BE280A 06 mri2 - University of California, San Diego · BE280A_06_mri2.ppt Author: Thomas Liu...

14
1 TT Liu, BE280A, UCSD Fall 2006 Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2006 MRI Lecture 2 TT Liu, BE280A, UCSD Fall 2006 Gradients Spins precess at the Larmor frequency, which is proportional to the local magnetic field. In a constant magnetic field B z =B 0 , all the spins precess at the same frequency (ignoring chemical shift). Gradient coils are used to add a spatial variation to B z such that B z (x,y,z) = B 0 +Δ B z (x,y,z) . Thus, spins at different physical locations will precess at different frequencies.

Transcript of BE280A 06 mri2 - University of California, San Diego · BE280A_06_mri2.ppt Author: Thomas Liu...

Page 1: BE280A 06 mri2 - University of California, San Diego · BE280A_06_mri2.ppt Author: Thomas Liu Created Date: 11/8/2006 4:53:51 PM ...

1

TT Liu, BE280A, UCSD Fall 2006

Bioengineering 280APrinciples of Biomedical Imaging

Fall Quarter 2006MRI Lecture 2

TT Liu, BE280A, UCSD Fall 2006

GradientsSpins precess at the Larmor frequency, which isproportional to the local magnetic field. In a constantmagnetic field Bz=B0, all the spins precess at the samefrequency (ignoring chemical shift).

Gradient coils are used to add a spatial variation to Bzsuch that Bz(x,y,z) = B0+Δ Bz(x,y,z) . Thus, spins atdifferent physical locations will precess at differentfrequencies.

Page 2: BE280A 06 mri2 - University of California, San Diego · BE280A_06_mri2.ppt Author: Thomas Liu Created Date: 11/8/2006 4:53:51 PM ...

2

TT Liu, BE280A, UCSD Fall 2006

Simplified Drawing of Basic Instrumentation.Body lies on table encompassed by

coils for static field Bo, gradient fields (two of three shown),

and radiofrequency field B1.

MRI System

Image, caption: copyright Nishimura, Fig. 3.15

TT Liu, BE280A, UCSD Fall 2006

Z Gradient Coil

B(mT)

L

Credit: Buxton 2002

Page 3: BE280A 06 mri2 - University of California, San Diego · BE280A_06_mri2.ppt Author: Thomas Liu Created Date: 11/8/2006 4:53:51 PM ...

3

TT Liu, BE280A, UCSD Fall 2006

Gradient Fields

!

Bz(x,y,z) = B0

+"Bz

"xx +

"Bz

"yy +

"Bz

"zz

= B0

+Gxx +Gyy +Gzzz

!

Gz

="B

z

"z> 0

!

Gy ="Bz

"y> 0

y

TT Liu, BE280A, UCSD Fall 2006

Interpretation

∆Bz(x)=Gxx

Spins Precess atat γB0+ γGxx(faster)

Spins Precess at γB0- γGxx(slower)

x

Spins Precess at γB0

Page 4: BE280A 06 mri2 - University of California, San Diego · BE280A_06_mri2.ppt Author: Thomas Liu Created Date: 11/8/2006 4:53:51 PM ...

4

TT Liu, BE280A, UCSD Fall 2006

Gradient Fields

!

Gx x + Gy y + Gzz =r G "

r r

!

r G "Gx

ˆ i + Gyˆ j + Gz

ˆ k

!

Bz(r r ,t) = B

0+

r G (t) "

r r

Define

!

r r " xˆ i + yˆ j + z ˆ k

So that

Also, let the gradient fields be a function of time. Thenthe z-directed magnetic field at each point in thevolume is given by :

TT Liu, BE280A, UCSD Fall 2006

Static Gradient Fields

!

M(t) = M(0)e" j#0te

" t /T2

In a uniform magnetic field, the transverse magnetizationis given by:

In the presence of non time-varying gradients we have

!

M (r r ) = M (

r r ,0)e

" j#Bz (r r )t

e" t /T2 (

r r )

= M (r r ,0)e

" j# (B0+r

G $r r )t

e" t /T2 (

r r )

= M (r r ,0)e

" j%0te" j#

r G $

r r te" t /T2 (

r r )

Page 5: BE280A 06 mri2 - University of California, San Diego · BE280A_06_mri2.ppt Author: Thomas Liu Created Date: 11/8/2006 4:53:51 PM ...

