BBIIBBLLIIOOGGRRAAPPHHYY - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/7019/11/11... ·...

29
B B I I B B L L I I O O G G R R A A P P H H Y Y

Transcript of BBIIBBLLIIOOGGRRAAPPHHYY - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/7019/11/11... ·...

BBIIBBLLIIOOGGRRAAPPHHYY

ABE, T., CHUNG, S., DIAUGUSTION, R.P. and FOLK, J.E., 1977. Rabbit

transglutaminase: physical, chemical, and catalytic properties, Biochem., 16:

5495–5501.

ABE, Y., YASUNAGA, K., KITAKAMI, S., MURAKAMI, Y., OTA, T. and ARAI,

K., 1996. Quality of kamaboko gels from walleye pollack frozen surimi of

different grades on applying additives containing TGase. Nippon Suisan

Gakkashi, 62: 439-445.

ABOURMAHMOUD, R. and SAVELLO, P., 1990. Crosslinking of whey protein by

transglutaminase. J. Dairy Sci., 73: 256-263.

AESCHLIMANN, D. and PAULSSON, M., 1994. Transglutaminases: protein

crosslinking enzymes in tissues and body fluids. Thromb Haemost., 71: 402–

415.

AESCHLIMANN, D., PAULSSON, M. and MANN, K., 1992. Identification of

Gln726 in nidogen as the amine acceptor in transglutaminase-catalyzed

crosslinking of laminin-nidogen complexes. J. Biol. Chem., 267: 11316–

11321.

AGUILERA, J.M., 1992. Generation of engineered structures in gels. In: Physical

Chemistry of Foods (Schwartzberg, H.C. and Hartel, R.W., eds), pp. 387-421,

Marcel Dekker

AKAHANE, Y. and SHIMAZU, Y., 1990. Effect of setting incubation on the water

holding capacity of salt ground fish meat and its heated gel. Nippon Suisan

Gakkashi, 56: 139-146.

AKAMITTATH, J. G. and BALL JR., H. R., 1992. Transglutaminase mediated

polymerization of crude actomyosin refined from mechanically deboned

poultry meat. J. .Muscle Foods., 3: 1–14.

AN, H., PETERS M.Y. and SEYMOUR, T.A., 1996. Roles of endogenous enzymes

in surimi gelation. Trend. Food Sci. Technol., 7: 321–326.

AN, H., WEERASINGHE, V., SEYMOUR, T. A. and MORRISSEY, M., 1994.

Cathepsin degradation of Pacific whiting surimi proteins. J. Food Sci., 59:

1013–1017.

VII. BIBLIOGRAPHY

94

ANDO, H., ADACHI, M., UMEDA, K., MATSUURA, A., NONAKA, M. and

UCHIO, R., 1989. Purification and characteristics of novel transglutaminase

derived from microorganisms. Agric. Biol. Chem., 53: 2613–2617.

ANDO, Y., IMAMURA, S., OWADA, M.K. and KANNAGI, R., 1991. Calcium-

induced intracellular cross-linking of lipocortin I by tissue transglutaminase in

A431 cells. Augmentation by membrane phospholipids. J. Biol. Chem., 266:

1101–1118.

ANDO, Y., IMAMURA, S., YAMAGATA, Y., KIKUCHI, T., MURACHI, T. and

KANNAGI, R., 1987. J. Biochem. Tokyo, 101: 1331–1337.

AOAC, 2006. Official Methods of Analysis of AOAC International. 18th Edition.

Conniff, P. (Ed.). Association of Official and Analytical Chemists

International, Virginia, USA

APPELT, D.M., KOPEN, G.C., BOYNE, L.J. and BALIN, B.J. 1996. Localization of

transglutaminase in hippocampal neurons: implications for Alzheimer's

disease. J. Histochem.Cytochem.44:1421-1427.

ARAKI, H. and SEKI, N., 1993. Comparison of reactivity of transglutamianse to

various fish actomyosin. Nippon Suisan Gakkaishi, 59 : 711–716.

ASAGAMI, T., OGIWARA, M., WAKAMEDA, A. and NOGUCHI, S., 1995. Effect

of microbial transglutaminase on the quality of frozen surimi made from

various kinds of fish species, Fish. Sci., 61(2): 267–272.

ASGHAR, A., SAMEJIMA, K. and YASUI, T., 1985. Functionality of muscle protein

in gelation mechanisms of structured meat products. CRC. Crit. Rev. Food

Sci. Nutr., 22:27-107.

ASHIE, I.N.A. and LANIER, T.C. 2000. Transglutaminase in seafood processing. In:

N.F. Haard and B.K. Simpson, Editors, Seafood enzymes: utilization and

influence on postharvest seafood quality, Marcel Dekker, New York, USA,

pp. 147–166.

BABIKER, E.E., 2000. Effect of transglutaminase treatment on the functional

properties of native and chymotrypsin-digested soy protein. Food Chem.,

70:139–145.

BADII, F. and HOWELL, N.K. 2002. Changes in the texture and structure of cod and

haddock fillets during frozen storage. Food Hydrocolloids, 16: 313-319.

95

BARNES, H.A., 2000. A hand book of elementary rheology. University of Wales

Institute of Non-Newtonian fluid Mechanics. University of Wales

Abersystwgth.

BENJAKUL, S. and VISESSANGUAN, W., 2003. Transglutaminase-mediated

setting in bigeye snapper surimi, Food Res. Int., 36: 253–266.

BENJAKUL, S., VISESSANGUAN, W. and CHANTARASUWAN, C. 2003. Effect

of high temperature setting on gelling characteristic of surimi from some

tropical fish. Food Chem., 84: 567–574.

BENJAKUL, S., VISESSANGUAN, W. and LEELAPONGWATTANA, K., 2002.

Characteristics of muscle from two species of bigeye snapper, Priacanthus

tayenus and Priacanthus macracanthus, J. Food Biochem., 26 : 307–326.

BENJAKUL, S., VISESSANGUAN, W. and PECHARAT, S., 2004. Suwari gel

properties as affected by transglutaminase activator and inhibitors. Food

Chem., 85 (1): 91-99.

BENJAKUL, S., VISESSANGUAN, W. and SRIVILAI, C., 2001. Porcine plasma

proteins as gel enhancer in bigeye snapper (Priacanthus tayenus) surimi. J.

Food Biochem., 25: 285–305.

BERBERS, G.A., FEENSTRA, R.W., VAN DEN BOS, R., HOEKMAN, W.A.,

BLOEMENDAL, H. and DE JONG, W.W., 1984. Lens transglutaminase

selects specific b-crystallin sequences as substrate. Proc Natl Acad Sci USA

81: 7017–7020.

BERBERS, G.A.M., BENTLAGE, H.C.M., BRANS, A.M.M., BLOEMENDAL, H.

and DEJONG, W.W. 1983. Eur. J. Biochem., 135: 315–320.

*BERGAMINI, C.M. and SIGNORINI, M.1992. Biochem. Int., 27: 557–565.

BISHOP, P.D., TELLER, D.J., SMITH, R.A., LASSER, G.W., GILBERT, T. and

SEALE, R.L., 1990. Expression, purification and charecterisation of human

factor XIII in Saccharomyces cerevisiae. Biochem., 29(7): 1861-1869.

BOOTHE, R. L. and FOLK, J. E. 1969. A reversible, calciumdependent. copper-

catalyzed inactivation of guinea pig liver transglutaminase. J. biol. Chem.,

244: 399-405.

BOURAOUI, M., NAKAI, S., and LI-CHAN, E., 1997. In situ investigation of

protein structure in Pacific whitening surimi and gels using Raman

Spectroscopy, Food Res. Int., 30: 65-72.

BRENNER, S.C. and WOLD, F., 1978. Biochim. Biophys. Acta., 522: 74–83.

96

BROOKHART, P.P., MCMAHON, P.L. and TAKAHASHI, M., 1983. Purification of

guinea pig liver transglutaminase using a phenylalanine-Sepharose 4B affinity

column. Anal. Biochem., 128: 202–205.

