Beam and spin dynamics studies in eRHIC ERL · ERL2015 Workshop, BNL-STONY BROOK UNIVERSITY, 7-12...

35
ERL2015 Workshop, BNL-STONY BROOK UNIVERSITY, 7-12 June 2015 Beam and spin dynamics studies in eRHIC ERL Franc ¸ois M´ eot, BNL C-AD Contents 1 Basic principles 3 1.1 Particle dynamics ......................................................... 3 1.2 Spin ................................................................... 6 2 eRHIC FFAG optics 9 3 Dynamical effects of SR in eRHIC FFAG-II ERL 12 3.1 Working conditions ....................................................... 12 3.2 Orders of magnitude of the effects ............................................ 13 3.2.1 Longitudinal phase space ............................................... 13 3.2.2 Transverse phase space ................................................ 15 3.3 End-to-end bunch tracking, cumulated effects (initial ǫ x ǫ y =0 and dp/p=0) ........... 16 3.4 End-to-end 9-D tracking, nominal initial transverse emittances 50πµm ................ 18 4 Dispersion suppressors 20 5 Dynamical acceptance of eRHIC FFAG lattice 22 6 Injecting alignment defects 27 6.1 Horizontal misalignment ................................................... 27 6.2 Vertical misalignment ...................................................... 29 6.3 Investigating alignment error correction of a 11-beam set ........................... 30

Transcript of Beam and spin dynamics studies in eRHIC ERL · ERL2015 Workshop, BNL-STONY BROOK UNIVERSITY, 7-12...

  • ERL2015 Workshop, BNL-STONY BROOK UNIVERSITY, 7-12 June 2015

    Beam and spin dynamics studies in eRHIC ERL

    François Ḿeot, BNL C-AD

    Contents

    1 Basic principles 31.1 Particle dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 31.2 Spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 6

    2 eRHIC FFAG optics 9

    3 Dynamical effects of SR in eRHIC FFAG-II ERL 123.1 Working conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 123.2 Orders of magnitude of the effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    3.2.1 Longitudinal phase space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133.2.2 Transverse phase space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    3.3 End-to-end bunch tracking, cumulated effects (initialǫx ≈ ǫy = 0 and dp/p=0). . . . . . . . . . . 163.4 End-to-end 9-D tracking, nominal initial transverse emittances50πµm . . . . . . . . . . . . . . . . 18

    4 Dispersion suppressors 20

    5 Dynamical acceptance of eRHIC FFAG lattice 22

    6 Injecting alignment defects 276.1 Horizontal misalignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .276.2 Vertical misalignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 296.3 Investigating alignment error correction of a 11-beam set. . . . . . . . . . . . . . . . . . . . . . . . . . . 30

  • ERL2015 Workshop, BNL-STONY BROOK UNIVERSITY, 7-12 June 2015

  • ER

    L2015W

    orkshop,BN

    L-ST

    ON

    YB

    RO

    OK

    UN

    IVE

    RS

    ITY,7-12

    June2015

    1 Basic principles

    1.1 Particle dynamics

    • Electrons circulating in eRHIC FFAG arcs loose energy by synchrotron radia-tion (SR)

    Over a trajectory arc ∆θ,with constant curvature1/ρ, relative average energyloss :

    ∆E

    E= 1.879× 10−15 γ

    3

    ρ∆θ

    Energy loss at top energy,starting with E=21.16 GeV :

    0 500 1000 1500 2000

    -100

    -80

    -60

    -40

    -20

    Zgoubi|Zpop 16/03/**

    * # COORDINATES - STORAGE FILE, 16/03/14 08:56:13. *

    ELoss (MeV) vs. s (m)

    * Ex. : at E=21.16 GeV, loss over a 6-arc ring, 2138 m distance, is ∆E ≈ 100 MeV .

  • ER

    L2015W

    orkshop,BN

    L-ST

    ON

    YB

    RO

    OK

    UN

    IVE

    RS

    ITY,7-12

    June2015

    • SR is a stochastic process, photons fluctuate in number and energy,thus inducing

    - energy spread,

    σEE

    = 3.794× 10−14 γ5/2

    ρ

    √∆θ

    * Ex. : σE = 5.2 MeV af-ter 11 passes in eRHIC from7.94 to 21.16 GeV.

    Energy spreadσE after 11 passesin eRHIC from 7.944 to 21.16 GeV :

    20835 20845 20855 208650

    10

    20

    30

    40

    50

    60

    70

    Zgoubi|Zpop 16/03/**

    * # COORDINATES - STORAGE FILE, 05/02/14 16:42:51. *

    dN/dE vs. E (MeV)

    - and bunch lengthening [*],

    σl =(σEE

    )

    [

    1

    Lbend

    ∫ sf

    s

    (Dx(s)T51(sf ← s) +D′x(s)T52(sf ← s)− T56)2ds

    ]1/2

    (the integral is taken over the bends).

    * Ex. : bunch lengthening is σl ≈ 5µm at 21.16 GeV in a 6-arc ring.

    ——–[*] G. Leleux et al., Synchrotron Radiation Perturbations in Long Transport Lines, PAC 91.

  • ER

    L2015W

    orkshop,BN

    L-ST

    ON

    YB

    RO

    OK

    UN

    IVE

    RS

    ITY,7-12

    June2015

    • The energy loss causes a spiraling of the beam centroid.

    Over a distance[si, sf ] :

    [

    x(sf)

    x′(sf)

    ]

    = T (sf ← si)×[

    x(si)

    x′(si)+

    σEE

    {

    < U >

    < V >

    }]

    [

    U(se)

    V (se)

    ]

    =

    Dx(si)−∫ sesi

    T12(s← si)ρ(s)

    ds

    D′x(si) +∫ sesi

    T11(s← si)ρ(s)

    ds

    Inward spiraling of the electron beamat 21 GeV in a 6-arc ring

    0 500 1000 1500 2000

    0.00424

    0.00426

    0.00428

    0.0043

    0.00432

    0.00434

    Zgoubi|Zpop 16/03/**

    * # COORDINATES - STORAGE FILE, 16/03/14 08:56:13. *

    x (m) vs. s (m)

    * Ex. : ∆x = −0.12mm at 21.16 GeV, over 6 arcs, 2138 m distance.

    • and horizontal emittance growth,

    ∆σ(sf) = T (sf ← si)×

    (σEE

    )2[

    < U 2 > < UV >

    < UV > < V 2 >

    ]

    × T̃ (sf ← si)

    Horizontal phase space after 21 passes7.944→ 21.16→ 7.944 GeV.

    -.00542 -.0054 -.00538 -.00536 -.00534 -.00532

    0.005

    0.00502

    0.00504

    0.00506

    0.00508

    0.0051

    0.00512

    0.00514

    Zgoubi|Zpop 12/03/**

    * # COORDINATES - STORAGE FILE, 11/03/14 07:40:51. *

    x’ (rad) vs. x (m)

    * Ex. : SR induced emittance isβγǫx ≈ 2 πµm , after 11 passes in eRHIC, from7.94 to 21.16 GeV.

  • ER

    L2015W

    orkshop,BN

    L-ST

    ON

    YB

    RO

    OK

    UN

    IVE

    RS

    ITY,7-12

    June2015

    1.2 Spin

    • Averages and second momenta build up upon stochastic SR.

    • Spin precession around the vertical dipole fieldsamounts to

    φ = aγθ

    a = 1.1610−3, anomalous gyromagnetic factor

    γ is the Lorentz relativistic factor

    θ is the particle deflection angle.

    * Over a turn at E=21.16 GeV, spin undergoesaγ ≈45 precessions around the vertical axis.

    • Stochastic SR causes stochastic change inprecession rate, hence spin diffusion

    Complete ERL ring,arcs+straights+DS.

    Starting 6-D emittance zero.Spin angle density after accelerationfrom 7.9 to 21.16 GeV in 11 passes :

    40 60 80 100 120 1400

    20

    40

    60

    80

    100

    120

    140

    160

    Zgoubi|Zpop 07-06-2015 COUNT vs.

