gawron D. and Sadeghi N., “Diagnostics of a discharge in crossed electric and magnetic fields for electric propulsion”, 19th Europhysics Conference on the Atomic and Molecular Physics of Ionized Gases, p. T03, Grenada, Spain, (2008).

ACTI : 113 Aanesland A., Popelier L., Leray G., Chabert P., Mazouffre S. and Gerst D., “Plasma Propulsion with electronegative gases”, 31st International Electric Propulsion Conference, p. 01, Ann Arbor, Michigan, (2009).

ACTI : 114 Bourgeois G. and Mazouffre S., “Examination of the temporal characteristics of electric field in a Hall effect thruster using a photon-counting technique”, 31st International Electric Propulsion Conference, p. 111, Ann Arbor, Michigan, (2009).

ACTI : 115 Dannenmayer K. and Mazouffre S., “Elementary scaling laws for sizing up and down Hall effect thrusters: Impact of symplifying assumptions”, 31st International Electric Propulsion Conference, p. 077, Ann Arbor, Michigan, (2009).

ACTI : 116 Garrigues L., Pérez-Luna J., Lo J., Hagelaar G.J.M., Boeuf J.-P. and Mazouffre S., “Determination of the axial electron mobility profile in the PPSX000 thruster”, 31st International Electric Propulsion Conference, p. 082, Ann Arbor, Michigan, (2009).

ACTI : 117 Kurzyna J., Mazouffre S. and Kulaev V., “Electric probe measurements of plasma oscillations in the 100-500 kHz range within the discharge of the PPSX000 Hall thruster”, 31st International Electric Propulsion Conference, p. 101, Ann Arbor, Michigan, (2009).

69

ACTI : 118 Lago V., Depussay E. and Léger L., “Optical measurements in the shock layer of a blunt body in an air plasma and CO2/N2 plasma”, 3rd European Conference for Aero-Space Sciences (EUCASS 2009), Versailles, France, july 6-9, (2009).

ACTI : 119 Léger L., Depussay E. and Lago V., “Experimental study of rarefied airflow modification around a cylinder by a dc discharge”, 3rd European Conference for Aero-Space Sciences (EUCASS 2009), Versailles, France, july 6-9, (2009).

ACTI : 120 Léger L., Depussay E. and Lago V., “Effect of DC corona discharge on rarefied supersonic airflow around a cylinder”, International Symposium on Electrohydrodynamics 2009, Faculty of engineering UNIMAS, Malaysia, (2009).

ACTI : 121 Mazouffre S. and Dannenmayer K., “Elementary scaling laws for the design of low and high power Hall effect thrusters”, 3rd European Conference for Aerospace Sciences, p. 53, Versailles, France, (2009).

ACTI : 122 Orlik E., Fedioun I. and Davidenko D., “Boundary Layer Transition on a Hypersonic Forebody : Experiments and Calculations”, 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, AIAA paper 2009-7352, Bremen, Germany, 19-22 october, (2009).

ACTI : 123 Orlik E., Kornilov V., Ferrier M., Fedioun I. and Davidenko D., “Hypersonic laminar/turbulent transition: calculations and experiments”, 3rd European Conference for Aero-Space Sciences (EUCASS 2009), Versailles, France, 6-9 July, (2009).

ACTI : 124 Bourgeois G., Mazouffre S. and Sadeghi N., “A time-resolved photon counting spectroscopy study on the ion velocity oscillations in a crossed-field discharge”, International Conference on Plasma Diagnostics, Pont-à-Mousson, France, (2010).

ACTI : 125 Dannenmayer K., Mazouffre S., Kudrna P. and Tichý M., “Measurement of plasma properties in the plume far-field of a Hall effect thruster using Langmuir and emissive probes”, International Conference on Plasma Diagnostics, Pont-à-Mousson, France, (2010).

ACTI : 126 Mazouffre S., Dannenmayer K., Bourgeois G., Guyot M., Denise S., Renaudin P., Gagan V. and Dudeck M., “Effect of channel geometry on discharge properties and performances of a low-power Hall effect thruster”, Space Propulsion Conference, San Sebastian, Spain, (2010).

ACTI : 127 Zmijanovic V., Palerm S., Oswald J., Lago V., Léger L., Sellam M., Depussay E. and Chpoum A., “Fluidic thrust vectorization of an axisymmetric nozzle”, Space propulsion 2010, San Sebastien , Spain, (2010).

ACTN : Communications avec actes dans un congrès national. ACTN : 4 Menier E., Depussay E., Viviana L., Léger L. and Lengrand J.C., “Influence

d’une décharge électrique sur un écoulement supersonique raréfié le long d’une plaque plane”, Société Française d’Electrostatique, Grenoble (France),, August 30-31, (2006).

ACTN : 5 Menier E., Depussay E., Lago V., Leger L., Martin J.P. and Lengrand J.C., “Etude expérimentale et numérique de l’influence d’une décharge électrique sur un écoulement supersonique raréfié le long d’une plaque plane”, AAAF, (2007).

70

ACTN : 6 Leger L., Depussay E. and Lago V., “Effet d’une décharge sur un écoulement supersonique raréfié autour d’une plaque plane : aspect thermique”, Société Française d’Electrostatique, Gif sur Yvette, juillet, (2008).

ACTN : 7 De Izarra L., Rouet J.-L. and Izrar B., “Construction d'une méthode multifaisceaux pour les écoulements en milieux poreux”, 19ème Congrès Français de Mécanique, p. 6, Marseille, France, 24-28 août, (2009).