CARECHE, M., ALVERZA, C. and TAJEDA, M., 1995. Suwari and kamaboko

sardine gels: Effect of heat treatment and solubility of networks. J. Agric.

Food chem., 43:1002-1010.

CASE, A. and STEIN, R.L., 2003. Kinetic analysis of the action of tissue

transglutaminase on peptide and protein substrates. Biochem., 42: 9466-9481.

CHAIJAN., M, BENJAKUL, S., VISESSANGUAN, W. and FAUSTMAN, C. 2004.

Characteristics and gel properties of muscles from sardine (Sardinella

gibbosa) and mackerel (Rastrelliger kanagurta) caught in Thailand. Food Res.

Int., 37(10): 1021-1030.

CHAN, J.K., GILL, T.A., PAULSON, A.T., 1992. Cross linking of myosin heavy

chains from cod, herring and silver hoki during thermal setting. J. Food Sci.,

57: 906-901.

CHAN, J.K., GILL, T.A., PAULSON, A.T., 1993. Thermal aggregation of myosin

heavy chains from cod, herring and silver hake during thermal setting. J.Food

Sci., 57: 906-912.

CHAN, J.K., GILL, T.A., THOMPSON, S.W. and SINGER, D.S., 1995. Herring

surimi during low temperature setting, physico-chemical and textural

properties. J. Food Sci., 60: 1248-1253.

*CHANG, S.K. and CHUNG, S.I., 1986. J. Biol. Chem., 261: 8112–8121.

CHANYONGVORAKUL, Y., MATSUMURA, Y., SAKAMOTO, H. MOTOKI, M.,

IKUIRA, K. and MORI, T. 1994. Gelation of bean 11 s globulins by Ca2+

independent transglutaminase. Biosci. Biotech. Biochem., 58 (5): 864-869.

CHEN, H.H., CHIU, E.M. and HUANG, J.R., 1997. Color and gel-forming properties

of horse mackerel (Trachurus japonucus) as related to washing conditions. J.

Food Sci., 62: 985–991.

CLARKE, D.D., MYCEK, M.J., NEIDLEAND, A. and WAELSCH, H.,

1959.Fibrinoligase-catalysed cross-linking of myosin from platelet and

skeletal muscle. Arch. Biochem. Biophys., 79: 3338–3354.

CONNELLAN, J.M., CHUNG, S.I., WHETZEL, N.K., BRADLEY L.M. and FOLK ,

J.E., 1971. Structural properties of guinea pig liver transglutaminase. J. Biol.l

Chem., 246: 1093–1098.

97

COUSSONS, P.J., PRICE, N.C., KELLY, S.M., SMITH, B. and SAWYER, L., 1992.

Factors that govern the specificity of transglutaminase-catalysed modification

of proteins and peptides. Biochem. J., 282: 929–930.

*CROALL, D.E. and DEMARTINO, G.N., 1986. Cell. Calcium., 7: 29–39.

*DADABAY, C.Y. and PIKE, L.J., 1989. Biochem. J., 264: 679–685.

DE BACKER ROYER, C., TRAORE, F. and MEUNIER, J.C., 1992. Purification and

properties of factor XIII from human placenta. Int. J. Biochem., 24: 91–97.

DE JONG, G. A. H., WIJNGAARDS, G., BOUMANS, H., KOPPELMAN, S. J.and

HESSING, M., 2001. Purification and substrate specificity of

transglutaminases from blood and Streptoverticillium mobaraense. J. Agric.

Food Chem., 49(7): 3389–3393.

DE JONG, G. and KOPPELMAN, S., 2002. Transglutaminase catalyzed reactions:

impact on food applications. J. Food Sci., 67(8): 2798–2806.

DEL DUCA, S., DONDINI, L., DELLA MEA, M., MUNOZ DE RUEDA, P. and

SERAFINI-FRACASSINI, D., 2000. Factors affecting transglutaminase

activity catalyzing polyamine conjugation to endogenous substrates in the

entire chloroplast. Plant Physiol. Biochem., 38: 429–439.

DELLA MEA M., DI SANDRO, A., DONDINI, L, DEL DUCA, S., VANTINI, F.,

BERGAMINI, C., BASSI, R. and SERAFINI- FRACASSINI, D., 2004. A

Zea mays 39-kDa thylakoidal transglutaminase catalyses the modification by

polyamines of light-harvesting complex II in a light-dependent way. Planta

DOI 10.1007/s00425-004-1280z.

DICKINSON, E. and YAMAMOTO, Y., 1996. Rheology of milk protein gels and

protein-stabilized emulsion gels crosslinked with transglutaminase. J. Agric.

Food Chem., 44: 1371–1377.

DICKINSON, E., 1997. Enzymic cross-linking as a tool for food colloid rheology

control and interfacial stabilization. Trend. Food Sci. Technol., 8: 334–339.

DONDERO, M., FIGUEROA, V., MORALES, X. and CUROTTO, E., 2006.

Transglutaminase effects on gelation capacity of thermally induced beef

protein gels. Food Chem., 99: 546-554.

DUTTON, A. and SINGER, S. J., 1975. Cross-linking and labeling of membrane

proteins by transglutaminase-catalyzed reactions. Proc. Natn. Acud. Sci. U.S.A.

72: 2568-2571.

98

EGELANDSDAL, B., MARTISEN, B. and ACTIO, K., 1995. Rheological parameter

as predictor of protein functionality. A model tudy using myofibrils of

different fiber type composition. Meat Sci.,. 39: 97-111.

ELLMAN, G.L., 1959. Tissues sulfhydryl groups. Arch. Biochem. Biophys.,

82: 70-77.

FAERGEMAND, M., MURRAY, B.S. and DICKINSON, E., 1997. Crosslinking of

milk proteins with transglutaminase at the oil–water interface. J. Agric. Food

Chem., 45: 2514–2519.

FICKENSCHER, K., AAB, A. and STUBER, W., 1991. A Photometric assay for

blood coagulation factor XIII. Thromb. Haemost., 65: 535–540.

FINK, M.L., SHAO, Y.Y. and KERSH, G.J., 1992. A fluorometric, high-performance

liquid chromatographic assay for transglutaminase activity Anal. Biochem.,

201: 270–276.

FLANAGAN, J., GUNNING, Y. and FITZGERALD, R.J. 2003. Effect of cross-

linking with transglutaminase on the heat stability and some functional

characteristics of sodium caseinate. Food Res.int., 36:267-274

FOEGEDING, E.A., BREKKE, C.J. and XIONG, Y.L., 1991. Gelation of

myofibrillar proteins, interactions of food proteins, ACS Symposium series

No. 454 (Parris, N. and Barford, R., Eds.), American Chemical Society, pp.

257-267.

FOLK, J. E. and CHUNG, S. I., 1973. Molecular and catalytic properties of

transglutaminases. Adv. Enzymol., 38 : 109–191.

FOLK, J.E. and CHUNG, S.I., 1985. Transglutaminases. Meth. Enzymol., 113: 358-

375.

FOLK, J.E. and COLE, P.W., 1966. Identification of a functional cysteine essential

for the activity of guinea pig liver transglutaminase, J. Biol. Chem., 41: 3238–

3240.

FOLK, J.E., 1980.Transglutaminases. Ann. Rev. Biochem., 49: 517–531.

FOLK, J.E., 1983. Mechanism and basis for specificity of transglutaminase-catalysed

ε-(γ-glutamyl)-lysine bond formation. Adv. Enzymol., 54: 1-56.

FREIFELDER, D., 1982. Spectroscopic methods: Fluorescence spectroscopy. In:

Physical Biochemistry : Application to Biochemistry and Molecular Biology.

J. WILSON and D. STEDS (Ed) W.H. Freeman and Company, San Francisco.

99

FUNATSU, Y., KATOH, N., ARAI, K., 1996. Aggregate formation of salt- soluble

proteins in salt-ground meat from walleye Pollack surimi during setting. .