    σφ = 14.89 degcos(σφ) = 0.966

  • ER

    L2015W

    orkshop,BN

    L-ST

    ON

    YB

    RO

    OK

    UN

    IVE

    RS

    ITY,7-12

    June2015

    • Evolution of the diffusion [*]

    In constant magnetic field :

    ∆E2

    ∆E∆φ

    ∆φ2

    =

    1 0 0

    αs 1 0

    α2s2 2αs 1

    ∆E2

    ∆E∆φ

    ∆φ2

    s=0

    +ω×

    s

    αs2/2

    α2s3/3

    ω = Cρ3λ̄creγ

    5E2 ≈ 1.44× 10−27γ5

    ρ3E2 (λ̄c = ~/mec electron Compton wavelength, E in GeV),

    C = 110√3/144,

    α = aρE0≈ 10.4406ρ (with a = 1.16× 10

    −3, electron massE0 = 0.511× 10−3 GeV).

    • Cumulated spread, over a six-arc ring (2138 m circumference), from7.9 to 21.2 GeV :

    0

    2

    4

    6

    8

    10

    12

    20 25 30 35 40 45 0

    2

    4

    6

    8

    10

    12

    8 10 12 14 16 18 20

    σ φ [deg.]

    Design G.γ

    Design energy [GeV]

    beam Etheory

    σφ (εx=0)

    [*] cf. V. Ptitsyn, EIC’14

  • ER

    L2015W

    orkshop,BN

    L-ST

    ON

    YB

    RO

    OK

    UN

    IVE

    RS

    ITY,7-12

    June2015

    • Ray-tracing

    Particle and spin motion

    u (M1)M1

    R (M 1

    )

    u (M0)

    R (M

    0)

    z

    xy

    Z

    Y

    X

    M

    0

    Reference

    Position and velocity of a particle, pushed from lo-cationM0 to locationM1 in Zgoubi frame.

    d(m~v)

    dt= q (~e + ~v ×~b) ,

    d~S

    dt=

    q

    m~S × ~ω

    with ~ω = (1 + γa)~b + a(1− γ)~b//a : gyromagnetic factor,γ : Lorentzrelativistic factor, c : velocity of light,q : charge,m :mass.

    • Both equations are solved using a truncated Taylor series in the step size∆s,

    ~a(M1) ≈ ~a(M0) +d~a

    ds(M0)∆s + ... +

    dn~a

    dsn(M0)

    ∆sn

    n!(1)

    - Solving particle motion : ~a stands for position ~R or normalized velocity ~u = ~v/v,- Solving spin motion :~a stands for the spin~S.

    • The local magnetic field and its derivatives fully determine the coefficients a(n) = dna/dsn inthis Taylor series.

  • ER

    L2015W

    orkshop,BN

    L-ST

    ON

    YB

    RO

    OK

    UN

    IVE

    RS

    ITY,7-12

    June2015

    2 eRHIC FFAG optics

    •Stepwise methods allow detailed insight in the FFAG cell:

    • Orbits in defocus-ing quad and focusingquad :

    0.0 0.2 0.4 0.6 0.8

    -.008

    -.007

    -.006

    -.005

    -.004

    -.003

    -.002

    -.001

    0.0

    05/11/**

    BD

    x (m) vs. s (m) 21.16 GeV

    7.94 GeV

    0.0 0.2 0.4 0.6 0.8 1.

    -.002

    0.0

    0.002

    0.004

    0.006

    0.008

    QF

    x (m) vs. s (m) 21.16 GeV

    7.94 GeV

    • Field along orbits :

    Trajectory curvature varies continuouslyacross the magnets.

    0.0 0.5 1. 1.5 2. 2.5

    -.1

    0.0

    0.1

    0.2

    0.3

    0.4

    05/11/** BZ (T) vs. s (m)

    7.9 GeV

    13.2 GeV 21.2 GeV

    7.9 GeV

    21.2 GeV

    BD QF

    •While we are here : hard edged magnet models will be used throughout, no such thing as “fringefields”, here.

  • ER

    L2015W

    orkshop,BN

    L-ST

    ON

    YB

    RO

    OK

    UN

    IVE

    RS

    ITY,7-12

    June2015

    • Cell : geometry, optics

    A continuousaγ scan of the high energy FFAG eRHIC cell (7.944→ 21.16 GeV) :

    Energy dependence of devia-tion and curvature radius inarc cell quads :

    Cell tunes and chromaticities;the vertical bars materializethe 11 design energies :

    -15

    -10

    -5

    0

    5

    10

    6 8 10 12 14 16 18 20 22-1000

    -500

    0

    500

    1000

    Deviation [mrd]

    Curv. radius [m]

    θquadDθquadFρquadDρquadF

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    20 25 30 35 40 45-0.6

    -0.55

    -0.5

    -0.45

    -0.4

    -0.35

    -0.3

    -0.25

    -0.2

    -0.15

    -0.1 8 10 12 14 16 18 20

    Qx, Qy

    ξ x,

    ξ y

    a.γ

    E (GeV)

    beam EQxQyξyξx

    •Matching polynomials can be devised :Qx(aγ) = −0.002262268 + 8.60741/aγ − 120.24058/(aγ)2 + 1545.2231/(aγ)3

    Qy(aγ) = −0.140723255 + 11.113263/aγ − 153.6170/(aγ)2 + 1457.3424/(aγ)3

    • Note in passing :aγ is close to an integer at all pass⇐ linac kick multiple of mass/a=440.5MeV,for longitudinal alignment of polarization at IP6, IP8.

  • ER

    L2015W

    orkshop,BN

    L-ST

    ON

    YB

    RO

    OK

    UN

    IVE

    RS

    ITY,7-12

    June2015

    • More on optical functions

    Horizontal phase-space,middle of drift,matched ellipses,E : 7.9 → 21.2 GeV,step0.95 GeV.

    -.004 -.002 0.0 0.002 0.004

    -.001

    0.0

    0.001

    0.002

    0.003

    0.004

    0.005

    Zgoubi|Zpop 03/02/2014 x’ (rad) vs. x (m)

    No SR

    21.2 GeV

    7.9 GeV

    SR induced ellipse mismatch,after one sextant at 21.16 GeV :

    0.004333 0.004335 0.004337

    -.001521

    -.001521

    -.001521

    -.001521

    -.001521

    -.00152

    -.00152

    -.00152

    -.00152

    -.00152

    Zgoubi|Zpop 17/03/** x’ (rad) vs. x (m)

    w/o SR

    w/ SR

    21 GeV arc

    Middle of drift.Matched vertical ellipses,E : 7.9 → 21.2 GeV,step0.14 GeV.

    -.0004 -.0002 0.0 0.0002 0.0004

    -.0002

    -.0001

    0.0

    0.0001

    0.0002

    0.0003

    Zgoubi|Zpop 03/02/2014 y’ (rad) vs. y (m)

    No SR

    21.2 GeV

    7.9 GeV

    • Tight comparisons have been performed between codes : SYNCH,MUON1, MADX[-PTC].The conclusion is : good in general, some discrepancies are observed(some may be serious)

  • ER

    L2015W

    orkshop,BN

    L-ST

    ON

    YB

    RO

    OK

    UN

    IVE

    RS

    ITY,7-12

    June2015

    3 Dynamical effects of SR in eRHIC FFAG-II ERL

    3.1 Working conditions

    • A complete FFAG-II ring ( 7.944→ 21.16 GeV) is considered in the simulations discussed here.

    • A ring is built from 6 arcs, 6 long straight sections (LSS), and 12 dispersion suppressors (DS)

    6 ×[

    12LSS − DS − ARC − DS − 12LSS

    ]

    + Linac

    It includes one, zero-length, 1.322 GeV energy kick in a straight section (possibly accountingfor phase), in order to simulate the linac.

    - An arc is a series of FD 138 cells. The deviation is almost2π/6 (2π/6.74).