INV : Conférences données à l’invitation du Comité d’organisation dans un congrès national ou international. INV : 24 Mazouffre S., “Recent advances in the physics of high power Hall effect

thrusters: Spatial and temporal characteristics of the Xe+ ion velocity distribution functions”, 34th European Physical Society Conference on Plasma Physics, Varsovie, Pologne, (2007).

INV : 25 Mazouffre S., “Diagnostics of a discharge in crossed electric and magnetic fields for electric propulsion”, 19th Europhysics Conference on the Atomic and Molecular Physics of Ionized Gases, Grenade, Espagne, (2008).

OS : Ouvrages scientifiques (ou chapitres de ces ouvrages). OS : 1 Mazouffre S., “Spectroscopie de fluorescence induite par diodes laser :

Application au diagnostic des plasmas.”, Systèmes d'analyse, Modélisation et Rayonnement, 6, (ed. S. Mottin), MRCT du CNRS, p. 67, St Etienne, 2009.

OS : 2 Thomann A.-L., Semmar N., Dussart R., Bedra L., Mathias J., Tessier Y. and Mazouffre S., “Un capteur de flux d'énergie dans les plasmas”, Systèmes d'analyse, Modélisation et Rayonnement, 6, (ed. S. Mottin), MRCT du CNRS, p. 97, St Etienne, 2009.

OV : Ouvrages de vulgarisation (ou chapitres de ces ouvrages). OV : 1 Mazouffre S. and Dudeck M., “Des plasmas pour voyager dans l'espace”,

Covalence, no. 59, pp. 2, 2006. OV : 2 Bouchoule A., Dudeck M., Mazouffre S. and Duchemin O., “La propulsion

électrique pour les missions spatiales”, La Lettre AAAF, no. 6, pp. 6, 2007. OV : 3 Mazouffre S., “PIVOINE-2g, la fine fleur de la propulsion”, Microscoop, no.

51, pp. 1, 2007. OV : 4 Mazouffre S., “Un nouveau défi pour la propulsion spatiale à plasma : la forte

puissance”, Microscoop, no. 52, pp. 2, 2007. OV : 5 Gökalp I. and Mazouffre S., “Homo Spatialis ?”, Covalence, no. 73, pp. 1,

2009. OV : 6 Mazouffre S., “Les propulseurs à plasma : Une technologie d'avant-garde”,

Reflets de la Physique, no. 14, pp. 5, 2009.

71

Thématique Matériaux & CVD ACL : Articles dans des revues internationales ou nationales avec comité de lecture ACL : 164 Met C., De Persis S., Vandenbulcke L., Aubry O., Delfau J.L., Vovelle C. and

Lago V., “Emission spectroscopy, mass spectrometry, and kinetics in CH4-CO2 Plasmas used for diamond deposition”, Journal of the Electrochemical Society, 153 (7), pp. F127-F131, (2006).

ACL : 165 Thomann A.L., Pavius M., Brault P., Gillon P., Sauvage T., Andreazza P. and Pineau A., “Plasma sputtering of an alloyed target for the synthesis of Zr-based metallic glass thin films”, Applied Physics a-Materials Science & Processing, 84 (4), pp. 465-470, (2006).

ACL : 166 Gries T., Vandenbulcke L., Simon P. and Canizares A., “Polarized micro-Raman spectroscopy for studying stresses in as-grown and tensile-tested diamond films”, Surface & Coatings Technology, 202 (11), pp. 2263-2267, (2008).

ACL : 167 Gries T., Vandenbulcke L., Simon P. and Canizares A., “Stresses in textured and polycrystalline cubic films by Raman spectroscopy: Application to diamond”, Journal of Applied Physics, 102, (2007).

ACL : 168 Gries T., Vandenbulcke L., Simon P. and Canizares A., “Anisotropic biaxial stresses in diamond films by polarized Raman spectroscopy of cubic polycrystals”, Journal of Applied Physics, 104 (2), (2008).

ACL : 169 Dolique V., Thomann A.L., Brault P., Tessier Y. and Gillon P., “Complex structure/composition relationship in thin films of AlCoCrCuFeNi high entropy alloy”, Materials Chemistry and Physics, 117 (1), pp. 142-147, (2009).

ACL : 170 Gries T., De Persis S., Vandenbulcke L., Met C., Delfau J.L. and De Barros-Bouchet M.I., “Experimental and kinetic studies of C-H-O plasmas for polycrystalline and nano-smooth diamond deposition”, Diamond and Related Materials, 18 (5-8), pp. 730-733, (2009).

ACL : 171 Gries T., Vandenbulcke L., De Persis S., Aubry O. and Delfau J.L., “Diagnostics and modeling of CH4-CO2 plasmas for nanosmooth diamond deposition: Comparison to experimental data”, Journal of Vacuum Science & Technology B, 27 (5), pp. 2309-2320, (2009).

ACL : 172 Vandenbulcke L., Gries T. and Rouzaud J.N., “Nanodiamonds in dusty low-pressure plasmas”, Applied Physics Letters, 94 (4), (2009).

ACL : 173 Dolique V., Thomann A.L., Brault P., Tessier Y. and Gillon P., “Thermal stability of AlCoCrCuFeNi high entropy alloy thin films studied by in-situ XRD analysis”, Surface & Coatings Technology, 204 (12-13), pp. 1989-1992, (2010).

ACL : 174 Gries T., Vandenbulcke L., Rouzaud J.N. and De Persis S., “Diagnostics in dusty C-H-O plasmas with diamond and graphitic nanoparticle generation”, Plasma Sources Science & Technology, 19 (2), (2010).