Nippon Suisan Gakkaishi, 62(1): 112-122.

GANESH, A., DILEEP, A.O., SHAMASUNDAR, B.A and SINGH, U. 2006. Gel

forming ability of common carp (Cyprinus carpio) meat: Effect of freezing

and frozen storage. J.Food Biochem., 30: 342-361.

GENTILE, V., SAYDAK, M., CHIOCCA, E. A., AKANDE, O., BIRCKBICHLER,

P. J., LEE, K. N., STEIN, J. P. and DAVIES, P. J . A., 1991. Isolation and

characterization of cDNA clones to mouse macrophage and human endothelial

cell tissue transglutaminase, J. Biol. Chem., 266: 478-483.

GERBER, U., JUCKNISCHKE, U., PUTZIEN, S. and FUCHSBAUER, H. L., 1994.

A rapid and simple method for the purification of transglutaniinase from

Streptoverticillium mobaraense. Biochem. J., 299: 825–829.

GILL, T.A. and CONWAY, J.T., 1989. Thermal aggregation of cod (Gadus morhua)

muscle proteins using 1- ethyl –3-(3- dimethyl –aminoprophyl) carbodiimide

as a zerolength cross-linker. Agric. Biol.chem., 53: 2553-2567.

GILL, T.A., CHAN, J.K., PONCHAREON, K.F. and PAULSON, A.T., 1992. Effect

of salt concentration and temperature on heat induced aggregation and gelation

of fish myosin. Food Res. Int., 25: 333-341.

GILLELAND, G.M., LANIER, T.C. and HAMANN, D.D., 1997. Covalent bonding

in pressure-induced fish protein gels. J. Food Sci., 62 (4): 713-716, 733.

GOPAKUMAR. K., 1997. Surimi. In: Tropical Fishery Products. Oxford and IBH

Publishing Co.Pvt.Ltd., New Delhi, p. 68.

GORMAN, J. J. and FOLK, J. E., 1980 a. Transglutamine substrates for

photochemical labeling and cleavable cross-linking of proteins. J. biol. Chem.,

25: I175-1180.

GORMAN, J.J. and FOLK, J.E., 1980 b. Structural features of glutamine substrates

for human plasma factor XIIIa (activated blood coagulation factor XIII.J. Biol.

Chem., 255:

GREENBERG, C.S., BIRCKBICHLER, P.J. and RICE, R.H. 1991.

Transglutaminase: multifunctional cross-linking enzymes that stabilize tissues.

FASEB J., 5: 3071–3077.

GRIFFIN, M., CASADIO, R. and BERGAMINI, C.M., 2002. Transglutaminases:

nature’s biological glues. Biochem. J., 368: 377–396.

100

GROENEN, P.J.T.A., BLOEMENDAL, H. and DE JONG, W.W., 1992. The

carboxy-terminal lysine of aB-crystallin is an amine-donor substrate for tissue

transglutaminase. Eur. J. Biochem., 205: 671–674.

GROOTJANS, J.J., GROENEN, P.J.T.A. and DE JONG, W.W., 1995. Substrate

requirements for transglutaminases. Influence of the amino acid residue

preceding the amine donor lysine in a native protein. J. Biol. Chem., 270:

22855–22858.

GRUNDMANN, U., AMANN, E., ZETTLMEISSL, G. and KUPPER, H. A., (1986).

Characterization of cDNA coding for human factor XIIra, Proc. Nut1 Acad.

Sci. USA 83, 8024-8028.

HA, C.R. AND IUCHI, I. 1997. Purification and partial characterization of 76 kDa

transglutaminase in the egg envelope (chorion) of rainbow trout,

Oncorhynchus mykiss, Biochem. J., 122: 947–954.

HAARD, N.F., SIMPSON, B.K. and PAN, B.S., 1994. Sarcoplasmic proteins and

other nitrogenous compounds In: Sikorski ,Z.E., Pan, B.S. and Shahidi, F.

(Eds), Seafood proteins, Chapman & Hall, New York . PP 13–39.

HALL, M. and SODERHALL, K., 1994. Crayfish A-macroglobulin as a substrate for

transglutaminases. Comp. Biochem. Physiol., 108B : 65–72.

HAMANN, D.D. and LANIER, T.C., 1986. Instrumental methods for predicting

seafood sensory texture quality. In: Seafood Quality Determintion. (D.E.

Kramer and J. Liston, eds.), Elsivier Science Publ, Amsterdam, pp. 123-136.

HASHIMOTO, K. WATABE, S. KONO M. and SHIRO, K. 1979. Muscle protein

composition of sardine and mackerel, Bull. Jap. Soc. Sci. Fish., 45: 1435–

1441.

HETTASCH, J.M. and GREENBERG, C.S., 1994. Analysis of the catalytic activity

of human factor XIIIa by site- directed mutagenesis. J. Biol. Chem., 269 (45):

28309-28313

HO, M. L., LEU, S. Z., HSIEH, J. F. and JIANG, S. T., 2000. Technical approach to

simplify the purification method and characterization of microbial

transglutaminase produced from Streptoverticillium ladakanum. J. Food Sci.,

65: 76–80.

HOJBJERG, V. 1993. application of transglutaminase (FXIII) in fish protein based

foods. Master degree thesis, Denmark Technical university

101

HOSSAIN, M.I., ITOH, Y., MORIOKA, K. and OBATAKE, A., 2001. Inhibiting

effect of polymerization and degradation of myosin heavy chain during

preheating at 30oC and 50oC on the gel forming ability of walleye pollack

surimi. Fish. Sci., 67: 718-725.

HOWE, J. R., HAMMAN, D.D., LANIER, T.C., and PARK, J.W., 1994. Fracture of

Alaska Pollack gels in water: Effects of minced muscle processing and test

temperature. J Food Sci., 59: 777-780.

HULTIN, H. O. and KELLEHER, S. D., 2000b. High-efficiency alkaline protein

extraction. US Patent 6,136,959, October 24, 2000.

HULTIN, H.O. and KELLEHER, S.D. 2000a. Surimi processing from dark muscle

fish. In: Park, J.W. Editors, Surimi and surimi seafood, Marcel Dekker, New

York, pp. 59–77.

HURREL, R.F. and CARPENTER, J. 1977. Nutritional significance of cross-link

formation during food processing. In: Protein cross-linking. Advances in

experimental medicine and biology. Friedman, M. Plenum Press, New York:

225-238.

ICHINOSE, A. and DAVIE, E.W., 1988. Characterization of the gene for the subunit

of human factor XIII (plasma transglutaminase), a blood coagulation factor,

Proceedings of the National Academy of Sciences of the United State of

America 85: 5829–5833.

IKURA, K., NASU, T., YOKOTA, H., SASAKI, R. and CHIBA, H., 1987. Cloning

of cDNA coding for guinea pig liver transglutaminase. Agric. biol. Chem., 51:

957-961.

IKURA, K., NASU, T., YOKOTA, H., TSUCHIYA, Y., SASAKI, R. and CHIBA,

H., 1988. Amino acid sequence of guinea pig liver transglutaminase from its

cDNA sequence, Biochem., 27: 2898–2905.

IKURA, K., SAKURAI, H., OKUMURA, K., SASAKI R. and CHIBA, H., 1985.

One-step purification of guinea pig liver transglutaminase using a monoclonal-

antibody immunoadsorbent. Agric. Biol. Chem., 49: 3527–3531.

IKURA, K., SASAKI, R. and MOTOKI. M., 1992. Use of transglutaminase in quality

improvement and processing of food proteins. Comments Agric. Food Chem.,

2: 389-409.

102

IKURA, K., TSUCHIYA, Y., SASAKI, R. and CHIBA, H., 1990. Expression of

guinea-pig liver transglutaminase CDNA in Escherichia coli. Eur. J.

Biochem., 187: 705-711.