    - A DS has 17 arc-type cells, but for vanishing quadrupole axis shift from arc to LSS

    - An LSS is made of 70 such cells, with quadrupole axes aligned

    • The bunch to be tracked will in general be launched from the center of a long straight section,- where theoretical local orbit has the virtue of being zero, whatever the bunch energy

    - with initial transverse/longitudinal emittances either zero or nominal, depending on the exer-cise

    - beam centroid is in general (artificially) re-centered on the LSS axis, at each LSS.

  • ER

    L2015W

    orkshop,BN

    L-ST

    ON

    YB

    RO

    OK

    UN

    IVE

    RS

    ITY,7-12

    June2015

    3.2 Orders of magnitude of the effects

    3.2.1 Longitudinal phase space

    • Turn-by-turn energy loss and spread :

    0

    20

    40

    60

    80

    100

    20 25 30 35 40 45 0

    1

    2

    3

    4

    5

    6 8 10 12 14 16 18 20 22

    ∆E [MeV]

    σ E [MeV]

    E [GeV]

    ∆E, theor.Ray-tracing

    σE, theor.Ray-tracing

    •What is monitored here is energydensity,

    average and spreading.

    Example, 5000 particles at end of pass#11 (21 GeV) :

    2.1075E+4

    2.1085E+4

    2.1095E+4

    2.1105E+4

    0

    20

    40

    60

    80

    100

    120

    140

    160

    Zgoubi|Zpop 08-06-2015 COUNT vs. KinEnr (MeV)

    • Approximation to ∆E ∝ E2B2∆t, taking ρQF = lQF/θQF, ρBD = lBD/θBD :

    ∆E[MeV ] = ∆EQF +∆EBD ≈ 0.96× 10−15γ4(θQF|ρQF|

    +θBD|ρBD|

    ) per cell (2)

    • Assuming< (1/ρ)2 >≈ 1/ρ2, then :

    σE ≈√

    σ2E,QF + σ2E,BD ≈ 1.94× 10−14γ7/2

    θQFρQF

    2 +θBDρBD

    2 per cell (3)

  • ER

    L2015W

    orkshop,BN

    L-ST

    ON

    YB

    RO

    OK

    UN

    IVE

    RS

    ITY,7-12

    June2015

    • Bunch lengthening (still zero initial ǫx, ǫy and dp/p)

    Longitudinal bunch distribution at end of full 7.944 → 21.16 GeV cycle :σl = 0.11 mm.

    0.0 0.0002 0.0004 0.0006 0.00080

    20

    40

    60

    80

    100

    120

    140

    160

    Zgoubi|Zpop 08-06-2015 COUNT vs. s (m)

    • Bunch lengthening : σl =(σEE

    )

    [

    1

    Lbend

    ∫ Lbend

    0

    (Dx(s)T51(sf ← s) +D′x(s)T52(sf ← s)− T56)2ds

    ]1/2

  • ER

    L2015W

    orkshop,BN

    L-ST

    ON

    YB

    RO

    OK

    UN

    IVE

    RS

    ITY,7-12

    June2015

    3.2.2 Transverse phase space

    • Energy loss causes drift of bunch centroid, stochasticity causeshorizontal emittance increase.

    x-drift along the 6 arcs in eRHIC ring,at E = 21.164 GeV

    0 500 1000 1500 2000 2500 3000 35000.00348

    0.0035

    0.00352

    0.00354

    0.00356

    0.00358

    0.0036

    0.00362

    0.00364Zgoubi|Zpop 11-01-2015 x (m) vs. s (m)

    Horizontal phase space after theE =21.164 GeV pass

    xf = −15 µm, σxf = 4.3 µm

    x′f = −1.1. µrad, σx′f = 1.8 µrad.

    -0.25E-4

    -0.2E-4

    -0.15E-4

    -0.1E-4

    -0.5E-5

    -0.6E-5

    -0.4E-5

    -0.2E-5

    0.0

    0.2E-5

    0.4E-5

    0.6E-5

    Zgoubi|Zpop 11-01-2015 x_f’ (rd) vs. x_f (m)

    • Beam centroid motion :

    [

    x(sf)

    x′(sf)

    ]

    = T (sf ← si)×[{

    x(si)

    x′(si)

    }

    +σEE

    {

    < U >< V >

    }]

    with[

    U(s)V (s)

    ]

    =

    Dx(si)−∫ s

    si

    T12(s← si)ρ(s)

    ds

    D′x(si) +∫ s

    si

    T11(s← si)ρ(s)

    ds

    • Perturbation of the beam matrix : ∆σ(sf) = T (sf ← si) 4(σEE

    )2[

    < U 2 > < UV >< UV > < V 2 >

    ]

    × T̃ (sf ← si) (4)

  • ER

    L2015W

    orkshop,BN

    L-ST

    ON

    YB

    RO

    OK

    UN

    IVE

    RS

    ITY,7-12

    June2015

    3.3 End-to-end bunch tracking, cumulated effects (initialǫx ≈ ǫy = 0 and dp/p=0)

    Qualitatively, orbits in arcs,pass 1 to 21 :

    1.E+4

    3.E+4

    5.E+4

    7.E+4

    -.006

    -.004

    -.002

    0.0

    0.002

    0.004

    Zgoubi|Zpop 05-06-2015

    * # COORDINATES - STORAGE FILE, 05-06-0015 09:01:27 *

    Y (m) vs. s (m)

    Mi-ma H/V: 163. 8.056E+04/ -6.795E-03 4.113E-03

    (x,x’) phase space, at8, 10.6, 12 and 21 GeV (end of pass # 1, 3, 4, 11)

    -0.38E-4

    -0.36E-4

    -0.34E-4

    -0.32E-4

    0.54E-4

    0.56E-4

    0.58E-4

    0.6E-4

    0.62E-4

    0.64E-4

    0.66E-4

    Zgoubi|Zpop 05-06-2015

    * # COORDINATES - STORAGE FILE, 22-12-0014 13:01:00 *

    Y’ (rad) vs. Y (m)

    Mi-ma H/V: -3.853E-05 -3.086E-05/ 5.270E-05 6.664E-05 Eps/pi, Beta, Alpha : 5.5871E-13 2.3413E+00 4.4792E+00

    Zgoubi|Zpop 05-06-2015

    * # COORDINATES - STORAGE FILE, 22-12-0014 13:01:00 *

    Y’ (rad) vs. Y (m)

    Mi-ma H/V: -3.853E-05 -3.086E-05/ 5.270E-05 6.664E-05

    -0.17E-4

    -0.16E-4

    -0.15E-4

    -0.14E-4

    -0.13E-4

    -0.12E-4

    -0.11E-4

    -0.6E-5

    -0.5E-5

    -0.4E-5

    -0.3E-5

    -0.2E-5

    -0.1E-5

    0.0

    Zgoubi|Zpop 05-06-2015

    * # COORDINATES - STORAGE FILE, 22-12-0014 13:01:00 *

    Y’ (rad) vs. Y (m)

    Mi-ma H/V: -1.769E-05 -1.048E-05/ -6.968E-06 2.185E-07 Eps/pi, Beta, Alpha : 7.2218E-13 1.5617E+00 1.3484E+00

    Zgoubi|Zpop 05-06-2015

    * # COORDINATES - STORAGE FILE, 22-12-0014 13:01:00 *

    Y’ (rad) vs. Y (m)

    Mi-ma H/V: -1.769E-05 -1.048E-05/ -6.968E-06 2.185E-07

    -0.5E-4

    -0.4E-4

    -0.3E-4

    -0.2E-4

    -0.1E-4

    0.0 0.1E-4

    0.4E-4

    0.5E-4

    0.6E-4

    0.7E-4

    0.8E-4

    0.9E-4

    0.0001

    0.00011Zgoubi|Zpop 05-06-2015

    * # COORDINATES - STORAGE FILE, 22-12-0014 13:01:00 *

    Y’ (rad) vs. Y (m)

    Mi-ma H/V: -5.491E-05 1.237E-05/ 3.292E-05 1.101E-04 Eps/pi, Beta, Alpha : 1.7260E-11 6.7243E+00 7.6983E+00

    Zgoubi|Zpop 05-06-2015

    * # COORDINATES - STORAGE FILE, 22-12-0014 13:01:00 *

    Y’ (rad) vs. Y (m)