ACL : 175 Vandenbulcke L., Gries T., De Persis S., Met C., Aubry O. and Delfau J.L., “Molecular beam mass spectrometry and modelling of CH4-CO2 plasmas in relation with polycrystalline and nanocrystalline diamond deposition”, Diamond and Related Materials, 19 (7-9), pp. 1103-1116, (2010).

72

ACTI : Communications avec actes dans un congrès international. ACTI : 128 Gries T., Matta C., De Barros M.I., Vacher B., De Persis S. and Vandenbulcke

L., “Nano-smooth diamond coatings on various alloys for ultralow friction in the presence of OH-containing lubricants”, American Vacuum Society 55th International Symposium & Exhibition, Boston, USA, (2008).

ACTN : Communications avec actes dans un congrès national. ACTN : 8 Gries T., Vandenbulcke L., Simon P., Bormann D. and Canizares A.,

“Analyse par spectroscopie Raman de contraintes anisotropes sur des revêtements diamiant déposés sur alliages de titane”, 15èmes journées thématiques du Groupe Français de Spectroscopie Vibrationnelle, Toulouse, 25-27 juin 2008, (2008).

COM : Communications orales sans actes dans un congrès international ou national. COM : 32 Gries T., Vandenbulcke L., Canizares A. and Simon P., “Polarized micro-

Raman spectroscopy for studying stresses in as-grown and tensile-tested diamond films”, European Materials Research Society 2007 Spring Meeting, Strasbourg, France, 28 mai - 1er juin 2007, (2007).

COM : 33 Gries T., Vandenbulcke L., De Persis S., Lago L. and Bougdira J., “Characterization of CH4-CO2 plasmas for diamond deposition.”, 16th International Colloquium on Plasma Processes, Toulouse, France, (2007).

COM : 34 De Barros Bouchet M.I., Michel Martin J., Gries T., Vandenbulcke L. and Kano M., “Future trends in boundary lubrication of carbon-based coatings”, 19th European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes, and Nitrides, Sitges, Espagne, 7-11 septembre 2008, (2008).

COM : 35 Gries T., Matta C., De Barros Bouchet M.I., Vacher B. and Vandenbulcke L., “Nano-smooth diamond coatings for ultralow friction with green lubricants”, 14th International Conference on Thin Films & Reactive Sputter Deposition 2008, Ghent, Belgique, 17-20 novembre 2008, (2008).

COM : 36 De Barros Bouchet M.I., Matta C., Gries T., Vandenbulcke L., Le Mogne T. and Martin J.M., “Genesis of superlow friction with nano-smooth diamond coatings”, Annual Meeting of the Society of Tribologists & Lubrication Engineers, Orlando, USA, 17-21 mai 2009, (2009).

COM : 37 Rouzaud J.N., Le Guillou C., Vandenbulcke L. and Gries T., “On laboratory nanodiamonds as earth analogues of extraterrestrial carbons”, CARBON, Biarritz, France, 14-19 juin 2009, (2009).

COM : 38 Vandenbulcke L., De Persis S., Gries T. and Rouzaud J.N., “Synthesis of nanodiamonds by homogeneous nucleation in C-H-O plasmas experimental and modelling”, CARBON 2009, Biarritz, France, (2009).

COM : 39 Vandenbulcke L., Gries T., De Persis S., Met C., Aubry O. and Delfau J.-L., “Molecular beam mass spectrometry and modelling of CH4-CO2 plasmas in relation with polycrystalline and nano-smooth diamond deposition”, 36th International Conference on Metallurgical Coatings and Thin Films, San Diego, USA, (2009).

73

AFF : Communications par affiche dans un congrès international ou national. AFF : 74 Dollet A. and De Persis S., “Pressure dependent rate constants of reactions

involving SiH4, Si2H4, Si2H5 and Si2H6 adducts from Quantum Rice Ramsperger Calculations”, 19th International Symposium on Gas Kinetics, (eds. P. Dagaut and A. Mellouki), p. 399, Orléans, France, (2006).

AFF : 75 Gries T., De Persis S., Vandenbulcke L., Met C., Delfau J.-L. and De Barros M.I., “Experimental and kinetic studies of C-H-O plasmas for polycrystalline and nano-smooth diamond deposition”, 19th European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes, and Nitrides, Sitges, Spain, 7-11 september 2008, (2008).

AFF : 76 Gries T., Vandenbulcke L., Simon P., Bormann D. and Canizares A., “Anisotropic stresses in diamond coatings on titanium alloys by polarized micro-Raman spectroscopy”, 14th International Conference on Thin Films & Reactive Sputter Deposition 2008, Ghent, Belgique, (2008).

AFF : 77 Vandenbulcke L., Gries T., Rouzaud J.N. and De Persis S., “Homogeneous synthesis of nanodiamond grains in low-pressure plasmas”, Nanotech Conference & Expo, Houston, USA, 3-7 mai 2009, (2009).

AP : Autres productions : bases de données, logiciels enregistrés, traductions, comptes rendus d’ouvrages, AP : 3 Gillon P., Thomann A.-L. and Brault P., “Process for depositing a thin film of

metal alloy on a substrate and a metal alloy in thin film form”, Brevet international publié le 13 mars 2008. N° Dépôt/publication WO2008028981 A2, Déposants CNRS and Université-Orléans, (2008).