IKURA, K., YOKOTA, H., SASAKI, R. and CHIBA, H., 1989. Determination of

amino- and carboxyl-terminal sequences of guinea pig liver transglutaminase:

Evidence for amino-terminal processing, Biochem., 28: 2344-2348.

IKURA, K., YOSHIKAWA, M., SASAKI, R. and CHIBA, H., 1984. Use of

transglutaminase. Reversible blocking of amino groups in substrate proteins

for a high yield of specific products. Agric Biol. Chem., 48: 2347-2354.

IMAI, C., TSUKAMASA, Y., SUGIYAMA, M., MINEGISHI Y. and SHIMIZU, Y.,

1996. The effect of setting temperature on the relationship between ε-(γ-

glutamyl) lysine cross-link content and breaking strength in salt-ground meat

of sardine and Alaska pollack. Nippon Suisan Gakkaishi, 62: 104–111.

IMM, J.Y., LIAN, P and LEE, C.M., 2000. Gelation and water binding properties of

transglutaminase-treated skim milk powder. J. Food Sci., 65: 200-205.

ISHIOROSHI, M., SAMEJIMA, K. and YASUI, T., 1983. Heat-induced gelation of

myosin filaments at low salt concentration. Agric. Food Chem., 47: 2809–

2816.

ITOH, Y., YOSHINAKA, R. and IKEDA, S., 1979a. Effect of cysteine and cysteine

on the gel formation of fish meats by heating. Bull.Jap.Soc.sci.Fish., 45:341.

ITOH, Y., YOSHINAKA, R. and IKEDA, S., 1980. Changes in high molecular

weight of protein molecules during the gel formation of carp actomyosin by

heating and participation of SH group in these changes. Nippon Suisan

Gakkaishi, 46: 617-620.

JIANG, S.T. and LEE, J.J., 1992. Purification, and characterization of pig plasma

factor XIIIa. J. Agric. Food Chem., 40 : 1101–1107.

JIANG, S.T., HSIEH J.F. and CHUNG, Y.C., 2000. Microbial transglutaminase

affects gel properties of golden threadfin-bream and pollack surimi, J. Food

Sci., 65: 694–699.

JIANG, S.T., LEU, A.Z. and TSAI, G.J., 1998. Cross-linking of mackerel surimi by

microbial transglutaminase and ultraviolet irradiation. J. Agric. Food Chem.,

46:5278-5282.

JIMENEZ COLMENERO, F., AYO, M.J. and CARBALLO, J., 2005.

Physicochemical properties of low sodium frankfurter with added walnut:

103

effect of transglutaminase combined with caseinate, KCl and dietary fibre as

salt replacers. Meat Sci., 69 (4): 781-788.

JOSEPH, D., LANIER, T.C. and HAMANN, D.D., 1994. Temperature and pH affect

transglutaminase-catalyzed setting of crude fish actomyosin, J. Food Sci.,

59:1018–1023 1036.

KAMATH, G.G. LANIER, T.C. FOEGEDING E.A. and HAMANN, D.D., 1992.

Nondisulfide covalent cross-linking of myosin heavy chain in "setting" of

Alaska pollock and Atlantic croaker surimi. J Food Biochem., 16 : 151–172.

KAMATH, G.G., 1990. Investigation of physico-chemical basis for the unique setting

phenomenon of Alaska Pollack and Atlantic Croaker surimi. Ph.D.

dissertation. North Carolina University, Raleigh, North Carolina.

KANAJI, T., OZAKI, H., TAKAO, T., KAWAJIRI, H., IDE, H., MOTOKI, M. and

SHIMONISHI, Y., 1993. Primary structure of microbial transglutaminase

from Streptoverticillium sp. strain s-8112. Biol. Chem., 268 (16): 11565-

11572, 06.

KANG, I.J., MATSUMURA, Y., IKURA, K., MOTOKI, M., SAKAMOTO, H. and

MORI, T., 1994. Gelation and properties of soybean glycinin in a

transglutaminase-catalyzed system. J. Agric. Food Chem., 42: 159-165.

KANG, I.S. and LANIER, T.C., 1999. Bovine plasma protein functions in surimi

gelation compared with cysteine protease inhibitors. J. Food Sci., 64: 842–

846.

KANG, I.S. and LANIER, T.C., 2000. Heat-induced softening of surimi gel by

proteinase. In: J.W. Park, Editor, Surimi and surimi seafood, Marcel Dekker,

Inc, New York, pp. 445–474.

KARTHIKEYAN, M., SHAMASUNDAR, B.A., SIJO MATHEW., RAMESH

KUMAR, P. and PRAKASH, V., 2004. Physico-Chemical and functional

properties of proteins from pelagic fatty fish (Sardinella longiceps) as a

function of water washing. Int. J. Food Prop., 7: 353-365.

KASHIWAGI, T.,YOKOYAMA, K., ISHIKAWA, K ., ONO, K., EJIMA, D.,

MATSUI, H. and SUZUKI, E., 2002. Crystal structure of microbial

transglutaminase from Streptoverticillium mobaraense. J. Biol. Chem., 277

(46): 44252-44260.

104

KATOH, N., HASHIMOTO, A., NOZAKI, H. and ARAI, K. 1984. Effect of

temperature on the rate offsetting of meat paste from Alaska Pollack, white

croaker and tilapia. Bull. Jap. Soc. Sci .Fish., 50: 2103.

KIM , J.M., LEE, C.M and WU, M.C., 1986. Effects of freeze thaw abuse on the

viscosity and gel-forming properties of surimi from two species. J. Food Sci.,

51: 951.

KIM, H.J., LOVERIDGE, V.A. and TAD, LA., 1984. Myosin cross-linking in freeze-

dried meat. J. Food Sci., 49: 699-702, 708

KIM, J.M., LEE, C.M. and HUFNAGEL, L.A.,1987.Textural properties and structure

of starch-reinforced surimi gels as affected by heat setting. Food

Microstructure., 6: 81.

KIM, S. H., CARPENTER, J. A., LANIER, T. C. and WICKER, L. 1993.

Polymerization of beef actomyosin induced by transglutaminase. J. Food Sci.,

58: 473–474, 491.

KIMURA, I.M., SUGIMOTO, M., TOYODA, K., SEKI, N., ARAI, K. and FUJITA,

T., 1991.A study on the cross-links reaction of myosin in kamaboko "suwari"

gels. Nippon Suisan Gakkashi, 57 : 1386–1396.

KINSELLA, J.E., 1982. Relation between structural and functional properties of food

proteins. In: Food proteins (R.F.FOX and J.J. Condon, eds.). Applied Science

Publishers, New York. pp. 51-103.

KISHI, A., ITOH, Y. and OBATAKE, A., 1995. The polymerization of protein

through disulfide bonding during heating of carp myosin. Nippon Suisan

Gakkashi, 6: 75-80.

KISHI, A., ITOH, Y. AND OBATAKE, A., 1997. The subfragment responsible for

the polymerization of myosin heavy chain through SS bonding during heating

of carp myosin. Nippon Suisan Gakkaishi, 63 (2): 237-241.

KISHI, H., NOZAWA, H. and SEKI, N., 1991. Reactivity of muscle transglutaminase

on carp myofibrils and myosin B. Nippon Suisan Gakkashi. 57: 1203–1210.

KLEIN, J.D., GUZMAN, E. and KULHN, G.D., 1992. Purification and partial

characterization of transglutaminase from Physarum polycephalum. J.

Bacteriol., 174: 2599–2605.

KNIGHT, C.R., REES, R.C., ELLIOTT, B.M. and GRIFFIN, M. 1990. FEBS Lett.,

265: 93–96.

105

KO, W.C. and HWANG, M.S., 1995. Contribution of milk sarcoplasmic proteins on

the setting of transglutaminase-free paste. Fish. Sci., 61 (6): 1039-1040.

KUMAZAWA, Y. NAKANISHI, K. YASUEDA H. and MOTOKI, M., 1996.

Purification and characterization of transglutaminase from walleye pollack

liver. Fish. Sci., 62: 959–964.