    Mi-ma H/V: -5.491E-05 1.237E-05/ 3.292E-05 1.101E-04

    -0.8E-4

    -0.6E-4

    -0.4E-4

    -0.2E-4

    0.5E-5

    0.1E-4

    0.15E-4

    0.2E-4

    0.25E-4

    0.3E-4

    0.35E-4

    Zgoubi|Zpop 05-06-2015

    * # COORDINATES - STORAGE FILE, 22-12-0014 13:01:00 *

    Y’ (rad) vs. Y (m)

    Mi-ma H/V: -9.040E-05 -4.022E-06/ -9.772E-07 3.945E-05 Eps/pi, Beta, Alpha : 4.4430E-11 3.1694E+00 1.1592E+00

    Zgoubi|Zpop 05-06-2015

    * # COORDINATES - STORAGE FILE, 22-12-0014 13:01:00 *

    Y’ (rad) vs. Y (m)

    Mi-ma H/V: -9.040E-05 -4.022E-06/ -9.772E-07 3.945E-05

    • Note : the source of the orbit error that triggers the apparentemittance increase, due to the strong chromaticity, is the

    residual steering of the adiabatic DS.

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    20 25 30 35 40 45

    0

    1

    2

    3

    4

    5

    6

    7

    8 10 12 14 16 18 20

    ∆E : actual-theor.

    (MeV)

    σ E (MeV)

    ENERGY AND SPREAD Initial zero 6-D emittance

    E (GeV)

    ∆EσE

    0

    1

    2

    3

    4

    5

    6

    7

    20 25 30 35 40 45

    -1

    -0.5

    0

    0.5

    1

    8 10 12 14 16 18 20

    ε x/

    π, norm (

    µm)

    ε y/

    π, norm (

    µm)

    EMITTANCE EVOLUTION Initial zero 6-D emittance

    E (GeV)

    εx/π, norm.εy/π, norm.

  • ER

    L2015W

    orkshop,BN

    L-ST

    ON

    YB

    RO

    OK

    UN

    IVE

    RS

    ITY,7-12

    June2015

    • Evolution of the polarization

    Case initial ǫx, ǫy and dp/p0 all zero

    0.965

    0.97

    0.975

    0.98

    0.985

    0.99

    0.995

    1

    20 25 30 35 40 45 0

    2

    4

    6

    8

    10

    12

    14

    16 8 10 12 14 16 18 20

    Polar. (<cos

    ∆ φ>)

    σ φ (deg.)

    G

    γ α [360] (deg.)

    G.γ

    Initial εx≈ εy≈50π, σdp/p=0

    E (GeV)

    σφGγα

    40 60 80 100 120 1400

    20

    40

    60

    80

    100

    120

    140

    160

    Zgoubi|Zpop 08-06-2015 SX counts vs. ANGLE (deg)

    Density of horizontal spin componentSx at end of pass 11

    σφ = 14.9 deg.

  • ER

    L2015W

    orkshop,BN

    L-ST

    ON

    YB

    RO

    OK

    UN

    IVE

    RS

    ITY,7-12

    June2015

    3.4 End-to-end 9-D tracking, nominal initial transverse emittances50πµm

    Case initial dp/p=0

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    20 25 30 35 40 45

    0

    1

    2

    3

    4

    5

    6

    7

    8 10 12 14 16 18 20

    ∆E : actual-theor.

    (MeV)

    σ E (MeV)

    ENERGY AND SPREAD Initial Gaussian εx≈ εy≈50π rms, σdp/p=0

    E (GeV)

    ∆EσE

    48

    50

    52

    54

    56

    58

    60

    62

    64

    66

    20 25 30 35 40 45

    48.5 49 49.5 50 50.5 51 51.5 52 52.5 53 53.5

    8 10 12 14 16 18 20

    ε x/

    π, norm (

    µm)

    ε y/

    π, norm (

    µm)

    EMITTANCE EVOLUTION Initial Gaussian εx≈ εy≈50π rms, σdp/p=0

    E (GeV)

    εx/π, norm.εy/π, norm.

    Case initial dp/p0 ∈ [−3,+3]× 10−4

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    20 25 30 35 40 45

    3

    3.5

    4

    4.5

    5

    5.5

    6

    6.5

    7

    7.5

    8 10 12 14 16 18 20

    ∆E : actual-theor.

    (MeV)

    σ E (MeV)

    ENERGY AND SPREAD Initial Gaussian εx≈ εy≈50π rms, σdp/p∈ ± 3 × 10

    -4

    E (GeV)

    ∆EσE

    45

    50

    55

    60

    65

    70

    75

    80

    20 25 30 35 40 45

    49

    49.5

    50

    50.5

    51

    51.5

    52

    52.5

    53

    8 10 12 14 16 18 20

    ε x/

    π, norm (

    µm)

    ε y/

    π, norm (

    µm)

    EMITTANCE EVOLUTION Initial Gaussian εx≈ εy≈50π rms, σdp/p∈ ± 3 × 10

    -4

    E (GeV)

    εx/π, norm.εy/π, norm.

  • ER

    L2015W

    orkshop,BN

    L-ST

    ON

    YB

    RO

    OK

    UN

    IVE

    RS

    ITY,7-12

    June2015

    Polarization

    Case initial ǫx ≈ ǫy ≈ 50 πmm.mrad anddp/p0 = 0

    0.965

    0.97

    0.975

    0.98

    0.985

    0.99

    0.995

    1

    20 25 30 35 40 45 0

    2

    4

    6

    8

    10

    12

    14

    16 8 10 12 14 16 18 20

    Polar. (<cos

    ∆ φ>)

    σ φ (deg.)

    G

    γ α [360] (deg.)

    G.γ

    Initial εx≈ εy≈50π, σdp/p=0

    E (GeV)

    σφGγα

    -.1 -.05 0.0 0.05 0.10

    50

    100

    150

    200

    250

    Zgoubi|Zpop 01-06-2015 COUNT vs. SZ Zgoubi|Zpop 01-06-2015 COUNT vs. SZ

    Vertical component of spinat end of pass 11 (end ofpass 11 is 2 IPs beyond

    IP6 :

    Avrg. Sigma6.304E-05 2.331E-02

    Asin(σSZ ) ≈ 1.3 deg.

    Case initial ǫx ≈ ǫy ≈ 50 πmm.mrad anddp/p0 ∈ ±3× 10−4

    0.86

    0.88

    0.9

    0.92

    0.94

    0.96

    0.98

    1

    20 25 30 35 40 45 0

    5

    10

    15

    20

    25

    30

    35 8 10 12 14 16 18 20

    Polar. (<cos

    ∆ φ>)

    σ φ (deg.)

    G

    γ α (deg.)

    G.γ

    SPIN DIFFUSION Initial Gaussian εx≈ εy≈50π rms, σdp/p∈ ± 3 × 10

    -4

    E (GeV)

    σφGγα

    -.1 -.05 0.0 0.05 0.10

    50

    100

    150

    200

    250

    Zgoubi|Zpop 02-06-2015 COUNT vs. SZ

    Vertical component ofspin at end of pass 11(end of pass 11 is 2 IPs

    beyond IP6 :

    Avrg. Sigma-4.207E-04 2.495E-02

    Asin(σSZ ) ≈ 1.43 deg.

  • ER

    L2015W

    orkshop,BN

    L-ST

    ON

    YB

    RO

    OK

    UN

    IVE

    RS

    ITY,7-12

    June2015

    4 Dispersion suppressors

    • The dispersion suppressors are based on a “missing magnet” style scheme, where the relative displacement of thetwo cell quadrupoles (the origin of the dipole effect in the FFAG cell) is brought to zero over a series of cells.

    • From orbit viewpoint, a quadrupole displacement is equivalent to a kick θk at entrance and exit.

