Beam Deflections Using Double Integration...Beam Deflections Using Double Integration Steven...

21
Beam Deflections Using Double Integration Steven Vukazich San Jose State University

Transcript of Beam Deflections Using Double Integration...Beam Deflections Using Double Integration Steven...

Beam Deflections Using Double IntegrationStevenVukazich

SanJoseStateUniversity

𝑑"𝑦𝑑π‘₯"

=𝑀𝐸𝐼

Recall the Moment-Curvature Relationshipfor Small Deformations

In order to solvethis differential equation for y and πœƒ we need:β€’ Moment equation (from statics);β€’ Two boundary (or continuity)

conditions on y or πœƒ;β€’ Information on E and I.

PM

w

x

y πœƒ π‘₯ =𝑑𝑦𝑑π‘₯

𝑦 π‘₯

Example Problem

A

w

x

y

𝑦 π‘₯Modulus of Elasticity = EMoment of Inertia = I

B

Find the equation of the elastic curve for the simply supported beam subjected to the uniformly distributed load using the double integration method. Find the maximum deflection. EI is constant.

L

Free Body Diagram of the Beam

Need to find the moment function M(x)

Ax

Ay By

A

w

x

y

B

L

0𝑀1

οΏ½

οΏ½

= 0+

Free Body Diagram of the Beam

Ax

Ay By

A

w

x

y

B

L

12𝑀𝐿

23𝐿

𝐡; =13𝑀𝐿

Free Body Diagram of the Beam

Ax

Ay By

A

w

x

y

B

L

12𝑀𝐿

23𝐿

𝐴; =16𝑀𝐿

0𝐹;

οΏ½

οΏ½

= 0+

0𝐹?

οΏ½

οΏ½

= 0+

Free Body Diagram of the BeamShowing Known Reactions

A

w

x

y

B

L

13𝑀𝐿

16𝑀𝐿

a

a

Cut the beam at a-a to find the moment function M(x)

x

M

V16𝑀𝐿

𝑀 =𝑀𝐿π‘₯

Free Body Diagram of Segment to the Left of a–a

x

M

V16𝑀𝐿

𝑅 =12π‘₯

𝑀𝐿π‘₯ =

𝑀2𝐿π‘₯"

23π‘₯

13π‘₯

a

a

a

a 0𝑀A

οΏ½

οΏ½

= 0+

𝑀 =𝑀𝐿6π‘₯ βˆ’

𝑀6𝐿π‘₯C

Need Two Boundary Conditions on y or πœƒ

A

w

x

y

𝑦 π‘₯Modulus of Elasticity = EMoment of Inertia = I

B

L

𝑦 0 = 0

𝑦 𝐿 = 0

Solve the Differential Equation

A

w

x

y

𝑦 π‘₯Modulus of Elasticity = EMoment of Inertia = I

B

L

𝑦 0 = 0

𝑦 𝐿 = 0𝑑"𝑦𝑑π‘₯"

=𝑀𝐸𝐼

𝑀 =𝑀𝐿6π‘₯ βˆ’

𝑀6𝐿π‘₯C

For constant EI

𝐸𝐼𝑑"𝑦𝑑π‘₯"

= 𝑀

𝐸𝐼𝑑"𝑦𝑑π‘₯"

=𝑀𝐿6π‘₯ βˆ’

𝑀6𝐿π‘₯C

𝐸𝐼𝑑"𝑦𝑑π‘₯"

=𝑀𝐿6π‘₯ βˆ’

𝑀6𝐿π‘₯C

First Integration

D𝐸𝐼𝑑"𝑦𝑑π‘₯"

οΏ½

οΏ½

𝑑π‘₯ = D𝑀𝐿6π‘₯ βˆ’

𝑀6𝐿π‘₯C 𝑑π‘₯

οΏ½

οΏ½

𝐸𝐼𝑑𝑦𝑑π‘₯

= βˆ’π‘€24𝐿

π‘₯F +𝑀𝐿12

π‘₯" + 𝐢H

πΈπΌπœƒ = βˆ’π‘€24𝐿

π‘₯F +𝑀𝐿12

π‘₯" + 𝐢H

𝑦 0 = 0

𝑦 𝐿 = 0

Second Integration

D𝐸𝐼𝑑𝑦𝑑π‘₯

οΏ½

οΏ½

𝑑π‘₯ = D βˆ’π‘€24𝐿

π‘₯F +𝑀𝐿12

π‘₯" + 𝐢H 𝑑π‘₯οΏ½

οΏ½

𝐸𝐼𝑑𝑦𝑑π‘₯

= βˆ’π‘€24𝐿

π‘₯F +𝑀𝐿12

π‘₯" + 𝐢H

𝐸𝐼𝑦 = βˆ’π‘€

120𝐿π‘₯I +

𝑀𝐿36

π‘₯C + 𝐢Hπ‘₯ + 𝐢"

Use the two boundary conditions to find C1 and C2

Find Constants C1 and C2

𝑦 0 = 0

𝑦 𝐿 = 0

𝐸𝐼𝑦 = βˆ’π‘€

120𝐿π‘₯I +

𝑀𝐿36

π‘₯C + 𝐢Hπ‘₯ + 𝐢"

𝐸𝐼 0 = βˆ’π‘€

120𝐿0 I +

𝑀𝐿36

0 C + 𝐢H 0 + 𝐢"

𝐸𝐼 0 = βˆ’π‘€

120𝐿0 I +

𝑀𝐿36

0 C + 𝐢H 0 + 𝐢"

𝐢" = 0

𝐸𝐼 0 = βˆ’π‘€

120𝐿𝐿 I +

𝑀𝐿36

𝐿 C + 𝐢H 𝐿 + 𝐢"