KUMAZAWA, Y., NUMAZAWA, T., SEGURO K. AND MOTOKI , M., 1995.

Suppression of surimi setting by transglutaminase inhibitors. J. Food Sci., 60:

715–717.

KUMAZAWA, Y., SANO, K., SEGURO, K., YASUEDA, H., NIO, N. and

MOTOKI, M., 1997. Purification and characterization of transglutaminase

from Japanese oyster (Crassostrea gigas). J. Agric. Food Chem., 45: 604–610.

KURAISHI, C., SAKAMOTO, J., YAMAZAKI, K., SUSA, Y., KUHARA, C. and

SOEDA, T., 1997. Production of restructured meat using microbial

transglutaminase without salt or cooking. J. Food Sci., 62 (3): 488–490 515.

KURAISHI, C., YAMAZAKI, K. and SUSA, Y., 2001. Transglutaminase: Its

utilization in the food industry. Food Rev. Int., 17:221-246.

KURTH, L. and ROGERS, P., 1984. Transglutaminase catalyzed cross-linking of

myosin to soya protein, casein and gluten. J. Food Sci., 49 (4): 573–589.

LAEMMLLI, U.K., 1970. Cleavage of structural protein during assembly of the head

bactereophage T4. Nature, 227: 680-685.

LANIER , T.C., 1992. Measurement of surimi composition and functional properties.

In: Lanier, T.C. and Lee, C.M. (Eds), Surimi Technology, Marcel Dekker,

New York, pp. 123–163.

LANIER , T.C., 2000. Surimi gelation chemistry. In: J.W. Park, Editor, Surimi and

surimi seafood, Marcel Dekker, New York, pp. 237–265.

LANIER, T.C., 1986. Functional properties of surimi. Food Technol., 40 (3): 107–

114.

LANIER, T.C., LIN, T.S., LIU, Y.M and HAMMAN, D.D., 1982. Heat gelation

properties of actomyosin and surimi prepared from Atlantic croaker. J Food

Sci., 47: 1921-1925.

LARRE, C., KEDZIOR, Z. M., CHENU, G. and GUEGUEN, J., 1992. Action of

transglutaminase on 11S seed protein (pea legumin): Influence of the substrate

conformation. J. Agric. Food Chem., 40 (7): 1121-1126.

106

LAUBER, S., HENLE, T. and KLOSTERMEYER, H., 2000. Relationship between

the crosslinking of caseins by transglutaminase and the gel strength of

yoghurt, European Food Res. Technol., 210: 305–309.

Le BLANC, E.L., and LeBLANC, R.J. 1992. Determination of hydrophobicity and

reactive groups in protein of cod (Gadus morha). muscle during frozen

storage. Food Chem., 43: 3-11.

LEBLANC, A., GRAVEL, C., LABELLE, J. and KEILLOR, J.W., 2001. Kinetic

studies of guinea pig liver transglutaminase reveal a general-base-catalyzed

deacylation mechanism. Biochem., 40: 8335–8342.

LEE, N. and PARK, J.W. 1998. Calcium compounds to improve gel functionality of

Pacific whiting and Alaska pollock surimi. J. Food Sci., 63: 969–974.

LEE, E. Y. and PARK, J. 2002. Pressure inactivation kinetics of microbial

transglutaminase from Streptoverticillium mobaraense. J. Food Sci., 67(3):

1103–1107.

LEE, H.G., LANIER, T.C. and HAMANN D.D., 1997b.Covalent-crosslinking effects

on thermo-rheological profiles of fish protein gels. J. Food Sci., 62: 25–28 32.

LEE, H.G., LANIER, T.C., HAMANN D.D. and KNOPP, J.A.,

1997a.Transglutaminase effects on low temperature gelation of fish protein

sols. J. Food Sci., 62: 20–24.

LEE, K.N., BIRCKBICHLER, P.J. and FESUS, L., 1986. Prep. Biochem., 16: 321–

335.

LEE, K.N., MAXWELL, M.D., PATTERSON, M.K., BIRCKBICHLER, P.J. and

CONWAY, E. 1992. Identification of transglutaminase substrates in HT29

colon cancer cells: use of 5-biotinamidopentylamine as a transglutaminase-

specific probe. Biochim Biophys Acta 1136: 12–16.

LEE, N. and PARK, J.W., 1998. Calcium compounds to improve gel functionality of

Pacific whiting and Alaska pollock surimi. J. Food Sci., 63: 969–974.

LEE, N., SEKI, N., KATO, N., NAKAGAWA, N., TERUI, S. and ARAI, S., 1990.

Gel forming ability and cross-linking ability of myosin heavy cahin in salted

meat paste from threadfin bream. Nippon Suisan Gakkashi, 56: 329.

LIM, L.T., MINE, Y. and TUNG, M.A., 1998. Transglutaminase cross-linked egg

white protein films: tensile properties and oxygen permeability. J. Agric. Food

Chem., 46: 4022- 4029.

107

LO, J.R., MOCHIZUKI, Y., NAGASHIMA, Y., TANAKA, M., ISO N. and

TAGUCHI, T., 1991. Thermal transitions of myosins/subfragments from black

marlin (Makaira mazara) ordinary and dark muscles. J. Food Sci., 56: 954–

957.

LOEWY, A.G., 1984. The ε-(γ-glutamyl) lysine crosslink: method of analysis,

occurrence in extracellular and cellular proteins. Methods Enzymol. 107: 241-

257.

LOPEZ – LACOMBA, J., GUZMAN, M., CORTUO, M., MATEO, P., AGUIRRE,

R., HARVEY, S. and CHENNG, H., 1989. Differential scanning calorimetric

study of the thermal unfolding of myosin rod, light meromyosin and

subfragments. Biol. Polymers, 28: 2143.

LORAND, L. and CAMPBELL, L.K., 1971. Transamidating enzymes : I. Rapid

chromatographic assays Anal. Biochem., 44: 207–220.

LORAND, L. and CONRAD, S. M., 1984. Transglutaminases. Mol. Cell. Biochem.,

58: 9-35.

LORAND, L., CAMPBELL-WILKES, L.K. and COOPERSTEIN, L., 1972. A filter

paper assay for transamidating enzymes using radioactive amine substrates

Anal. Biochem., 50: 623–631.

LORAND, L., SIEFRING, G.E., TONG, Y.S., BRUNER-LORAND, J. and GRAY,

A.J., 1979. Anal. Biochem., 93: 453–458.

LORAND, L., VELASCO, P. T., MURTHY, S. N. P., WILSON, J., and

PARAMESWARAN, K. N., 1992. Isolation of transglutaminase reactive

sequences from complex biological systems: A prominent lysine donor

sequence in bovine lens. Proc. Natl. Acad. Sci. USA 89:11161–11163.

LOWRY, O.H., ROSEBROUGH, N.J., FARR A.L. and RANDALL, R.J., 1951.

Protein measurement with Folin phenol reagent. J. Biol. Chem., 193 : 256–

275.

MASSON, P., 1992. Pressure denaturation of proteins. In: Balny, R., Hayashi, R.,

Heremans, K. and Masson, P., Editors, 1992. High pressure and

biotechonology, Colloque INSERM (Vol 224), John Libbey Eurotex Ltd,

Montrouge, pp. 89–99.

MATHEIS, G. and WHITAKER, J.R., 1987. A review: Enzymatic cross-linking of

proteins applicable to foods. J. Food Biochem., 11(4): 309-327.

108

MATSUMOTO, J. J. AND NOGUCHI, S. F. 1992. Cryostabilization of protein in

surimi. In: T. C. Lanier, & C. M. Lee, Surimi technology (pp. 357±388). New

York: Marcel Dekker, Inc

MATSUMURA, Y., CHANYONGVORAKUL, Y., KUMAZAWA, Y., OHTSUKA,

T. and MORI, T., 1996. Enhanced susceptibility to transglutaminase reaction

of alpha-lactoalbumin in the molten globule state. Biochim. Biophys. Acta.