    • Due to the varying displacement of the quads (from their misalignement in the arc to aligned configuration in thestraight) the orbit builds along the DS (with origin at upstream arc, endat downstream straight, or reverse) following

    yorb(s)√

    β(s)=

    yorb(0)√

    β(0)cos(φ) +

    α(0)yorb(0) + β(0)y′orb(0)

    β(0)sin(φ) +

    k

    β(sk)θk sin(φ− φk)α(s)yorb(s) + β(s)y

    ′orb(s)

    β(s)= −yorb(0)√

    β(0)sin(φ) +

    α(0)yorb(0) + β(0)y′orb(0)

    β(0)cos(φ) +

    k

    β(sk)θk cos(φ− φk)

    • Case of the 11.9GeV pass. The orbit is shown from end of first LSS to upstream region of first arc.

    100 120 140 160 180 200

    -.004

    -.003

    -.002

    -.001

    0.0

    Zgoubi|Zpop 13-01-2015

    * # COORDINATES - STORAGE FILE, 13-01-0015 13:53:38 *

    orbit x (m) vs. s (m)

    • However, the orbit build-up from LLS to arc ends up, at the arc, with (x,x’) coordinates which do notfullycoincide with the periodic orbit of the arc FFAG cell.

  • ER

    L2015W

    orkshop,BN

    L-ST

    ON

    YB

    RO

    OK

    UN

    IVE

    RS

    ITY,7-12

    June2015

    • The orbit build-up depends on the phase advanceφ =∫ s

    0dsβ(s)

    . Thus it depends on the cell tune, and on energy.

    Orbit along 5 ring-turns,7.9, 9.3, 10.6, 11.9GeV and 13.2 GeV.

    In each case starting coordinates are (x,x’)=(0,0) at thecenter of an LSS.

    -0.007

    -0.0065

    -0.006

    -0.0055

    -0.005

    -0.0045

    -0.004

    0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

    x (m)

    Distance (m)

    ORBITS

    54321

    The orbit amplification is tune-dependent.For instance, case of pass #4:

    Varied energy±1, 2, 3% in the vicinity ofE = 11.9GeV:

    -0.0058

    -0.0056

    -0.0054

    -0.0052

    -0.005

    -0.0048

    -0.0046

    -0.0044

    -0.0042

    0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

    x (m)

    Distance (m)

    ORBITS

    -3-2-10123

  • ER

    L2015W

    orkshop,BN

    L-ST

    ON

    YB

    RO

    OK

    UN

    IVE

    RS

    ITY,7-12

    June2015

    5 Dynamical acceptance of eRHIC FFAG lattice

    Simulation conditions

    • The available aperture at entrance to a pass around the ring is evaluated, independently foreach one of the 11 energies in the range7.944 : 21.164 : 1.322.

    • Two types of lattices are simulated, for comparison :

    - either a single cell,≈ 1000 passes, this would be the dynamical acceptance at entrance into a6-arc ring, 138 cells per arc

    - eRHIC ring acceptance window, observed at the center of a LSS.

    RING = 6 ×[

    1

    2LSS − DS − ARC − DS − 1

    2LSS

    ]

    • The effects of some field defects are summarily investigated.

    • There is no SR in these tracking, just geometrical effects are addressed (apart from all 11energies being investigated).

    SR increases beam emittance and is expected to decrease the dynamical acceptance accord-ingly.

  • ER

    L2015W

    orkshop,BN

    L-ST

    ON

    YB

    RO

    OK

    UN

    IVE

    RS

    ITY,7-12

    June2015

    • 1000-cell DA, hard-edge (left) and soft-edge (right)

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    -1500 -1000 -500 0 500 1000 1500

    y (mm)

    x (mm)

    DAs on FFAG2 energies, hard-edge model

    E1E2E3E4E5E6E7E8E9

    E10E11

    -1.5 -1. -.5 0.0 0.5 1. 1.5

    -1.

    -.5

    0.0

    0.5

    1.

    Zgoubi|Zpop 17-02-2015

    * # COORDINATES - STORAGE FILE, 17-02-0015 14:16:05 *

    Y’ (rad) vs. Y (m) Zgoubi|Zpop 17-02-2015

    * # COORDINATES - STORAGE FILE, 17-02-0015 14:17:00 *

    Y’ (rad) vs. Y (m)

    21.164

    7.944

    -.6 -.4 -.2 0.0 0.2 0.4 0.6-.6

    -.4

    -.2

    0.0

    0.2

    0.4

    0.6

    Zgoubi|Zpop 17-02-2015

    * # COORDINATES - STORAGE FILE, 17-02-0015 14:36:45 *

    Z’ (rad) vs. Z (m)

    Maximum H (left) and V (right) invariants, 11 energies.

    Field along BD field along QF

    0.0 0.2 0.4 0.6 0.8

    10

    20

    30

    40

    50

    60

    70

    80

    Zgoubi|Zpop 17-02-2015

    * # TRAJECTORIES - STORAGE FILE, 17-02-0015 14:45:26 *

    BR (T) vs. X (m)

    0.0 0.2 0.4 0.6 0.8 1.

    20

    40

    60

    80

    100

    Zgoubi|Zpop 17-02-2015

    * # TRAJECTORIES - STORAGE FILE, 17-02-0015 14:44:13 *

    BR (T) vs. X (m)

    Smooth fields experienced by the 11 particles across thetwo cell quadrupoles

    0

    50

    100

    150

    200

    250

    -400 -300 -200 -100 0 100 200 300 400

    y (mm)

    x (mm)

    DAs on FFAG2 energies, soft-edge model

    E1E2E3E4E5E6E7E8E9

    E10E11

    -.2 -.1 0.0 0.1 0.2-.3

    -.2

    -.1

    0.0

    0.1

    0.2

    Zgoubi|Zpop 17-02-2015

    * # COORDINATES - STORAGE FILE, 17-02-0015 14:55:00 *

    Z’ (rad) vs. Z (m)

    0.0 0.5 1. 1.5 2. 2.5

    -.1

    0.0

    0.1

    0.2

    0.3

    0.4

    Zgoubi|Zpop 28-01-2015

    * # TRAJECTORIES - STORAGE FILE, 28-01-0015 09:53:37 *

    BZ (T) vs. s (m) Zgoubi|Zpop 28-01-2015

    * # TRAJECTORIES - STORAGE FILE, 28-01-0015 09:53:37 *

    BZ (T) vs. s (m)

    Maximum vertical invariants, 11 energies.Fringe field model (after H. Enge) :

    V (X,Y, Z) =

    (

    G− G′′

    12(Y 2 + Z2) +

    G′′′′

    384(Y 2 + Z2)2 − G

    ′′′′′

    23040(Y 2 + Z2)3

    )

    Y

    G(s) =G0

    1 + expP (s)with G0 =

    B0

    R0

    P (s) = C0 + C1

    ( s

    λ

    )

    + C2

    ( s

    λ

    )2

    + C3

    ( s

    λ

    )3

    + C4

    ( s

    λ

    )4

    + C5

    ( s

    λ

    )5

  • ER

    L2015W

    orkshop,BN

    L-ST

    ON

    YB

    RO

    OK

    UN

    IVE

    RS

    ITY,7-12

    June2015

    • 1000-cell DA, including dodecapole defect, random (top) and systematic (bottom)

    0

    2

    4

    6

    8

    10

    12

    14

    16

    -20 -15 -10 -5 0 5 10 15 20y (mm)

    x (mm)

    DAs on FFAG2 energies, 3G dodecapole

    E1E2E3E4E5E6E7E8E9

    E10E11

    With random dodecapole defect,±3 Gauss at r=1 cm, uniform.

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    -250 -200 -150 -100 -50 0 50 100 150 200 250

    y (mm)

    x (mm)

    DAs on FFAG2 energies, 3G dodecapole

    E1E2E3E4E5E6E7E8E9

    E10E11

    With systematic dodecapole defect+3 Gauss at r=1 cm.

