Beamforming antennas (1)

40
Beamforming Antennas for Wireless Communications Yikun Huang, Ph.D. ECE/CCB [email protected] November 24 2003

Transcript of Beamforming antennas (1)

Page 1: Beamforming antennas (1)

Beamforming Antennas for Wireless Communications

Yikun Huang, Ph.D.

ECE/CCB

[email protected]

November 24 2003

Page 2: Beamforming antennas (1)

Outline

Phased Array Antennas

Vector Antennas

Beamforming antennas for WLAN

Conclusion

IntroductionBeamforming and its applicationsBeamforming antennas vs. omnidirectional antennas

Direction of arrival (DOA) estimationBeamformingBasic configurations: fixed array and adaptive arraysmart antenna systems:switched array and adaptive array

DOA and polarizationsuper CART3-loop and 2-loop vector antenna arrayDirection of arrival (DOA) estimationVector antenna vs. phased array antenna

Infrastructure modeAn indoor WLAN designAd hoc modeAd hoc WLAN for rural area

Page 3: Beamforming antennas (1)

Applications Description

RADAR Phased array RADAR; air traffic control; synthetic aperture RADAR

SONAR Source location and classification

Communications Smart antenna systems; Directional transmission and reception; sector broadcast in satellite communications

Imaging Ultrasonic; optical; tomographic

Geophysical Exploration Earth crust mapping; oil exploration

Astrophysical Exploration High resolution imaging of universe

Biomedical Neuronal spike discrimination; fetal heart monitoring; tissue hyperthermia; hearing aids

Source: B.D.Van Veen and K.M. Buckley, University of Michigan, “Beamforming: A Versatile approach to spatial filtering”,1988

Applications of beamforming technology

Page 5: Beamforming antennas (1)

Phased array spike sorting

0.139

0.544

Ey1n t( )

1.2 1040 t

0.056

0.205

Ey2n t( )

1.2 1040 t

0.042

0.187

Ey3n t( )

1.2 1040 t

SortedSpike of

individual neurons.

12

34

1 65

67

89

1 41 5

1 31 2

1 11 0

0.139

0.534

Rn 3 t( )

1.2 1040 t

0.183

0.539

Rn 5 t( )

1.2 1040 t

0.147

0.534

Rn 7 t( )

1.2 1040 t

0.147

0.534

Rn 9 t( )

1.2 1040 t

0.183

0.539

Rn 11 t( )

1.2 1040 t

0.139

0.534

Rn 13 t( )

1.2 1040 t

0.14

0.534

Rn 1 t( )

1.2 1040 t

0.148

0.534

Rn 15 t( )

1.2 1040 t

Neuronal spikes

recorded by electrode

array

Phas

ed a

rray

spi

ke s

ortin

g sy

stem

Center for Computational Biology, MSU

Page 6: Beamforming antennas (1)

Patterns, beamwidth & Gain

Isotropic dipole

top

view

(hor

izon

tal)

side

vie

w(v

ertic

al)

half-wave dipole beamformer

21 /φ

Half-power beam width

Half-power beam width

Half-power beam width

Main lobe

side lobes

nulls

21 /θ78°

Page 7: Beamforming antennas (1)

Beamformers vs. omnidirectional antennas

1) Beamformers have much higher Gain than omnidirectional antennas: Increase coverage and reduce number of antennas!

Gain: 2

1

NGGN

0

30

60

90

120

150

180

210

240

270

300

330

6

4

2

0

6

9.961 10 7

Field 6 0 ( )

Field 2 0 ( )

Field 1 0 ( )

Page 8: Beamforming antennas (1)

Beamformers vs. omnidirectional antennas

2) Beamformers can reject interference while omnidirectional antennas can’t: Improve SNR and system capacity!

3) Beamformers directionally send down link information to the users while omnidirectional antennas can’t: save energy!

user

interference

user

interferencenull

Page 9: Beamforming antennas (1)

Beamformers vs. omnidirectional antennas

user user

null

multipath

4) Beamformers provide N-fold diversity Gain of omnidirectional antennas: increase system capacity(SDMA)

5) Beamformers suppress delay spread:improve signal quality

Page 10: Beamforming antennas (1)

DOA estimation

βφkdβφλdπ

kkk sinsinΔ 2

phase delay

1 2 3 4 5 6 7 NN-2 N-1N-3… …

… …

d

kk φdδ sin

Plane wave

Page 11: Beamforming antennas (1)

Beamforming

phase shifters

1 2 3 4 5 6 7 NN-2 N-1N-3

… …

… …

… …

1,,k 2,,k 3,,k 4,,k 5,,k 6,,k 7,,k N-3,,k N-2,,k N-1,,k N,,k

)sin)((Δ , βφkdN kkN 1

Page 12: Beamforming antennas (1)

phased array (fixed/adaptive) configurations-time domain

Basic phased array configurations

Narrowband

sN(k)

s2(k)

s1(k)

.

.

.

w*N

w*2

w*1

)(ky

broadband

sN(k)

s2(k)

s1(k)

.

.

.

)(ky

w*N,0 w*N,1 w*N,k-1. . .