1292: 69-76.

MATSUMURA, Y., LEE, D. S. and MORI, T., 2000. Molecular weight distributions

of α-lactalbumin polymers formed by mammalian and microbial

transglutaminases. Food Hydrocolloids, 14(1): 49–59.

MILLER, M.L. and JOHNSON, G.V.W., 1999. Rapid, single-step procedure for the

identification of transglutaminase-mediated isopeptide cross-links in amino

acid digests. J. Chromatography B, 732: 65–72.

MIRAGLIA, C.C. and GREENBERG, C.S., 1985. Measurement of blood coagulation

Factor XIIIa formation in plasma containing glycyl-L-prolyl-L-arginyl-L-

proline. Anal. Biochem., 144: 165–171.

MORALES, O.G., RAMÍREZ, J.A., VIVANCO, D.I. and VÁZQUEZ, M., 2001.

Surimi of fish species from the gulf of Mexico: evaluation of the setting

phenomenon. Food Chem., 75: 43–48.

MORIOKA, K. and SHIMIZU, Y. 1990. Contribution of sarcoplasmic proteins to gel

formation of fish meat. Nippon Suisan Gakkaishi, 56: 929-933.

MORRISSEY, M.T., HARTLEY, P.S. and AN, H., 1995. Proteolytic activity in

Pacific whiting and effect of surimi processing. J. Aquat. Food Prod.

Technol., 44: 5–18.

MOTOKI, M. and NIO, N. 1983. Cross-linking between different food proteins by

transglutaminase. J. Food Sci., 48 (2): 561-566.

MOTOKI, M. and SEGURO, K., 1998. Transglutaminase and its use for food

processing. Trend. Food Sci.Technol. 9: 204–210.

MOTOKI, M. et al., 1990. Novel transglutaminase, Japanese Patent H02-69155.

MOTOKI, M., KIYAMA A., NONAKA, M., TANAKA, H., UCHIO, R. and

MATSURA, A., 1989. Novel transglutaminase manufacture for preparation of

protein gelling compounds. Jpn Kokai Kokkyo Koho; JP 0217471.

MOTOKI, M., NIO, N. and TAKINAMI, K., 1984. Functional properties of food

proteins polymerized by transglutaminase. Agric. Biol. Chem., 48:1257–1261.

109

MOTOKI, M., SEGURO, K., NIO, N. and TAKINAMI, K., 1986. Glutamine specific

degradation of α-S1-casein by transglutaminase. Agric. Biol. Chem., 50: 3025-

3030.

MUKUNDAN, M.K., RADHAKRISHNAN, A.G.M., JAMES, M.A. and NAIR,

M.R., 1981. Comaparative study of nutrient content of fish and shell fish.

Fish. Technol., 18:129-132.

MUSZBEK, L., POLGAR, J. and FESUS, L., 1985. Kinetic determination of blood

coagulation factor XIII in plasma. Clin. Chem., 31: 35–40.

MYCEK, M.J. and WAELSCH, H. 1960. The enzymatic deamidation of proteins. J.

Bio. Chem., 235 (12): 3513-3517.

MYHRMAN, R. and BRUNER-LORAND, J., 1970. Lobster muscle transpeptidase.

Methods Enzymol. 19: 765 -770.

NAKAGAWA, T., WATABE, S. and HASHIMOTO, K. 1988. Identification of three

major components in fish sarcoplasmic proteins. Nippon Suisan Gakkashi, 54:

999-1004.

NAKAI, S. and LI-CHAN, E., and HAYAKAWA, S. 1985. Contribution of protein

hydrophobicity to its functionality. Die Nahrung, 30: 327-326.

NAKANISHI, K., NARA, K., HAGIWARA, H., AOYAMA, Y., UENO, H. and

HIROSE, S., 1991. Cloning and sequence analysis of cDNA clones for bovine

aortic-endothelial-cell transglutaminase. Eur.J. Biochem., 202: 15-21.

NEMES, Z. J.R., ADANY, R., BALAZS, M., BOROSS, P. and FESUS, L., 1997.

Identification of cytoplasmatic actin as an abundant glutaminyl substrate for

tissue transglutaminase in HL-60 and U937 cells undergoing apoptosis. J.

Biol. Chem., 272: 20577–20583.

NI, S., NOZAWA, H. and SEKI, N., 1998. Effect of microbial transglutaminase on

thermal gelation and carp actomyosin sol. Fish. Sci., 64: 434-438.

NIELSEN, G.S., PETERSEN, B.R. and MOLLER, A.J., 1995. Impact of salt,

phosphate and temperature on the effect of a transglutaminase (F XIIIa) on the

texture of restructured meat. Meat Sci., 41: 293–299.

NIO, N., MOTOKI, M. and TAKINAMI, K., 1985. Gelation of casein and soyabean

globulins by transglutaminase. Agric. Biol. Chem., 49: 2283-2286.

NIO, N., MOTOKI, M. and TAKINAMI, K., 1986. Gelation mechanism of protein

solutions by transglutaminase. Agric. Biol. Chem., 48: 851-855.

110

NIWA, E., 1992. Chemistry of surimi gelation. In: Surimi technology., Lanier, T.C.

and Lee, C.M. (Eds.) Marcel Dekker, New York . PP 389–427.

NIWA, E., INUZUKA, K., NOWSAD, A.A.K.M., LIU D. AND KANOH, S.,

1995.Contribution of SS bonds to the elasticity of actomyosin gel in which

coexisting transglutaminase was inactivated. Fish. Sci., 61: 438–440.

NIWA, E., NAKAYAMA, T. and HAMADA, I., 1981. Alyl sulfonyl chloride

induced setting of dolphin fish sol. Bull. Jap. Soc. Sci. Fish., 47: 179-182 .

NIWA, E., SUZUMURA, T., NOWSAD, A.A.K.M. and KANOH, S., 1993. Setting

of actomyosin paste containing few amount of transglutaminase, Nippon

Suisan Gakkaishi, 59 (12): 2043–2046.

NOGUCHI, K., ISHIKAWA, K., YOKOYAMA, K.I., OHTSUKA, T., NIO N. and

SUZUKI, E.I., 2001. Crystal structure of red sea bream transglutaminase. J.

Biol. Chem., 276 : 12055–12059.

NONAKA M., TOIGUCHI, S., SAKAMOTO, H., KAWAJIRI, H., SOEDA, T. and

MOTOKI, M., 1994. Changes caused by microbial transglutaminase on

physical properties of thermally induced soy protein gels. Food Hydrocolloids,

8: 1–8.

NONAKA, M., ITO, R., SAWA, A., MOTOKI, M. and NIO, N., 1997. Modification

of several proteins by using Ca2+ independent microbial transglutaminase with

high pressure treatment. Food Hydrocolloids, 11(3): 351–353.

NONAKA, M., SAKAMOTO, H., KAWAJIRI, H., SOEDA, T. and MOTOKI, M.,

1992. Sodium caseinate and skim milk gels formed by incubation with

microbial transglutaminase, J. Food Sci., 57: 1214–1218.

NONAKA, M., TANAKA, H., OKIYAMA, A., MOTOKI, M., ANDO, H., UMEDA,

K. and MATSURA, A., 1989. Polymerization of several proteins by Ca2+-

independent transglutaminase derived from microorganisms. Agric. Biol.

Chem., 53: 2619–2623.

NOWSAD, A.A.K.M, KATOH, E., KANOH, S. and NIWA, E., 1996. Contribution

of transglutaminase to the setting of pastes at various temperatures. Fish. Sci.,

62: 94–97.

NOWSAD, A.A.K.M, NIWA, E. and KANOH, S. 1995. Contribution of

transglutaminase on the setting of various actomyosin pastes. Fish. Sci., 61:

79-81.