  • ER

    L2015W

    orkshop,BN

    L-ST

    ON

    YB

    RO

    OK

    UN

    IVE

    RS

    ITY,7-12

    June2015

    • eRHIC ring , available aperture into the ring as seen at middle of LSS

    6 ×[

    1

    2LSS − DS − ARC − DS − 1

    2LSS

    ]

    0

    100

    200

    300

    400

    500

    600

    -800 -600 -400 -200 0 200 400 600 800

    y (mm)

    x (mm)

    DAs on FFAG2 energies, hard-edge model

    E1E2E3E4E5E6

    Available dynamic admittance of the ring,for 6 energies [7.944:21.164:2.644],

    observed at the center of an LSS, defect-free lattice.

    0 500 1000 1500 2000 2500 3000 3500 4000-2.

    -1.5

    -1.

    -.5

    0.0

    0.5

    1.

    1.5

    2.Zgoubi|Zpop 18-02-2015

    * # COORDINATES - STORAGE FILE, 18-02-0015 07:25:04 *

    y (m) vs. s (m) Zgoubi|Zpop 18-02-2015

    * # COORDINATES - STORAGE FILE, 18-02-0015 07:25:04 *

    y (m) vs. s (m) Zgoubi|Zpop 18-02-2015

    * # COORDINATES - STORAGE FILE, 18-02-0015 07:25:04 *

    y (m) vs. s (m)

    500 1000 1500 2000 2500 3000 3500 4000-2.

    -1.5

    -1.

    -.5

    0.0

    0.5

    1.

    1.5

    2.Zgoubi|Zpop 18-02-2015

    * # COORDINATES - STORAGE FILE, 18-02-0015 07:31:45 *

    y (m) vs. s (m)

    Vertical excursion along the 6 LSS (top)and 6 arcs (bottom),

    6 particles (6 energies) launched at(x=0,y=max.).

  • ER

    L2015W

    orkshop,BN

    L-ST

    ON

    YB

    RO

    OK

    UN

    IVE

    RS

    ITY,7-12

    June2015

    • eRHIC ring , available aperture into the ring as seen at middle of LSS, withdodecapoledefect

    6 ×[

    1

    2LSS − DS − ARC − DS − 1

    2LSS

    ]

    Defect value retained here, following from prior study ofemittance growth over single ring turn : ± 3 Gauss at

    1 cm (±3G/5kG = 6× 10−4 relative).

    0.001

    0.01

    0.1

    1

    10

    100

    0 5 10 15 20

    46

    48

    50

    52

    54

    56

    58

    60

    0 5 10 15 20

    (ε x,dfct -

    ε x,nd)/

    ε x,nd

    ε x,nd, no defect

    (

    πµm, norm.)

    Pass number

    DODECAPOLE DEFECT, EVOLUTION OF HORIZONTAL EMITTANCE (1000 particles)

    no defect0.01G @1cm0.1G @1cm1G @1cm2G @1cm3G @1cm10G @1cm30G @1cm

    0.01

    0.1

    1

    10

    100

    1000

    0 5 10 15 20

    46

    46.5

    47

    47.5

    48

    48.5

    49

    49.5

    50

    0 5 10 15 20

    (ε y,dfct -

    ε y,nd)/

    ε y,nd

    ε y,nd, no defect

    (

    πµm, norm.)

    Pass number

    DODECAPOLE DEFECT, EVOLUTION OF VERTICAL EMITTANCE (1000 particles)

    no defect0.01G @1cm0.1G @1cm

    1G @1cm2G @1cm3G @1cm

    10G @1cm30G @1cm

    Hyp. in these two graphs : bunch centroid is re-centered(average position and angle are zero-ed) at entrance to

    each one of the 6 LSS.

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    -20 -15 -10 -5 0 5 10 15 20

    y (mm)

    x (mm)

    DAs on FFAG2 energies, hard-edge model

    E1E2E3E4E5E6E7E8E9

    E10E11

    In the presence of dodecapole defect,± 3 G at 1cm, uniform

    available dynamic admittance of the ring, for 11 energies[7.944:21.164:1.322],

    Observation point is at the center of an LSS, where allorbits have a common reference axis.

  • ER

    L2015W

    orkshop,BN

    L-ST

    ON

    YB

    RO

    OK

    UN

    IVE

    RS

    ITY,7-12

    June2015

    6 Injecting alignment defects

    6.1 Horizontal misalignment

    • An either 0, or 1, or 10 Gauss dipole defect is considered - random, uniform, applied to all quads around the ring• Qualitatively, below : 4 particles launched with initial ǫx = 0 and dp/p = 0 (subject to increase due to SR)and initial ǫy = 50πµm norm.

    Horizontal orbit excursion along the arcs (regionsspanning large∆x values), and along the straights

    (regions with∆x values in the vicinity of x=0)

    db = zero

    1.E+4

    3.E+4

    5.E+4

    7.E+4

    -.006

    -.004

    -.002

    0.0

    0.002

    0.004Zgoubi|Zpop 02-06-2015

    * # COORDINATES - STORAGE FILE, 02-06-0015 16:28:58 *

    Y (m) vs. s (m)

    db = 1 G

    1.E+4

    3.E+4

    5.E+4

    7.E+4

    -.008

    -.006

    -.004

    -.002

    0.0

    0.002

    0.004

    Zgoubi|Zpop 02-06-2015

    * # COORDINATES - STORAGE FILE, 02-06-0015 15:14:34 *

    Y (m) vs. s (m)

    db = 10 G

    1.E+4

    3.E+4

    5.E+4

    7.E+4

    -.008

    -.006

    -.004

    -.002

    0.0

    0.002

    0.004

    Zgoubi|Zpop 02-06-2015

    * # COORDINATES - STORAGE FILE, 02-06-0015 12:41:56 *

    Y (m) vs. s (m)

    Vertical excursion around the ring, over the 21 passes :

    1.E+4

    3.E+4

    5.E+4

    7.E+4

    -0.5E-4

    0.0

    0.5E-4

    0.0001

    Zgoubi|Zpop 02-06-2015

    * # COORDINATES - STORAGE FILE, 02-06-0015 16:28:58 *

    y (m) vs. s (m)

    1.E+4

    3.E+4

    5.E+4

    7.E+4

    -0.5E-4

    0.0

    0.5E-4

    0.0001

    Zgoubi|Zpop 02-06-2015

    * # COORDINATES - STORAGE FILE, 02-06-0015 15:14:34 *

    y (m) vs. s (m)

    1.E+4

    3.E+4

    5.E+4

    7.E+4

    -.0001

    -0.5E-4

    0.0

    0.5E-4

    0.0001

    Zgoubi|Zpop 02-06-2015

    * # COORDINATES - STORAGE FILE, 02-06-0015 12:41:56 *

    y (m) vs. s (m)

  • ER

    L2015W

    orkshop,BN

    L-ST

    ON

    YB

    RO

    OK

    UN

    IVE

    RS

    ITY,7-12

    June2015

    • Beam evolution from 7.9 to 21.1 GeV and back. Startingǫx ≈ ǫy ≈ 50πµm, dp/p ∈ ±2× 10−4

    • db =1 Gauss : Equivalent displacement is∆x = ∆B/G = 2µm - given G=50 T/m.

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    20 25 30 35 40 45

    2

    3

    4

    5

    6

    7

    8

    8 10 12 14 16 18 20

    ∆E : actual-theor.

    (MeV)

    σ E (MeV)

    ENERGY AND SPREAD Initial Gaussian εx≈ εy≈50π rms, σdp/p=2 x 10

    -4

    E (GeV)

    ∆EσE

    40

    60

    80

    100

    120

    140

    160

    180

    200

    20 25 30 35 40 45

    48

    49

    50

    51

    52

    53

    54

    8 10 12 14 16 18 20

    ε x/

    π, norm (

    µm)

    ε y/

    π, norm (

    µm)

    EMITTANCE EVOLUTION Initial Gaussian εx≈ εy≈50π rms, σdp/p=2 x 10

    -4

    E (GeV)

    εx/π, norm.εy/π, norm.

    0.92

    0.93

    0.94

    0.95

    0.96

    0.97

    0.98

    0.99

    1

    20 25 30 35 40 45 0

    5

    10

    15

    20

    25 8 10 12 14 16 18 20

    Polar. (<cos

    ∆ φ>)

    σ φ (deg.)

    G

    γ α [360] (deg.)