AP : 4 Vandenbulcke L., Gries T. and Rouzaud J.N., “Procédé d'élaboration de grains de nanodiamants par nucléation homogène dans un plasma”, Brevet international publié le 8 juillet 2008. N° Dépôt/publication WO 2010/003922, Déposant CNRS, (2008).

74

Productions Externes dans ancien laboratoire d’affectation ACL : Articles dans des revues internationales ou nationales avec comité de lecture ACL : 176 El Bakali A., Pillier L., Desgroux P., Lefort B., Gasnot L., Pauwels J.F. and

Da Costa I., “NO prediction in natural gas flames using GDF-Kin((R))3.0 mechanism NCN and HCN contribution to prompt-NO formation”, Fuel, 85 (7-8), pp. 896-909, (2006).

ACL : 177 Gueniche H.A., Glaude P.A., Dayma G., Fournet R. and Battin-Leclerc E., “Rich methane premixed laminar flames doped with light unsaturated hydrocarbons - I. Allene and propyne”, Combustion and Flame, 146 (4), pp. 620-634, (2006).

75

LISTES DES THESES ICARE (2006-2010) TH : 1 Olivani A., “Thermo-fluid-dynamic Analysis of Methane/Hydrogen/Air

Mixtures Under Reacting Conditions by Laser Diagnostics”, Ph.D. Thesis, Politecnico di Milano (Italy) & University of Orléans, Milano (Italy) - Orléans (France), 2006.

TH : 2 Amic K., “Oxygène atomique dans les conditions de l’environnement spatial et simulations d’une source entretenue par Laser.”, PhD Thesis, University of Paris VI, 2006.

TH : 3 Le Person A., “Pesticides et composés aromatiques : Etudes des cinétiques et mécanismes de leur dégradation en atmosphère simulée.”, University of Orléans, Orléans, 2006.

TH : 4 Mathieu O., “Étude cinétique de la formation des particules de suies dans les conditions de fonctionnement des moteurs automobiles.”, University of Orléans, Orléans, 2006.

TH : 5 Hadj-Ali K., “Etude cinétique de l’oxydation et de l’auto-inflammation en milieu gazeux homogène pauvre et ultra pauvre de carburants de substitution issus de la biomasse”, Ph.D. Thesis, University of Lille-I, Lille, 2007.

TH : 6 Cohé C., “Caractérisation de l'effet de la pression et de l'ajout de CO2 sur les flammes laminaires et turbulentes de prémélange pauvre méthane-air”, PhD thesis, Mécanique des fluides, University of Orléans, Orléans, France, 2007.

TH : 7 Osmont A., “Elaboration d’une méthode théorique de calcul des enthalpies de formation en phase gazeuse et condensée des molécules et radicaux de masse molaire élevée. Application à l’énergétique.”, Ph.D. Thesis, University of Orléans, Orléans, 2007.

TH : 8 Gougeon L., “Comparaison de schémas numériques pour la simulation d'écoulements turbulents réactifs”, Ph.D. Thesis, University of Orléans, Orléans, France, 2007.

TH : 9 Alseda D., “Combustion en mode Diesel homogène HCCI : recherche et caractérisation des espèces favorisant l’initiation et le déroulement de la combustion”, University of Orléans, Orléans, 2007.

TH : 10 Le-Cong T., “Etude expérimentale et modélisation de la combustion de mélanges CH4/H2/Air, CH4/CO2/H2/Air sous pression”, University of Orléans, Orléans, 2007.

TH : 11 Escot Bocanegra P., “Études expérimentales et modélisation de la combustion des nuages de particules micrométriques et nanométriques d'aluminium.”, Ph.D. Thesis, University of Orléans, Orléans, France, 2007.

TH : 12 Guilloteau A., “Étude multiphasique de polluants organiques aromatiques : répartition des hydrocarbures aromatiques polycycliques dans les suies et formation d’aérosols dans l’ozonolyse du catéchol.”, University of Orléans, Orléans, 2007.

TH : 13 Tabet-Helal F., “Simulation numérique des flammes turbulentes non-prémélangées d’hydrogène-air”, Ph.D. Thesis, University of Orléans, Orléans, 2007.

TH : 14 Gawron D., “Phénomènes de transport ionique dans le plasma d’un propulseur à effet Hall à forte puissance - Étude par spectroscopie laser.”, University of Orléans, 2007.

TH : 15 Menier E., “Influence d’une décharge électrique continue sur un écoulement supersonique raréfié.”, University of Orléans, Orléans, 2007.

76

TH : 16 Ferrier M., “Analyse de la stabilité et prévision de la transition laminaire / turbulent de l'écoulement proche paroi sur l'avant-corps d'un véhicule hypersonique”, Ph.D. Thesis, University of Orléans, Orléans, 2008.

TH : 17 Gries T., “Diagnostics in-situ de plasmas C-H-O, modélisation cinétique, élaboration et caractérisation de couches minces de diamant et de nanopoudres.”, University of Orléans, Orléans, 2008.

TH : 18 Diévart P., “Oxydation et combustion en milieu ultra-pauvre de carburants types gazoles. Etude expérimentale en réacteur agité et modélisation”, University of Lille I, Lille, 2008.

TH : 19 Piperel A., “Impact des propriétés des gaz d’échappement recirculés sur l’initiation et le déroulement de la combustion : caractérisation paramétrique de la réactivité de l’EGR”, University of Orléans, Orléans, 2008.

TH : 20 Marchal C., “Modélisation de la formation et de l’oxydation des particules de suie dans un moteur automobile”, Ph.D. Thesis, University of Orléans, Orléans, 2008.