Z-1 Z-1

w*2,0 w*2,1 w*2,k-1. . .

Z-1 Z-1

w*1,0 w*1,1 w*1,k-1. . .

Z-1 Z-1

Page 13: Beamforming antennas (1)

phased array (fixed/adaptive) configuration-frequency domain

Basic phased array configurations

……

sN(k)

s2(k)

s1(k)

.

.

.

-+

IFFT

MSE

FFT

w*N

w*2

w*1

)(ky

)(tdFFT

FFT

FFT

broadband

.

.

.

Page 14: Beamforming antennas (1)

Smart antenna systems

Military networks

Cellularcommunication

networks

Wireless local area networks

switched array adaptive array

switched array adaptive array

switched array adaptive array

Wi-Fi Data rate:11Mbps3G Data rate:100kbps

Page 15: Beamforming antennas (1)

Switched array (predetermined)

top view(horizontal)

Smart antenna systems

interference

user

1

2

345

6

7

8

9

10

1112 13

14

15

16

Page 16: Beamforming antennas (1)

user 1

Interference 1top view(horizontal)

user 2

Smart antenna systems

Interference 2

Adaptive array

Page 17: Beamforming antennas (1)

Smart antenna system

www.vivato.net

12

100

 In door range(Mixed Office)

11 Mbps: up to 300m5.5 Mbps: up to 400m 2 Mbps: up to 500m 1 Mbps: up to 600m

 Out door range

(outdoor to indoor)

11 Mbps: up to 1.00km5.5 Mbps: up to 1.25km 2 Mbps: up to 2.00km 1 Mbps: up to 2.50km

Out door range(outdoor to outdoor)

11 Mbps: up to 4.20km5.5 Mbps: up to 5.10km 2 Mbps: up to 6.00km 1 Mbps: up to 7.20km

Active user per switch 100

Example: Vivato 2.4 GHz indoor & outdoor Wi-Fi Switches

(EIRP=44dBm;Gain=25 dBi;3-beam)

Page 18: Beamforming antennas (1)

Polarizationcircular

E

linear

=0

E

E

ellipse

=45

X

Y

Z

iE

ηji eγE sin

γE i cos

E

E

=90

E

Page 19: Beamforming antennas (1)

SuperCART Compact array radiolocation technologyFlam&Russell,Inc.,1990U.S. Patent No., 5,300,885;1994Frequency range: 2 – 30 MHz

Super CART

Page 20: Beamforming antennas (1)

3-loopV6

V4

V3

V1 V2

V5

Y

X Le ZIV )0(0

Le ZIV )(

iHz 0ˆ

I

iEy 0ˆ

Ikb0.5

b

Page 21: Beamforming antennas (1)

2-loop

HE

S

Steering vector

γ

γaη

cosesin

ΘsinΘcosΦcosΦsin

ΘsinΦcosΘcosΦsin

hhe

ej

z

x

z

y

0

0

00

00

04

ζH

ii E00

1222 zyx eee

1222 zyx hhh

Blind point

Page 22: Beamforming antennas (1)

Vector antennas vs. spatial array antennas

Vector antennas measure: ,,,, and power simultaneously, no phase shift device, or synchronization is needed.

Phased array antennas with omnidirectional element measure: ,, and power

Page 23: Beamforming antennas (1)

Source: Nehorai,A.,University of Illinois at Chicago

Vector antennas vs. spatial array antennas

VA

SA

VA SA

Page 24: Beamforming antennas (1)

Vector antennas vs. spatial array antennas

Phased array antennas: spatial ambiguities exist

2211 φfφf sinsin

1 2 3 4 5 6 7… …

1 2 3 4 5 6 7… …

Pηγθφ ,,,,h,h,h,e,e,e zyxzyx

Vector antenna: no ambiguities for DOA estimation

Page 25: Beamforming antennas (1)

Vector antennas Vs. phased array antennas

Disadvantages of vector antennas

Cheap?

Can use hardware and software of existing communication systems for performance?

f=2.4GHz, =0.125m; vector antenna size: 0.0125m ~ 0.063m

Phased array:d /2=0.063m;L=(N-1)d: 0.188m-0.69m(N=4…12)

f=800MHz, =0.375m; antenna size: 0.04m ~ 0.19m

Phased array:d /2=0.19m;L=(N-1)d: 0.56m-2.06m(N=4…12)

Low profile?

Page 26: Beamforming antennas (1)

source:M.R. Andrews et al., Nature, Vol. 409(6818), 18 Jan. 2001, pp 316-318.

Working in scattering environment

Page 27: Beamforming antennas (1)

(a) 2-dipole(monopole)

Low profile antennas with polarization diversity

(c) dipole-loop

(b) 2-loop

Page 28: Beamforming antennas (1)

TDD/TDMA

Packet switching

AAP1 AP2

user

Handoff between Aps was not standardized at the same time as 802.11b

Page 29: Beamforming antennas (1)

Packet switching: 3 beam systemtop view(horizontal)

i

ii

PPPd 11

P. Sanchis, et al. 02

iP

1iP

1iP

φΔ

φΔ

1221

12

1221

dφdφ

dφdφ

dφdφ

φi

i

i

DOA

),/Δ(/

),/Δ(

),/Δ(/ˆ

max

max

max

Page 30: Beamforming antennas (1)

An indoor WLAN designA 4-story office building (including basement), high 30 m, wide 60m and long 100m. We plan to install a Vivato switched array on the 3rd floor.