    G.γ

    SPIN DIFFUSION Initial Gaussian εx≈ εy≈50π rms, dp/p in ± 2×10

    -4

    E (GeV)

    σφGγα

  • ER

    L2015W

    orkshop,BN

    L-ST

    ON

    YB

    RO

    OK

    UN

    IVE

    RS

    ITY,7-12

    June2015

    6.2 Vertical misalignment

    • Beam evolution from 7.9 to 21.1 GeV and back. Startingǫx ≈ ǫy ≈ 50πµm and dp/p ∈ ±2×10−4uniform

    • From top to bottom : dipole defecta0 ∈ [−0.1,+0.1], [−1,+1] G :

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    20 25 30 35 40 45

    2

    2.5

    3

    3.5

    4

    4.5

    5

    5.5

    6

    6.5

    7

    8 10 12 14 16 18 20

    ∆E : actual-theor.

    (MeV)

    σ E (MeV)

    ENERGY AND SPREAD, END-TO-END

    E (GeV)

    ∆EσE

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    20 25 30 35 40 45

    2

    3

    4

    5

    6

    7

    8

    9

    8 10 12 14 16 18 20

    ∆E : actual-theor.

    (MeV)

    σ E (MeV)

    ENERGY AND SPREAD, END-TO-END

    E (GeV)

    ∆EσE

    45

    50

    55

    60

    65

    70

    75

    20 25 30 35 40 45

    48

    49

    50

    51

    52

    53

    54

    55

    8 10 12 14 16 18 20

    β γ

    ε x (

    π µm)

    β γ

    ε y (

    π µm)

    EMITTANCE EVOLUTION, END-TO-END

    E (GeV)

    β γ εxβ γ εy

    45

    50

    55

    60

    65

    70

    75

    20 25 30 35 40 45

    40

    50

    60

    70

    80

    90

    100

    110

    120

    130

    8 10 12 14 16 18 20

    β γ

    ε x (

    π µm)

    β γ

    ε y (

    π µm)

    EMITTANCE EVOLUTION, END-TO-END

    E (GeV)

    β γ εxβ γ εy

  • ER

    L2015W

    orkshop,BN

    L-ST

    ON

    YB

    RO

    OK

    UN

    IVE

    RS

    ITY,7-12

    June2015

    6.3 Investigating alignment error correction of a 11-beam set

    • Sets of H and/or V dipole errors are generated, in cell quadrupoles, in the 6 arcs

    • Error sets are taken from uniform ∆b0 and/or ∆a0 density,over±20 Gauss (±40µm equivalent misalignment)

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    40

    0 1000 2000 3000 4000 5000 6000 7000 8000 9000

    b0 [G]

    BD2, QF2 number along ring

    b0 errors along ring arcs, in BD and QF magnets

    BD

    QF

    • No errors introduced in LSS neither DS - for simplicity

    • These errors are corrected using brute force FIT procedure, that tweaks b0 and/or a0, in all QFand BD until constraints are fulfilled, namely :

    - position and angle of 11 different energies

    - every 23 cells in the arcs (an arc contains 138 cells, so, there are 6 such sections per arc).

    • That allows 23 variables for 22 constraints (x and x’ for each oneof the 11 energies, in one go).

    • Each 23-cell section, in all 6 arcs, is corrected in that manner. This is repeated 36 times to coverthe ring.

    • SR is on. Each energy is represented bu a 50 particle bunch (hence, 11×50 = 550 particlestracked in one go).

  • ER

    L2015W

    orkshop,BN

    L-ST

    ON

    YB

    RO

    OK

    UN

    IVE

    RS

    ITY,7-12

    June2015

    • Typical convergence of the FIT, toward the 11 theoretical orbits, for one of 36 arc sections :STATUS OF VARIABLES (Iteration # 0 / 120 max.) ! THE VARIABLES ARE THE QF2’s b_0LMNT VAR PARAM MINIMUM INITIAL FINAL MAXIMUM STEP NAME LBL1 LBL2

    12 1 4 -1.000E-02 4.518E-05 4.5175080247E-05 1.000E-02 8.230E-07 MULTIPOL QF2 MULT18 2 4 -1.000E-02 -5.017E-05 -5.0172080247E-05 1.000E-02 8.230E-07 MULTIPOL QF2 MULT24 3 4 -1.000E-02 1.340E-04 1.3397781481E-04 1.000E-02 8.230E-07 MULTIPOL QF2 MULT30 4 4 -1.000E-02 -1.333E-04 -1.3327810247E-04 1.000E-02 8.230E-07 MULTIPOL QF2 MULT36 5 4 -1.000E-02 4.745E-05 4.7446188889E-05 1.000E-02 8.230E-07 MULTIPOL QF2 MULT42 6 4 -1.000E-02 -1.474E-05 -1.4741066667E-05 1.000E-02 8.230E-07 MULTIPOL QF2 MULT48 7 4 -1.000E-02 -2.099E-04 -2.0985586296E-04 1.000E-02 8.230E-07 MULTIPOL QF2 MULT54 8 4 -1.000E-02 7.811E-05 7.8105985185E-05 1.000E-02 8.230E-07 MULTIPOL QF2 MULT60 9 4 -1.000E-02 -2.761E-04 -2.7612202222E-04 1.000E-02 8.230E-07 MULTIPOL QF2 MULT66 10 4 -1.000E-02 6.330E-05 6.3297133333E-05 1.000E-02 8.230E-07 MULTIPOL QF2 MULT72 11 4 -1.000E-02 -1.786E-04 -1.7864781852E-04 1.000E-02 8.230E-07 MULTIPOL QF2 MULT78 12 4 -1.000E-02 1.816E-05 1.8164953086E-05 1.000E-02 8.230E-07 MULTIPOL QF2 MULT84 13 4 -1.000E-02 1.527E-05 1.5267744444E-05 1.000E-02 8.230E-07 MULTIPOL QF2 MULT90 14 4 -1.000E-02 -5.354E-05 -5.3537733333E-05 1.000E-02 8.230E-07 MULTIPOL QF2 MULT96 15 4 -1.000E-02 2.148E-04 2.1484726914E-04 1.000E-02 8.230E-07 MULTIPOL QF2 MULT102 16 4 -1.000E-02 -7.791E-05 -7.7908722222E-05 1.000E-02 8.230E-07 MULTIPOL QF2 MULT108 17 4 -1.000E-02 2.431E-04 2.4311473333E-04 1.000E-02 8.230E-07 MULTIPOL QF2 MULT114 18 4 -1.000E-02 7.990E-05 7.9898833333E-05 1.000E-02 8.230E-07 MULTIPOL QF2 MULT120 19 4 -1.000E-02 8.440E-05 8.4401917284E-05 1.000E-02 8.230E-07 MULTIPOL QF2 MULT126 20 4 -1.000E-02 1.636E-04 1.6362697037E-04 1.000E-02 8.230E-07 MULTIPOL QF2 MULT132 21 4 -1.000E-02 4.122E-05 4.1218400000E-05 1.000E-02 8.230E-07 MULTIPOL QF2 MULT138 22 4 -1.000E-02 5.180E-05 5.1796065432E-05 1.000E-02 8.230E-07 MULTIPOL QF2 MULT144 23 4 -1.000E-02 4.227E-05 4.2273506173E-05 1.000E-02 8.230E-07 MULTIPOL QF2 MULT

    STATUS OF CONSTRAINTS (Target penalty = 1.0000E-08)TYPE I J LMNT# DESIRED WEIGHT REACHED KI2 NAME LBL1 LBL2 * Parameter(s)