TH : 21 Delmaere T., “Étude de l’effet d’un gradient de champ magnétique sur le dévelopement de flammes de diffusion laminaires.”, University of Orléans, 2008.

TH : 22 Nguyen M.-L., “Étude de réactions d’hydrocarbures aromatiques polycycliques adsorbés sur les suies avec les oxydants atmosphériques O3, NO2 et OH.”, University of Orléans, Orléans, 2008.

TH : 23 Lafosse F., “Etude expérimentale de la transition forcée déflagration-détonation en phase gazeuse et en présence de spray”, University of Orléans, Orléans, 2008.

TH : 24 Lopez B., “Simulation des Écoulements de Plasma Hypersonique Hors Équilibre Thermochimique : application aux Écoulements d'Arcjets et de Rentrée Atmosphérique.”, University of Orléans, Orléans, 2009.

TH : 25 Bourig A., “Combustion modification by non-thermal plasma.”, University of Orléans & Otto-Von-Guericke Universität Magdebourg, 2009.

TH : 26 Cheikhravat H., “Étude expérimentale de la combustion de l’hydrogène dans une atmosphère inflammable en présence de gouttes d’eau. ”, University of Orléans, Orléans, 2009.

TH : 27 Dubois T., “Étude des mécanismes cinétiques à haute température de mélanges représentatifs de carburants dans des conditions de fonctionnement proches des moteurs HCCI.”, University of Orléans, Orléans, 2009.

TH : 28 Mével R., “Étude de mécanismes cinétiques et des propriétés explosives des systèmes hydrogène-protoxyde d’azote et silane-protoxyde d’azote : application à la sécurité industrielle.”, University of Orléans, 2009.

TH : 29 Jouot F., “Étude de la détonation dans un jet diphasique cryogénique GH2-LOx : contribution aux études sur les moteurs à onde de détonation”, Ph.D. Thesis, University of Orléans, Orléans, 2009.

TH : 30 Bernard F., “Étude du devenir atmosphérique de composés organiques volatiles biogéniques : réactions avec OH, O3 et NO2.”, University of Orléans, Orléans, 2009.

TH : 31 Mameri A., “Etude numérique de la combustion turbulente du prémélange pauvre méthane/air enrichi à l'hydrogène”, Ph.D. Thesis, University of Orléans, Orléans, 2009.

TH : 32 De Iuliis S., “A schock tube flame study on soot growth rate from ethylene in presence of hydrogen by different optical diagnostics.”, University of Orléans & POLIMI, 2009.

77

TH : 33 Bouvet N., “Experimental and numerical studies of the fundamental flame speeds of methane/air and syngas (H2/CO)/air mixtures”, Ph.D. Thesis, University of Orléans, Orléans, 2009.

TH : 34 Orlik E., “Etude du champ aérodynamique et de la transition laminaire-turbulent sur l'avant-corps d'un véhicule hypersonique”, Ph.D. Thesis, University of Orléans, Orléans, 2009.

TH : 35 Yilmaz B., “Computational and experimental analysis of premixed combustion of hydrogen methane/air mixtures”, Ph.D. Thesis, University of Orléans & Marmara University (Turkey), 2009.

TH : 36 Matynia A., “Etude expérimentale et cinétique de la combustion de combustibles gazeux issus de la biomasse”, University of Orléans, Orléans, 2010.

TH : 37 Togbé C., “Etude cinétique de l’oxydation de constituants de biocarburants et composés modèles - Formation de polluants.”, University of Orléans, Orléans, 2010.

TH : 38 Mzé-Ahmed A., “Cinétique de la combustion de bio-carburants aéronautiques. Etude expérimentale et modélisation”, University of Orléans, Orléans, 2011.

TH : 39 Ramirez-Lancheros H., “Modélisation de l’auto-inflammation de carburants multi-composants, application aux biocarburants”, University of Orléans, Orléans, 2011.

TH : 40 May-Carle J.-B., “Ethanol et moteur Diesel, mécanisme de combustion et formation des polluants”, University of Orléans, Orléans, 2012.

78

Bibliometric status

Publications distribution

177

12 10

25

128

8

39

78

2 6 2 4

37

0

20

40

60

80

100

120

140

160

180

200

ACL

ACLNASCL

INV

ACTI

ACTNCOM

AFFOS OV

DO AP

These

s

Nu

mb

er o

f p

ub

lica

tio

ns

Journal Title Nbr of publications

5-Year Impact Factor

Acta Astronautica 1 0.522Aerosol Science and Technology 1 3.218Aerospace Science and Technology 1 1Applied Physics a-Materials Science & Processing 1 1.813Applied Physics Letters 3 3.78Atmospheric Chemistry and Physics 3 5.416Atmospheric Environment 4 3.584Chemical Physics Letters 1 2.402Chemosphere 3 3.762Combustion and Flame 14 3.465Combustion Explosion and Shock Waves 2 0.678Combustion Science and Technology 11 1.337Diamond and Related Materials 2 1.945Energy & Fuels 14 2.594Environmental Science & Technology 1 5.438European Physical Journal D 1 1.625Experimental Thermal and Fluid Science 2 1.557Fuel 6 3.087Geophysical Journal International 1 2.824High Temperature Material Processes 1 0.408Ieee Transactions on Dielectrics and Electrical Insulation 1 1.082Ieee Transactions on Plasma Science 1 1.253International Journal of Chemical Kinetics 4 1.584International Journal of Heat and Mass Transfer 1 2.378International Journal of Hydrogen Energy 4 4.452International Journal of plasma Environmental Science & Technology 1 #NAJournal of Analytical and Applied Pyrolysis 1 2.455Journal of Applied Physics 3 2.278