L=100m

h=30m

w=60m

Switched array

3

2

1

Basement

Page 31: Beamforming antennas (1)

An indoor WLAN design

Data rate 1Mbps, 2Mbps, 5.5Mbps, 11Mbps

AP’s EIEP 44dBm

AP’s antenna Gain GA 25 dBi

PC antenna Gain GP 0 dBi

Shadowing 8dB

AP’s antenna receiving sensitivity Smin -95dBm ,-92dBm, ,-89dBm, -86dBm

AP’s Noise floor -178dBm/Hz

Body/orientation loss 2dB

Soft partition attenuate factor (p= number) p1.39 dB

Concrete-wall attenuate factor(q= number) q2.38 dB

Average floor attenuation(floor number) 14.0dB(1),19.0dB(2),23.0dB(3),26.0dB(4)

Frequency 2.4GHz

Reference pathloss PL0 (LOS/NLS, r=1m) 45.9dB/ 50.3dB

Pathloss exponent (LOS/NLS, r=1m) 2.1/3.0

Pathloss standard deviation (LOS/NLS) 2.3dB/4.1dB

Average floor attenuation(floor number) 14.0dB(1),19.0dB(2),23.0dB(3),26.0dB(4)

Data of AP’s antenna is from www.vivato.net

Page 32: Beamforming antennas (1)

An indoor WLAN designMean pathloss with smin: PGSEIRPL min

osdflsmwallowable LLLLLLPL

Path loss model: )log()(0

0 10rrγPLrPL

alPLrPL )(

The coverage ranges are:r=36m,29m,23m and 18m for date rate at 1Mbps, 2Mbps, 5.5Mbps and 11Mbps respectively

Allowable pathloss:

Case 1: user is on the 3rd floor: 3 concrete walls, 3 soft partitions

The coverage ranges are: r=176m,140m,111m and 88m for date rate at 1Mbps, 2Mbps, 5.5Mbps and 11Mbps respectively .

Case 2: user is in the basement : 3 floors; 2 concrete walls, 3 soft partitions

Page 33: Beamforming antennas (1)

Beamforming antennas in ad hoc networks

P.Gupta and P.R. Kumar,00

thro

ughp

ut o

btai

ned

by e

ach

node

nn logW~

Beam-forming antennas

?

new routing protocol

new channel access scheme

Page 34: Beamforming antennas (1)

Beamforming antennas in ad hoc networks

interference

target

Phased patch antenna

D.Lu and D.Rutledge,Caltech,02

Z0=50

Z0=50,L/2

Z0=25,L/2

Series resonant patch array

Phased patch array

Page 35: Beamforming antennas (1)

Beamforming antennas in ad hoc networks

Medium Access Control Protocol(CSMA/CA)CSMA/CA:carrier sense multiple access/collision avoidance ( for omnidirectional antennas)

(Scheduled/On-demand)Packet routing

Neighbor discovery

No standard MAC protocols for directional antenna

Ad hoc networks may achieve better performance in some cases using beamforming antennas.

No obvious improvement for throughput using beamforming antennas

Neighbor discovery become more complex using beamforming antennas.

Beamforming antennas can significantly increasing node and network lifetime in ad hoc networks.

Page 36: Beamforming antennas (1)

1) traditional exposed node problem for omnidirectional antennas

Channel access

Source:Y Ko et al., 00

A B C D E

RTS

CTSDATA

ACK

RTS

CTS

DATA

DATA

DATA

ACK

A B C D E

RTS

CTS CTS

DATA

DATAACK

RTS

CTS CTS

DATA

DATA

ACK

1) No coverage change. May save power.2) B may not know the location of C.

The nodes are prohibit to transmit or receive signals

The node is free to transmit or receive signals

The node is blocked to communicate with C

2) Omnidirectional and directional antennas solve the exposed node problem

Page 37: Beamforming antennas (1)

Channel access

A B C D E

RTS

CTSCTS

DATA

RTS

collision

deafcollision

A B C D E

RTS

CTSDATA

DATA

RTS

3) beamforming antennas create new problems

Page 38: Beamforming antennas (1)

Neighbor discovery

AB

C

DE

A

t

Nt“Hello”

AP Neighbors

A B,CB A,CC A,B,ED EE C,D

 

Page 39: Beamforming antennas (1)

Ad hoc WLAN for rural area

Page 40: Beamforming antennas (1)

ConclusionBeamforming antenna systems improve wireless

network performance -increase system capacity

-improve signal quality -suppress interference and noise -save powerBeamforming antennas improve infrastructure

networks performance. They may improve ad hoc networks performance. New MAC protocol standards are needed.

Vector antennas may replace spatial arrays to further improve beamforming performance