𝐢H =𝑀𝐿C

120βˆ’π‘€πΏC

36= βˆ’

7𝑀𝐿C

360

Functions for y and πœƒ

𝐸𝐼𝑦 = βˆ’π‘€

120𝐿π‘₯I +

𝑀𝐿36

π‘₯C βˆ’7𝑀𝐿C

360π‘₯

πΈπΌπœƒ = βˆ’π‘€24𝐿

π‘₯F +𝑀𝐿12

π‘₯" βˆ’7𝑀𝐿C

360

𝑦 π‘₯ =1𝐸𝐼

βˆ’π‘€

120𝐿π‘₯I +

𝑀𝐿36

π‘₯C βˆ’7𝑀𝐿C

360π‘₯

πœƒ π‘₯ =1𝐸𝐼

βˆ’π‘€24𝐿

π‘₯F +𝑀𝐿12

π‘₯" βˆ’7𝑀𝐿C

360

Functions for y and πœƒ

A

w

x

y

𝑦 π‘₯Modulus of Elasticity = EMoment of Inertia = I

B

L

𝑦 π‘₯ =1𝐸𝐼

βˆ’π‘€

120𝐿π‘₯I +

𝑀𝐿36

π‘₯C βˆ’7𝑀𝐿C

360π‘₯

πœƒ π‘₯ =1𝐸𝐼

βˆ’π‘€24𝐿

π‘₯F +𝑀𝐿12

π‘₯" βˆ’7𝑀𝐿C

360

πœƒ π‘₯ =𝑑𝑦𝑑π‘₯

Questions

A

w

x

y

𝑦 π‘₯

Modulus of Elasticity = EMoment of Inertia = I

B

L

𝑦 π‘₯ =1𝐸𝐼

βˆ’π‘€

120𝐿π‘₯I +

𝑀𝐿36

π‘₯C βˆ’7𝑀𝐿C

360π‘₯

πœƒ π‘₯ =1𝐸𝐼

βˆ’π‘€24𝐿

π‘₯F +𝑀𝐿12

π‘₯" βˆ’7𝑀𝐿C

360

πœƒ π‘₯ =𝑑𝑦𝑑π‘₯

How can we find the maximum displacement?Where does the maximum displacement occur?How can we find the rotation at the supports?

Answers

A

w

x

y

𝑦max

Modulus of Elasticity = EMoment of Inertia = I

B

L𝑦 π‘₯ =

1𝐸𝐼

βˆ’π‘€

120𝐿π‘₯I +

𝑀𝐿36

π‘₯C βˆ’7𝑀𝐿C

360π‘₯

πœƒ π‘₯ =1𝐸𝐼

βˆ’π‘€24𝐿

π‘₯F +𝑀𝐿12

π‘₯" βˆ’7𝑀𝐿C

360

πœƒ = 0

ymax occurs where πœƒ = 0

πœƒA is πœƒ(0) πœƒB is πœƒ(L)

?

πœƒ 𝐿

πœƒ 0

Point Where Maximum Deflection Occurs

π‘ž =βˆ’π‘ Β± 𝑏" βˆ’ 4π‘Žπ‘οΏ½

2π‘Ž

πœƒ π‘₯ =1𝐸𝐼

βˆ’π‘€24𝐿

π‘₯F +𝑀𝐿12

π‘₯" βˆ’7𝑀𝐿C

360= 𝟎

Set πœƒ = 0

βˆ’124π‘ž" +

𝐿"

12π‘ž βˆ’

7𝐿F

360= 𝟎

Let π‘ž = π‘₯" Multiply both sides by TUVW

π‘ž =βˆ’ 𝐿"12 Β±

𝐿F144 βˆ’ 4 βˆ’ 1

24 βˆ’ 7𝐿F360

οΏ½

2 βˆ’ 124

= 𝐿" ± 12𝐿F

144βˆ’

16

7𝐿F

360οΏ½

= 𝐿" ± 12𝐿"1270

οΏ½

π‘ž = 𝐿" Β± 4𝐿"130

οΏ½= 1 + 4

130οΏ½ , 𝟏 βˆ’ πŸ’

πŸπŸ‘πŸŽοΏ½ 𝐿"

π‘₯ = 1 βˆ’ 4130οΏ½

�𝐿 = 0.51893𝐿

Maximum Deflection

A

w

x

y

𝑦max

Modulus of Elasticity = EMoment of Inertia = I

B

L

πœƒ = 0

πœƒ 𝐿

πœƒ 0

1 βˆ’ 4130οΏ½

�𝐿 = 0.51893𝐿

𝑦max =1𝐸𝐼

βˆ’π‘€

120𝐿0.5193𝐿 I +

𝑀𝐿36

0.5193𝐿 C βˆ’7𝑀𝐿C

3600.5193𝐿 = βˆ’0.006522

𝑀𝐿F

𝐸𝐼

Slope at Supports

A

w

x

y

Modulus of Elasticity = EMoment of Inertia = I

B

L

πœƒ1 = πœƒ 0 =1𝐸𝐼

βˆ’7𝑀𝐿C

360= βˆ’

7𝑀𝐿C

360𝐸𝐼= βˆ’0.01944

𝑀𝐿C

𝐸𝐼

πœƒ 𝐿

πœƒ 0

πœƒ` = πœƒ 𝐿 =1𝐸𝐼

βˆ’π‘€24𝐿

𝐿F +𝑀𝐿12

𝐿" βˆ’7𝑀𝐿C

360=𝑀𝐿C

45𝐸𝐼= 0.02222

𝑀𝐿C

𝐸𝐼

Compare to Tabulated Solution in AISC Manual

π‘Š =12𝑀𝐿