79

Journal of Atmospheric Chemistry 4 1.888Journal of Chromatography A 1 3.908Journal of Engineering for Gas Turbines and Power-Trans. of the Asme 2 0.842Journal of Photochemistry and Photobiology a-Chemistry 1 2.918Journal of Physical and Chemical Reference Data 1 3.817Journal of Physical Chemistry A 14 2.98Journal of Physics D-Applied Physics 3 2.305Journal of Propulsion and Power 1 1.007Journal of Spacecraft and Rockets 1 #NAJournal of the American Chemical Society 1 8.805Journal of the Electrochemical Society 1 2.666Journal of Vacuum Science & Technology B 1 1.331Materials Chemistry and Physics 1 2.264Measurement Science & Technology 1 1.44Oil & Gas Science and Technology-Rev.de l'Institut Francais du Petrole 1 1.164Physical Chemistry Chemical Physics 5 3.779Physics of Fluids 1 2.056Physics of Plasmas 3 2.24Plasma 2005 3 #NAPlasma 2007 1 #NAPlasma Physics and Controlled Fusion 1 2.493Plasma Sources Science & Technology 8 2.438Proceedings of the ASME Turbo Expo 3 #NAProceedings of the Combustion Institute 16 3.51Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy 1 0.723Process Safety Progress 1 0.541Progress in Energy and Combustion Science 3 12.44Propellants Explosives Pyrotechnics 2 1.316Russian Journal of Physical Chemistry B, Focus on Physics 1 #NASpectroscopy and Spectral Analysis 1 #NASurface & Coatings Technology 2 2.148The Journal of Supercritical Fluids 1 2.864Zeitschrift für Physikalische Chemie 1 #NA

80

ANNEXE 1 : Fiches Plateformes Expérimentales Voir fichier annexe pdf

81

ANNEXE 2 : Bilan de la Participation à l’Enseignement et la Formation par la Recherche Voir feuille Excel dans répertoire « annexes »

82

ANNEXE 3 : Action de Formation Permanente des Personnels de l’UPR3021

ANNEXE 3

Action de Formation Permanente

des Personnels de l’UPR3021

(2006 – 2010)

83

Les évolutions au laboratoire

L’évolution majeure a été la fusion au 1er janvier 2007, des deux laboratoires, LCSR et

Aérothermique en ICARE, Institut de Combustion, Aérothermique, Réactivité et

Environnement.

Les formations suivies par les personnels de l’Unité sont souvent liées aux différentes

évolutions qui ont lieu au sein du laboratoire :

- Les effectifs :

L’effectif total du laboratoire a diminué ces quatre dernières années. Les mutations et

départs à la retraite ont modifié le fonctionnement de certains services communs et/ou

équipes de recherche. Même si certains acquis ont pu être transmis, les agents qui

viennent d’arriver doivent s’adapter à leurs nouvelles conditions de travail, ce qui

nécessite une attention plus particulière par rapport à leurs besoins en formation.

- L’accession à de nouvelles fonctions :

Personne Compétente en Radioprotection (PCR)

Agent Chargé de la Mise en Œuvre des règles d'hygiène et de sécurité (ACMO)

- Les dispositifs expérimentaux

La conception, la réalisation, ou l’évolution des dispositifs expérimentaux, l’acquisition

de nouveaux appareils ou logiciels induisent presque systématiquement des actions de

formation le plus souvent sous la forme d’un stage constructeur ou d’un séjour dans un

laboratoire ayant la maîtrise de la technique à développer.

L’Analyse des besoins en formation ­ Méthodologie : 

Un questionnaire, rédigé par le correspondant formation (COFO), est adressé annuellement

par courrier électronique à l’ensemble des personnels sous couvert du Directeur de l’Unité.

Il s’articule en trois parties principales :

Le bilan des actions antérieures

L’analyse des besoins de formation pour l’année à venir

L’analyse des formations susceptibles d’être dispensées par le personnel du

laboratoire

84

En moyenne, une quinzaine de réponses à ce questionnaire sont collectées. Elles sont aussi

complétées par les « fiches d’évaluation et de recueil des besoins en formation », remplies

par les ingénieurs et techniciens, et remises par le directeur au COFO.

Un Plan de Formation de l’Unité (PFU) est ensuite rédigé, approuvé et signé par le

Directeur puis adressé au Bureau de la Formation Permanente de la Délégation Régionale.

Ce plan reprend les trois points principaux énoncés ci-dessus : les bilans des actions

antérieures et à venir ainsi que celui sur les formations dispensées par ICARE lui-même.

Un tableau récapitulatif résume l’ensemble des besoins exprimés en précisant l’intitulé de

la formation et sa priorité, le niveau recherché, la population visée ainsi que les modalités et

prestataires éventuels.

La plupart des besoins en formation exprimés chaque année dans le PFU trouvent une

réalisation. D’autres ne se concrétisent pas pour différentes raisons :

- emploi du temps des stagiaires incompatible avec les dates de stage

- demande exprimée retardée car matériel non acheté

- actions non encore proposées par le bureau de formation de la Délégation Régionale

- actions proposées par le bureau de formation de la Délégation Régionale mais non

adaptées au niveau de compétence.

C’est pourquoi, on peut retrouver dans l’analyse annuelle des besoins de formation des

demandes qui n’ont pas été réalisées l’année précédente. Enfin, aux demandes de formation

inscrites dans le plan de formation annuel, s’ajoutent très souvent d’autres actions de

formation plus spécifiques au laboratoire, à ses différents services et à ses équipes et qui

n’étaient pas prévisibles.