111

NOWSAD, A.A.K.M. KANOH, S. and NIWA, E., 1993. Electrophoretic behavior of

cross-linked myosin heavy chain in suwari gel. Nippon Suisan Gakkashi,i 59 :

667–6

NOWSAD, A.A.K.M. KANOH, S. and NIWA, E., 1994 a. Setting of

transglutaminase free actomyosin paste prepared from Alaska Pollack surimi.

Fish. Sci., 60: 295–297.

NOZAWA T, H., and SEKI, N., 1991. Reactivity of muscle transglutaminase on carp

myofibrils and myosin B. Nippon Suisan Gakkaishi, 57 : 1203–1210.

NOZAWA, H. and SEKI, N., 2001. Purification of transglutaminase from scallop

striated adductor muscle and NaCl-induced inactivation. Fish. Sci., 67: 493–

499.

NOZAWA, H., MANOGOSHI, S. and SEKI, N., 1997. Partial purification and

characterization of six transglutaminase from ordinary muscles of various

fishes and marine invertebrates. Comparative Biochemistry and Physiology

Part B, 118 : 313–317.

NOZAWA, H., MANOGOSHI, S. and SEKI, N., 1999. Effect of neutral salts on

activity and stability of transglutaminase from scallop adductor muscle. Comp.

Biochem. Physiol. B, 124: 181–186.

NUMAKURA, T., SEKI, N., KIMURA, I., TOYODA, K., FUJITA. T., TAKAMA,

K. and ARAI, K., 1985. Cross-linking reaction of myosin in the fish paste

during setting (suwari). Bull. Jap. Soc. Sci. Fish., 51: 1559–1565.

OCHIAI, Y., OCHIAI, L., HASHIMOTO, K. and WATABE, S., 2001. Quantitative

estimation of dark muscle content in the mackerel meat paste and its products

using antisera against myosin light chains. J. Food Sci., 66: 1301–1305.

OFSTAD R., MADEN, E.G., GUNDERSEN, B., LAURITZEN, K., SOLBERG, T

and SOLBERG, C., 1993. Stability of cod (Gadus morhu) surimi processed

with CaCl2 and MgCl2. Int. J. Food Sci. Technol., 28:419-427.

OGAWA, M., EHARA, T., TAMIYA, T. and TSUCHIYA, T., 1993. Thermal

stability of fish myosion. Comp.Biochmphysiol., 106B: 517-521.

OGAWA, M., KANAMARU, J., MIYASHITA, H., TAMIYA, T and TSUCHIYA,

T., 1995. Alpha-helical structure of fish actomyosin: changes during setting. J.

Food Sci., 60:297-299.

OH, S., CATIGNANI, G.L. and SWAISGOOD, H., 1993. Charecteristics of an

immobilized form of transglutaminase: A possible increase in substarte

112

specificity by selective interactin with a protein spacer. J. Agric. Food Chem.,

41(8): 1337-1342.

OHTSUKA, T., SEGURO, K. and MOTOKI, M., 1996. Microbial Transglutaminase

Estimation in Enzyme-treated Surimi-Based Products by Enzyme

Immunosorbent Assay. J. Food Sci., 61 (1): 81–84.

OHTSUKA, T., UMEZAWA, Y., NIO, N. and KUBOTA, K., 2001. Comparison of

deamidation activity of transglutaminases. J. Food Sci., 66 (1): 25–29.

OKADA, M., 1959. Application of setting phenomenon for improving the quality of

Kamaboko. Bull. Tokai. Reg. Fish. Res., 24:67-72.

PARK, J.W., KORHONEN, R.W and LANIER, T.C., 1990. Effects of rigor mortis on

gel forming properties of surimi and unwashed mince prepared from tilapia. J.

Food Sci., 55: 353-355.

PHILLIPS, M. A., STEWART, B. E.., QIN, Q., CHAKRAVARTY, R., FLOYD, E.

E., JETTEN, A. M. and RICE, R. H., 1990. Primary structure of keratinocyte

transglutaminase. Proc. Natl. Acad. Sci. U.S.A, 87: 9333-9337.

POBER, J. S., REICH, I. E. and STRYER., 1978. Transalutaminase catalyzed

insertion of a fluorescent probe into the protease-sensitive region of rhodopsin.

Biochem., 17: 2163-2169.

RAMANUJAM, M.V. and HAGEMAN, J.H., 1990. Intracellular transglutaminase

(EC 2. 3. 2. 13) in a procaryote: evidence from vegetative and sporulating cells

of Bacillus subtilis. 168. FASEB J. 4: A2321.

RAMIREZ , J.A., SANTOS, I.A., MORALES, O.G., MORRISSEY, M.T. and

VÁZQUEZ, M., 2000. Application of microbial transglutaminase to improve

mechanical properties of surimi from silver carp. Ciencia y Tecnología

Alimentaria, 3: 21–28.

RAMIREZ, J. A., RODRÍGUEZ-SOSA, R., MORALES, O. G. and VÁZQUEZ, M.

2003. Preparation of surimi gels from striped mullet (Mugil cephalus) using an

optimal level of calcium chloride. Food Chem., 82(3): 417-423.

RAMIREZ, J.A. DEL ANGEL, A., URESTI R.M., VELAZQUEZ, G. and

VAZQUEZ, M. 2007. Low salt restructured products from striped mullet

(Mugil cephalus) using microbial transglutaminase or whey protein

concentrate as additives. Food Chem., 102: 243–249.

113

RAMIREZ, J.A., RODRÍGUEZ-SOSA, R., MORALES, O.G. and VÁZQUEZ, M.,

2000. Surimi gels from striped mullet (Mugil cephalus) employing microbial

transglutaminase. Food Chem., 70: 443–449.

RAMIREZ-SUAREZ, J.C. AND XIONG, Y.L., 2003 a. Effect of transglutaminase-

induced cross-linking on gelation of myofibrillar/soy protein mixtures. Meat

Sci., 65: 899–907.

RAMIREZ-SUAREZ, J.C., XIONG, Y.L. and WANG, B., 2001. Transglutaminase

cross-linking of bovine cardiac myofibrillar proteins and its effect on protein

gelation. J. Muscle Foods, 12 (2): 85–96.

ROUSSEL, H. AND CHEFLEL, J.C., 1990. Mechanism of gelation of sardine protein

influence of thermal processing and various additives on the texture and

protein solubility of kamaboko gel. Int. J. Food Sci. Technol., 25: 260–280.

SAKAMOTO, H., KUMASAWA, Y. and MOTOKI, M., 1994. Strength of protein

gels prepared with microbial transglutaminase as related to reaction

conditions. J. Food Sci., 59 (4): 866–87.

SAKAMOTO, H., KUMAZAWA, Y., TOGUCHI, S., SEGURO, K., SOEDA, T. and

MOTOKI, M., 1995. Gel strength enhancement by addition of microbial

transglutaminase during onshore surimi manufacture. J. Food Sci., 60 (2):

300–304.

SAMEJIMA, K., HASHIMOTO, Y., YASUI, T. and FUKAZAWA, T., 1989. Heat

gelling properties of myosin, actin, actomyosin and myosin-subunits in a

saline model system. J. Food Sci., 34:242-245.

SAMEJIMA, K., ISHIOROSHI, M., and YASUI, T. 1981. Relative roles of the head

and tail portions of the molecule in heat-induced gelation of myosin. J. Food

Sci., 46: 1412-1418.

SAMEJIMA, K., KUWAYAMA, K., YAMAMOTO, K., ASGHAR, A. and YASUI,

T., 1989. Influence of reconstituted dark and light chicken muscle myosin

filaments on the morphology and strength of heat-induced gels. J. Food Sci.,

54: 1158–1162, 1168.

SANO, T., NOGUCHI, S.F., MATSUMOTO, J.J. 1990. Thermal gelation

characteristics of myosin sub fragments. J. Food Sci., 55: 55.

SANO, T., NOGUCHI, S.F., MATSUMOTO, J.J. and TSUCHIYA, T. 1989a. Role

of F-actin in Thermal gelation of fish actomyosin. J. Food Sci., 54: 800-804.