    3 -1 2 147 -5.7866111E-01 2.0000E-01 -5.7928530E-01 9.9814E-02 MARKER #ECellSec * * 2 : 1.0E+00/ 5.0E+01/ Theor. x_orbit for 7.9GeV3 -1 3 147 5.2102765E+00 1.0000E+00 5.2105759E+00 9.1857E-04 MARKER #ECellSec * * 2 : 1.0E+00/ 5.0E+01/ Theor. x’_orbit for 7.9GeV3 -1 2 147 -5.6123649E-01 2.0000E-01 -5.6144094E-01 1.0709E-02 MARKER #ECellSec * * 2 : 5.1E+01/ 1.0E+02/ Theor. x_orbit for 9.2GeV3 -1 3 147 4.3105917E+00 1.0000E+00 4.3116745E+00 1.2014E-02 MARKER #ECellSec * * 2 : 5.1E+01/ 1.0E+02/ Theor. x’_orbit for 9.2GeV3 -1 2 147 -5.2088326E-01 2.0000E-01 -5.1981394E-01 2.9294E-01 MARKER #ECellSec * * 2 : 1.0E+02/ 1.5E+02/ ETC.3 -1 3 147 3.4780794E+00 1.0000E+00 3.4804963E+00 5.9862E-02 MARKER #ECellSec * * 2 : 1.0E+02/ 1.5E+02/3 -1 2 147 -4.6023083E-01 2.0000E-01 -4.6066645E-01 4.8617E-02 MARKER #ECellSec * * 2 : 1.5E+02/ 2.0E+02/3 -1 3 147 2.7061058E+00 1.0000E+00 2.7037711E+00 5.5856E-02 MARKER #ECellSec * * 2 : 1.5E+02/ 2.0E+02/3 -1 2 147 -3.8142236E-01 2.0000E-01 -3.8151658E-01 2.2743E-03 MARKER #ECellSec * * 2 : 2.0E+02/ 2.5E+02/3 -1 3 147 1.9880861E+00 1.0000E+00 1.9901914E+00 4.5421E-02 MARKER #ECellSec * * 2 : 2.0E+02/ 2.5E+02/3 -1 2 147 -2.8634189E-01 2.0000E-01 -2.8663176E-01 2.1526E-02 MARKER #ECellSec * * 2 : 2.5E+02/ 3.0E+02/3 -1 3 147 1.3189515E+00 1.0000E+00 1.3184897E+00 2.1852E-03 MARKER #ECellSec * * 2 : 2.5E+02/ 3.0E+02/3 -1 2 147 -1.7668768E-01 2.0000E-01 -1.7635203E-01 2.8863E-02 MARKER #ECellSec * * 2 : 3.0E+02/ 3.5E+02/3 -1 3 147 6.9385348E-01 1.0000E+00 6.9173531E-01 4.5978E-02 MARKER #ECellSec * * 2 : 3.0E+02/ 3.5E+02/3 -1 2 147 -5.3767999E-02 2.0000E-01 -5.3818008E-02 6.4071E-04 MARKER #ECellSec * * 2 : 3.5E+02/ 4.0E+02/3 -1 3 147 1.0858879E-01 1.0000E+00 1.1067439E-01 4.4575E-02 MARKER #ECellSec * * 2 : 3.5E+02/ 4.0E+02/3 -1 2 147 8.1093355E-02 2.0000E-01 8.0888057E-02 1.0798E-02 MARKER #ECellSec * * 2 : 4.0E+02/ 4.5E+02/3 -1 3 147 -4.4050766E-01 1.0000E+00 -4.3872210E-01 3.2672E-02 MARKER #ECellSec * * 2 : 4.0E+02/ 4.5E+02/3 -1 2 147 2.2697555E-01 2.0000E-01 2.2728052E-01 2.3828E-02 MARKER #ECellSec * * 2 : 4.5E+02/ 5.0E+02/3 -1 3 147 -9.5714321E-01 1.0000E+00 -9.5775222E-01 3.8007E-03 MARKER #ECellSec * * 2 : 4.5E+02/ 5.0E+02/3 -1 2 147 3.8260641E-01 2.0000E-01 3.8335722E-01 1.4442E-01 MARKER #ECellSec * * 2 : 5.0E+02/ 5.5E+02/3 -1 3 147 -1.4428212E+00 1.0000E+00 -1.4417261E+00 1.2288E-02 MARKER #ECellSec * * 2 : 5.0E+02/ 5.5E+02/

    Fit reached penalty value 9.7583E-05

    0

    0.001

    0.002

    0.003

    0.004

    0.005

    0.006

    0 5 10 15 20 25 30 35

    penalty

    section number

    Matching 6 sections per arc, 6 arcs, to 11 theoretical orbits in 1 go. Penalties.

    penalties

  • ER

    L2015W

    orkshop,BN

    L-ST

    ON

    YB

    RO

    OK

    UN

    IVE

    RS

    ITY,7-12

    June2015

    • Sample results

    Horizontal misalignment (b0 ∈ ±20 G, uniform)

    Initial dp/p = 0, initial ǫx, ǫy zero. Initial dp/p ∈ ±2 10−4, initial ǫx, ǫy zero.BEFORE CORRECTION

    -.006 -.004 -.002 0.0 0.002

    -.004

    -.002

    0.0

    0.002

    0.004

    0.006

    0.008

    Zgoubi|Zpop 05-01-2015

    * # COORDINATES - STORAGE FILE, 30-12-0014 17:10:31 *

    Y’ (rad) vs. Y (m)

    -.006 -.004 -.002 0.0 0.002 0.004

    -.006

    -.004

    -.002

    0.0

    0.002

    0.004

    0.006

    0.008

    Zgoubi|Zpop 05-01-2015

    * # COORDINATES - STORAGE FILE, 30-12-0014 15:17:45 *

    Y’ (rad) vs. Y (m)

    AFTER CORRECTION (Note the scales : big effect)

    -.0002 0.0 0.0002 0.0004 0.0006 0.0008

    -.0004

    -.0002

    0.0

    0.0002

    0.0004

    0.0006

    Zgoubi|Zpop 05-01-2015

    * # COORDINATES - STORAGE FILE, 29-12-0014 14:17:13 *

    Y’ (rad) vs. Y (m)

    -.0002 0.0 0.0002 0.0004 0.0006

    -.0004

    -.0002

    0.0

    0.0002

    0.0004

    0.0006

    Zgoubi|Zpop 05-01-2015

    * # COORDINATES - STORAGE FILE, 29-12-0014 12:49:11 *

    Y’ (rad) vs. Y (m)

  • ER

    L2015W

    orkshop,BN

    L-ST

    ON

    YB

    RO

    OK

    UN

    IVE

    RS

    ITY,7-12

    June2015

    Initial dp/p = 0, initial ǫx, ǫy 50pi. Initial dp/p ∈ ±2 10−4, initial ǫx, ǫy 50pi.

    BEFORE CORRECTION

    -.006 -.004 -.002 0.0 0.002

    -.004

    -.002

    0.0

    0.002

    0.004

    0.006

    0.008

    Zgoubi|Zpop 05-01-2015

    * # COORDINATES - STORAGE FILE, 05-01-0015 12:14:55 *

    Y’ (rad) vs. Y (m)

    -.006 -.004 -.002 0.0 0.002 0.004

    -.006

    -.004

    -.002

    0.0

    0.002

    0.004

    0.006

    0.008

    Zgoubi|Zpop 05-01-2015

    * # COORDINATES - STORAGE FILE, 05-01-0015 12:16:02 *

    Y’ (rad) vs. Y (m)

    AFTER CORRECTION (Note the scales : big effect)

    -.0004 0.0 0.0004 0.0008

    -.0004

    -.0002

    0.0

    0.0002

    0.0004

    0.0006

    0.0008

    Zgoubi|Zpop 05-01-2015

    * # COORDINATES - STORAGE FILE, 05-01-0015 10:42:52 *

    Y’ (rad) vs. Y (m)

    -.0004 0.0 0.0004 0.0008

    -.0006

    -.0004

    -.0002

    0.0

    0.0002

    0.0004

    0.0006

    0.0008

    Zgoubi|Zpop 05-01-2015

    * # COORDINATES - STORAGE FILE, 29-12-0014 16:32:53 *

    Y’ (rad) vs. Y (m)

  • ERL2015 Workshop, BNL-STONY BROOK UNIVERSITY, 7-12 June 2015

    THANK YOU FOR YOUR ATTENTION

  • ERL2015 Workshop, BNL-STONY BROOK UNIVERSITY, 7-12 June 2015