Il est aussi à noter que certaines actions de formation n’ont pas nécessité de demande

auprès du bureau régional de la formation permanente.

85

Bilan des formations suivies par les personnels de l’Unité

Entre 20 et 30 % des personnels du laboratoire se forment chaque année. Il y a en moyenne

une trentaine d’actions de formation dont au moins la moitié avec des intitulés différents.

La répartition entre personnel CNRS et non CNRS a été de 2/3 – 1/3 entre 2006 et 2008

mais est plus en défaveur des non-CNRS en 2009/2010 puisqu’1/10 d’entre eux seulement

ont été formés. La figure 1 donne la répartition des personnes formées en fonction de leur

statut dans l’unité entre 2006 et 2010.

2006/2007 2007/2008

2008/2009 2009/2010

0

5

10

15

20

25

Chercheurs Enseignants-chercheurs

Doctorants-Visiteurs-ATER-

Postdocs

30

35

IT

0

5

10

15

20

25

30

35

40

45

Chercheurs Enseignants-chercheurs

Doctorants-Visiteurs-ATER-

Postdocs

IT

Effectif total

Nombre de personnes formées

Nombre d'actions de formation

0

10

20

30

40

50

60

Chercheurs Enseignants-chercheurs

Doctorants-Visiteurs-ATER-

Postdocs

IT

Effectif total

Nombre de personnes formées

Nombre d'actions de formation

Effectif total

Nombre de personnes formées

0

5

10

15

20

25

30

35

Chercheurs Enseignants-chercheurs

Doctorants-Visiteurs-ATER-

Postdocs

IT0

5

10

15

20

25

30

35

40

45

50

Chercheurs Enseignants-chercheurs

Doctorants-Visiteurs-ATER-

Postdocs

IT

Effectif total

Nombre de personnes formées

Effectif total

Nombre de personnes formées

Figure 1 : Répartition des personnes formées en fonction de leur statut dans l’Unité entre 2006 et 2010 (ATER : Attachés Temporaires d’Enseignement/Recherche ; IT : Ingénieurs et Techniciens)

Le bilan de ces quatre années, soit plus précisément entre le 1er janvier 2006 et le 30 juin

2010 conduit à 157 actions de formations, dont 83 avec des intitulés différents, 68

86

personnes formées, dont 70% de personnel CNRS, et une répartition en fonction du statut

qui est donnée par le tableau 1 et la figure 2.

L’analyse des figures 1 et 2 et du tableau 1 montrent une forte proportion des personnels

formés chez les ingénieurs et techniciens ainsi que pour les chercheurs non permanents.

Leurs effectifs sont aussi plus nombreux, et ce chiffre est donc à corréler avec l’effectif

global pour chaque catégorie de personnel. Dans ce cas, on constate que ce sont les

personnels permanents qui sont en moyenne les plus formés. En effet, même si un

chercheur non permanent reçoit plus de formations annuellement, sa présence effective au

laboratoire sur la période citée plus haut est aussi plus courte.

Formations

Catégorie personnel

Nombre max de formations / personne

Nombre total de formations

Nombre total de personnes formées

Nombre moyen de formation / personne

Chercheurs permanents 4 17 7 2,4

Enseignants chercheurs 2 4 3 1,3

Chercheurs non permanents 4 58 34 1,7

Ingénieurs, techniciens 8 78 24 3,3

Tableau 1 : Statistiques des actions de formations en fonction de la catégorie de personnel ; la catégorie « chercheurs non permanents » regroupe les doctorants, post-doctorants, chercheurs sous contrats, chercheurs étrangers en détachement et ATER.

10%4%

51%

35%

Chercheurs Permanents

Enseignants-Chercheurs

Chercheurs Non Permanents

Ingénieurs, Techniciens

Figure 2 : Répartition des personnes formées en fonction de leur statut entre 01/01/2006 et 30/06/2010

Le tableau 2 ci-après donne une répartition selon le type de formation. On constate qu’il y a

un nombre important de formations liées à la prévention et à la sécurité, thème qui touche

87

l’ensemble des personnels du laboratoire. On voit aussi que les écoles thématiques (ex. :

école de combustion, vélocimétrie, granulométrie et spectroscopie laser) sont généralement

un outil de formation fortement utilisé par les doctorants. Ces derniers sont aussi les

principaux demandeurs de cours d’anglais. Du fait de la structure du laboratoire qui

possède de nombreuses installations, on observe de même une forte proportion de

formations sur des appareils spécifiques (ex. : chromatographes, analyseurs de gaz) et sur

l’informatique liée à la recherche (Labview, Fortran) pour les chercheurs et ingénieurs ainsi

que sur différentes techniques (ex. : vide-ultravide, maintenance de pompes) pour les

techniciens et ingénieurs. Enfin, une part non négligeable de formations concerne le

développement personnel avec principalement des formations de préparation aux concours

internes du CNRS pour les ingénieurs et techniciens.

Type de formations Nombre de formations Personnel concerné

Langues 10 CNP et IT

Bureautique 2 CP et IT

Gestion financière, Ressources humaines 5 IT

Développement personnel,

Culture générale et institutionnelle 14 IT

Prévention et sécurité 37 CNP, CP et IT

Communication, Management 1 CP

Conduite de projets, Valorisation

Financement de la Recherche 2 CP et IT

Ecoles thématiques 26 CNP

Connaissances liées aux techniques 18 IT

Formation sur un appareil spécifique 19 CNP, CP et IT

Informatique appliquée à la Recherche 15 CNP, CP et IT

Informatique : réseaux / systèmes 8 CP et IT

Tableau 2 : Répartition des formations par type ; CNP : chercheurs non permanents, IT : ingénieurs et techniciens, CP : chercheurs permanents

88

Bilan des formations dispensées par les personnels de l’Unité

La plupart des formations citées ci-dessous perdurent annuellement.