5

TT Liu, BE280A, UCSD Fall 2006

Time-Varying Gradient FieldsIn the presence of time-varying gradients the frequencyas a function of space and time is:

!

"r r ,t( ) = #B

z(r r ,t)

= #B0

+ #r G (t) $

r r

="0

+ %"(r r ,t)

TT Liu, BE280A, UCSD Fall 2006

PhasePhase = angle of the magnetization phasorFrequency = rate of change of angle (e.g. radians/sec)Phase = time integral of frequency

!

"#r r ,t( ) = $ "%(

r r ,& )

0

t

' d&

= $ (v

G (r r ,& ) )

r r

0

t

' d&

!

"r r ,t( ) = # $(

r r ,% )

0

t

& d%

= #$0t + '"

r r ,t( )

Where the incremental phase due to the gradients is

Page 6: BE280A 06 mri2 - University of California, San Diego · BE280A_06_mri2.ppt Author: Thomas Liu Created Date: 11/8/2006 4:53:51 PM ...

6

TT Liu, BE280A, UCSD Fall 2006

Phase with constant gradient

!

"#r r ,t

3( ) = $ "%(r r ,& )

0

t3

' d&

!

"#r r ,t2( ) = $ "%(

r r ,& )

0

t2

' d&

= $"%(r r )t2

if "% is non - time varying.

!

"#r r ,t

1( ) = $ "%(r r ,& )

0

t1

' d&

TT Liu, BE280A, UCSD Fall 2006

Phase with time-varying gradient

Page 7: BE280A 06 mri2 - University of California, San Diego · BE280A_06_mri2.ppt Author: Thomas Liu Created Date: 11/8/2006 4:53:51 PM ...

7

TT Liu, BE280A, UCSD Fall 2006

Time-Varying Gradient FieldsThe transverse magnetization is then given by

!

M(r r ,t) = M(

r r ,0)e

" t /T2 (r r )

e# (

r r ,t )

= M(r r ,0)e

" t /T2 (r r )

e" j$0t exp " j %$

r r ,t( )d&

o

t

'( )= M(

r r ,0)e

" t /T2 (r r )

e" j$0t exp " j(

r G (&) )

r r d&

o

t

'( )

TT Liu, BE280A, UCSD Fall 2006

Signal EquationSignal from a volume

!

sr(t) = M(r r ,t)

V" dV

= M(x,y,z,0)e# t /T2 (

r r )

e# j$0t exp # j%

r G (&) '

r r d&

o

t

"( )z"

y"

x" dxdydz

For now, consider signal from a slice along z and dropthe T2 term. Define

!

m(x,y) " M(r r ,t)

z0#$z / 2

z0 +$z / 2

% dz

!

sr(t) = m(x,y)e" j#0t exp " j$

r G (%) &

r r d%

o

t

'( )y'

x' dxdy

To obtain

Page 8: BE280A 06 mri2 - University of California, San Diego · BE280A_06_mri2.ppt Author: Thomas Liu Created Date: 11/8/2006 4:53:51 PM ...

8

TT Liu, BE280A, UCSD Fall 2006

Signal EquationDemodulate the signal to obtain

!

s(t) = ej" 0t sr(t)

= m(x,y)exp # j$r G (% ) &

r r d%

o

t

'( )y'

x' dxdy

= m(x,y)exp # j$ Gx (%)x + Gy (%)y[ ]d%o

t

'( )y'

x' dxdy

= m(x,y)exp # j2( kx (t)x + ky (t)y( )( )y'

x' dxdy

!

kx (t) ="

2#Gx ($ )d$0

t

%

ky (t) ="

2#Gy ($ )d$0

t

%

Where

TT Liu, BE280A, UCSD Fall 2006

MR signal is Fourier Transform

!

s(t) = m(x,y)exp " j2# kx (t)x + ky (t)y( )( )y$

x$ dxdy

= M kx (t),ky (t)( )= F m(x,y)[ ]

kx (t ),ky (t )

Page 9: BE280A 06 mri2 - University of California, San Diego · BE280A_06_mri2.ppt Author: Thomas Liu Created Date: 11/8/2006 4:53:51 PM ...

9

TT Liu, BE280A, UCSD Fall 2006

Recap• Frequency = rate of change of phase.• Higher magnetic field -> higher Larmor frequency ->

phase changes more rapidly with time.• With a constant gradient Gx, spins at different x locations

precess at different frequencies -> spins at greater x-valueschange phase more rapidly.

• With a constant gradient, distribution of phases across xlocations changes with time. (phase modulation)

• More rapid change of phase with x -> higher spatialfrequency kx

TT Liu, BE280A, UCSD Fall 2006

K-space

!

s(t) = M kx (t),ky (t)( ) = F m(x,y)[ ]kx ( t ),ky ( t )

!

kx (t) ="

2#Gx ($ )d$0

t

%

ky (t) ="

2#Gy ($ )d$0

t

%

At each point in time, the received signal is the Fouriertransform of the object

evaluated at the spatial frequencies:

Thus, the gradients control our position in k-space. Thedesign of an MRI pulse sequence requires us toefficiently cover enough of k-space to form our image.

Page 10: BE280A 06 mri2 - University of California, San Diego · BE280A_06_mri2.ppt Author: Thomas Liu Created Date: 11/8/2006 4:53:51 PM ...

10

TT Liu, BE280A, UCSD Fall 2006

Interpretation

∆x 2∆x-∆x-2∆x 0

∆Bz(x)=Gxx

!

exp " j2#1

8$x

%

& '

(

) * x

%

& '

(

) *

!

exp " j2#2

8$x

%

& '

(

) * x

%

& '

(

) *

!

exp " j2#0

8$x

%

& '

(

) * x

%

& '

(

) *

FasterSlower

TT Liu, BE280A, UCSD Fall 2006

K-space trajectoryGx(t)

t

!

kx(t) =

"

2#G

x($ )d$

0

t

%

t1 t2

kx

ky

!

kx(t1)

!

kx(t2)

Page 11: BE280A 06 mri2 - University of California, San Diego · BE280A_06_mri2.ppt Author: Thomas Liu Created Date: 11/8/2006 4:53:51 PM ...

11

TT Liu, BE280A, UCSD Fall 2006

K-space trajectoryGx(t)

tt1 t2

ky

!

kx(t1)

!

kx(t2)

Gy(t)

t3 t4kx

!

ky (t4 )

!

ky (t3)

TT Liu, BE280A, UCSD Fall 2006 Nishimura 1996

Page 12: BE280A 06 mri2 - University of California, San Diego · BE280A_06_mri2.ppt Author: Thomas Liu Created Date: 11/8/2006 4:53:51 PM ...

12

TT Liu, BE280A, UCSD Fall 2006

K-space trajectoryGx(t)

tt1 t2

ky

Gy(t)

kx

TT Liu, BE280A, UCSD Fall 2006

Spin-WarpGx(t)

t1

ky

Gy(t)

kx

Page 13: BE280A 06 mri2 - University of California, San Diego · BE280A_06_mri2.ppt Author: Thomas Liu Created Date: 11/8/2006 4:53:51 PM ...

13

TT Liu, BE280A, UCSD Fall 2006

Spin-WarpGx(t)

t1 ky

Gy(t)

kx

TT Liu, BE280A, UCSD Fall 2006

Spin-Warp Pulse Sequence

Gx(t)

ky

kx

Gy(t)

RF

Page 14: BE280A 06 mri2 - University of California, San Diego · BE280A_06_mri2.ppt Author: Thomas Liu Created Date: 11/8/2006 4:53:51 PM ...

14

TT Liu, BE280A, UCSD Fall 2006

UnitsSpatial frequencies (kx, ky) have units of 1/distance.Most commonly, 1/cm

Gradient strengths have units of (magneticfield)/distance. Most commonly G/cm or mT/m

γ/(2π) has units of Hz/G or Hz/Tesla.

!

kx(t) =

"

2#G

x($ )d$

0

t

%

= [Hz /Gauss][Gauss /cm][sec]= [1/cm]

TT Liu, BE280A, UCSD Fall 2006

ExampleGx(t) = 1 Gauss/cm

t

!

kx(t

2) =

"

2#G

x($ )d$

0

t

%= 4257Hz /G &1G /cm &0.235'10

(3s

=1 cm(1

kx

ky

!

kx(t1)

!

kx(t2)

t2 = 0.235ms

1 cm