Formations internes :

- Hygiène et Sécurité et présentation du laboratoire par l’ACMO et le Directeur depuis

2003

- Sécurité laser par l’Ingénieur de Recherche en charge des lasers et du diagnostic optique

- Radioprotection par la PCR (Personne Compétente en Radioprotection) pour toute

personne travaillant en présence de sources radioactives

Formations externes :

- Ecoles thématiques (école de combustion par exemple) : participation régulière des

chercheurs aux enseignements.

- X-LAB : une gestionnaire du laboratoire formatrice (partie à la retraite en 2010)

- « Méthode de conduite et de gestion d’un projet technique/technologique – utilisation de

MS-Project » effectuée par un Ingénieur de Recherche.

- Sécurité laser dans le cadre de la formation d’ACMO ou de la formation des nouveaux

entrants, par l’Ingénieur de Recherche en charge des lasers et du diagnostic optique.

- Chimie (niveau 1) pour un personnel du groupe Servier dans le cadre du SEFCO-

Université par un maître de conférences depuis 2010.

- Techniques du vide dans le cadre du réseau des techniques du vide par deux ingénieurs de

recherche, depuis 2008

89

ANNEXE 4 : Rapport des actions Hygiène & Sécurité de l’UPR3021

ANNEXE 4

Rapport des actions du Comité Hygiène et Sécurité de l’UPR3021

(2006 – 2010)

90

Bilan des accidents et incidents, mesures prises

Année 2009 4 électrisations dont 1 consultation aux Urgences du CHRO 1 coupure avec consultation aux Urgences du CHRO 1 éclatement d'une enceinte lors d'un essai pression 1 chute dans les escaliers (présence de neige)

Année 2010 1 coupure à la main avec consultation à la clinique de la main: coupure sans gravité.

L'ACMO a rappelé à la personne concernée que le port de gants et de lunette était obligatoire lors d'opération d'usinage ou de manutention.

1 intoxication au méthyltrichlorosilane, la personne a été conduite à l'infirmerie qui a contacté le centre antipoison. Il nous a informé d'une possible irritation des voies respiratoires mais sans nécessité d’hospitalisation. Vers 17h par soucis de précaution, la personne a été conduite aux urgences du CHRO, placée sous oxygène le temps d'effectuer différents examens et ressortie vers 22h.

Identification et analyse des risques de l'unité

Un document unique est constitué chaque année avec le concours des différentes équipes de l’Unité. Ce document est présenté au comité Hygiène et Sécurité de l’Unité où il est débattu. Les ACMOs dressent la liste des actions de prévention à effectuer mais celle-ci peut varier en fonction des différents contrôles obligatoires réalisés en cours d'année.

Actions de prévention Date

prévisionnelle Date de

réalisation Lister les personnels manipulant des CMR Décembre 2010 En cours Mise en sécurité des tours et fraiseuses de l'atelier mécanique

Septembre 2010 Devis reçu

Mise en sécurité de l'escalier de la cafétéria, installation de nez de marche inox

Juillet 2010 Mai 2010

Amélioration de l'aspiration des sorbonnes : fermeture des ailettes des portes des laboratoires

Septembre 2010 Appel d'offre en cours

Aménagement d'un local "Déchets chimiques" Octobre 2010 En cours

d'aménagement Destruction de bouteilles de gaz Appel d'offre en

cours

91

92

Structure du comité d'hygiène et sécurité

Le comité d'hygiène et sécurité du laboratoire est constitué :

- du directeur I GOKALP - des 2 ACMOs (MM. F. PEYROUX et N. GOUILLON) - de la personne compétente en radioprotection - du service prévention et sécurité de la délégation - du service médical de la délégation - d'un membre de chaque équipe ou service du laboratoire

Le comité est renouvelé tous les 2 ans (dernier renouvellement décembre 2009), il se réunit deux fois par an.

Formation du personnel à l'hygiène et sécurité

Les ACMOs forment les "nouveaux entrants" tous les ans :

- aux risques liés à l'activité du laboratoire - à l'hygiène - à la sécurité - au règlement intérieur

Les "nouveaux entrants" sont ensuite formés par leur équipe sur les risques liés à leurs expériences. Les ACMOs sont en relation avec le correspondant formation pour organiser des stages de manipulation d'extincteur, de secourisme, d'utilisation de matériel … Chaque année, en collaboration avec le service prévention et sécurité de la délégation, un exercice incendie est organisé. Un débriefing a lieu ensuite par les pompiers présents sur le site.

Problèmes de sécurité

Suite au contrôle des sorbonnes réalisé par la société Igienair, un certain nombre d'entre elles sont déclarées non conformes. Des devis ont été demandés, les travaux de remplacement sont prévus fin 2010 et début 2011. L'aménagement de la passerelle rez-de-jardin reliant les 2 bâtiments d'ICARE reste un problème. Lorsqu'il pleut, la passerelle est inondée, il y a donc un risque de chute sur celle-ci mais également dans l'escalier menant à la cafétéria (partiellement résolu par des nez de marche antidérapant), risque d'autant plus élevé lorsqu'il gèle.