114

SANO, T., NOGUCHI, S.F., TSUCHIYA, T. and MATSUMOTA, J.J., 1988.

Dynamic viscoelastic behavior of natural actomyosin and myosin during

thermal gelation. J. Food Sci., 53: 924–928.

SÁRDY, M., KÁRPÁTI, S., MERKL, B., PAULSSON, M. and SMYTH, N. 2002.

Epidermal Transglutaminase (TGase 3) Is the Autoantigen of Dermatitis

Herpetiformis. J. Experiment. Med., 195 (6): 747-757

SEGURO, K., KUMASAWA, Y., OHTSUKA, T., SEIICHIRO, T. and MOTOKI, M.

1995. Microbial Transglutaminase and epsylon-(gamma-glutamyl) lysine

crosslink effects on elastic properties of kamaboko gels. J. Food Sci., 60 (2):

305–311.

SEGURO, K., NIO, N. and MOTOKI, M., 1996. Some characteristics of a microbial

protein cross-linking enzyme ; transglutaminase. In: Parris, N., KATO, A.,

CREAMER, I.K. and PEARCE, J,(Eds).Macromolecular interactions in food

technology, Washington DC: American Chemical Society.p-271-280.

SEITZ, J., KEPPLER, C. and HUNTEMANN, S., RAUSH, U. and AUMULLER, G.,

1991.Purification and molecular charecterisation of a secretory

transglutaminase from coagulating gland of rat. Biochim. Biophys. Acta.

1078: 139-146.

SEKI, H., 1996. Gel forming ability and cryostability of frozen surimi processed with

CaCl2 washing. Fish. Sci., 62(2): 252-256.

SEKI, N., NAKAHARA, C., TAKEDA, H., MARUYAMA N. and NOZAWA, H.,

1998. Dimerization site of carp myosin heavy chains by the endogenous

transglutaminase. Fish. Sci., 64 : 314–319.

SEKI, N., UNO, H., LEE, N.H., KIMURA, I., TOYODA, K., FUJITA, T. and ARAI,

K., 1990. Transglutaminase activity in Alaska pollack muscle and surimi and

its reaction with myosin B. Nippon Suisan Gakkashi, 56: 125–132.

SERRANO, A., COFRADES, S. and JIME´NEZ COLMENERO, F. 2004.

Transglutaminase as binding agent in fresh restructured beef steak with added

walnuts. Food Chem., 85(3): 423–429.

SHARP, A., and OFFER, G. 1992. The mechnism of formation of gels from myosin

molecules. J. Sci. Food Agric., 58: 63-73.

SHIMIZU, Y., 1985. Biochemical and functional properties of mackerel fish. Proc.

Internat. Symp. Engineers sea food Incl. Surimi 19-21. Non, Seatle

Washington. 148pp

115

SHIMIZU, Y., MACHIDA, R., and TAKANEMI, S., 1981. Species variations in the

gel forming characteristics of fish meat paste. Nippon Suisan Gakkashi. 47:

95–104.

SHOJI, S., SAEKI, H., WAKEMEDA, A. and NONAKA, M., 1994. Influence of

ammonium salt on the formation of pressure-induced gel from walleye pollck

surimi. Nippon Suisan Gakkashi, 60 (1): 101-109

SIANG, N.C. and MIWA, K., 1992. Gel strength enhancing effect of aqueous extract

of fish kidney tissue. Nippon Suisan Gakkashi, 58: 805.

SIGNORINI, M., BORTOLOTTI, F., POLTRONIERI, L. and BERGAMINI, C.M.,

1988. Biol. Chem. Hoppe Seyler, 369: 275–281.

SIKORSKI, Z.E., 1994. The myofibrillar proteins in seafoods In: Sikorski, Z.E. Pan

B.S. and Shahidi, F.(Eds), Seafood proteins, Chapman & Hall, New York , PP.

40–57.

SIKORSKI, Z.E., KOLAKOWSKA, A. and BURT, J.R., 1990. Post harvest

biochemical and microbial changes. In: “Seafood: Resources, Nutritional

Composition and Preservation”. Z. E. Sikorski (Ed.), p. 55-75. CRC. Press.

Inc. Bokka Raton, FI.

SIU, N. C., MA, C.Y., MOCK, W.Y. and MINE, Y., 2002. Functional properties of

oat globulin modified by calcium-independent microbial transglutaminase. J.

Agric. Food Chem., 50: 2666-2672.

SLAUGHTER, T. F., ACHYUTHAN, K. E., LAI, T. S. and GREENBERG, C. S.,

1992. A microtiter plate transglutaminase assay utilizing 5-(biotinamido)

pentylamine as substrate. Anal. Biochem., 205:166–171.

STONE, A.P. and STANLEY, D.W., 1992. Mechanism of fish muscle gelation-

review paper. Food Res.Intr., 25:381-388.

SUZUKI, 1981. Fish and Krill Protein processing Technology. Applied Science

Publishers Ltd. London. pp. 1-260.

SWAISGOOD, H. E., HUANG, X. L. and Walsh, M. K., 1997. Immobilization of

enzymes by selective adsorption on biotinylaminopropyl Celite or glass. In

Methods in Biotechnology; immobilization of Enzymes and Cells; Bickerstaff,

G. F., Ed.; Humana Press: Totowa, NJ; Vol. 1, pp 13-20.

TABILO-MUNIZAGA, G. T. and BARBOSA-CANOVAS, G. V., 2005. Rheology

for the food industry. J. Food Eng., 67: 147–156.

116

TAGUCHI, T., ISHIZAKA, T., TANAKA, M., NAGASHIMA, Y. and AMANO, K.

1987. Protein-protein interaction of fish myosin fragments. J. Food Sci., 52:

1103.

TAKAGI, J., SAITO, Y., KIKUCHI, T. and INADA, Y., 1986. Modification of

transglutaminase assay: use of ammonium sulfate to stop the reaction. Anal.

Biochem.,153: 295–298.

TAKAHASHI, N., TAKAHASHI Y. and PUTNAM, F.W., 1986. Primary structure of

blood coagulation factor XIIIa (fibrinoligase, transglutaminase) from human

placenta. Proceedings of the National Academy of Sciences of the United State

of America, 85: 5829–5833.

TAKASHI, R., 1988. A novel actin label: A fluorescent probe at glutamine-41 and its

consequences. Biochem., 27: 938–943.

TAKEDA, H. and SEKI, N., 1996. Enzyme-catalyzed cross-linking and degradation

of myosin heavy chain in walleye pollack surimi paste during setting. Fish.

Sci., 62: 462–467.

TAKEHANA, S., WASHIZU, K., ANDO, K., KOIKEDA, S., TAKEUCHI, K.,

MATSUI, H., MOTOKI, M. and TAKAGI, H. 1994. Chemical synthesis of

the gene for microbial transglutaminase from Streptoverticillium and its

expression in Eschericia coli. Biosci. Biotech. Biochem., 58 (1): 88-92.

TAMMATINNA, A., BENJAKUL, S., VISESSANGUANB, W. and TANAKA, M.,

2007. Gelling properties of white shrimp (Penaeus vannamei) meat as

influenced by setting condition and microbial transglutaminase. LWT. Article

in Press

TANAKA, H., NONAKA, M. and MOTOKI, M., 1990. Polymerization and gelation

of microbial transglutaminase. Nippon Suisan Gakkashi, 56:1341-1348.

TANG, C., WU, H., CHEN, Z. and YANG, X. 2005. Formation and properties of

glycininrich and β-conglycinin-rich soy protein isolate gels induced by

microbial transglutaminase. Food Res. Int.. 39: 87-97.

TANIMOTO S.Y. and KINSELLA, J., 1988. Enzymatic modification of proteins:

effects of transglutaminase cross-linking on some physical properties of b-

lactolobulin. J. Agric. Food Chem., 36: 281-285.

TARCSA, E. and FESUS, L. 1990. Determination of ε (γ-glutamyl) lysine crosslink

in proteins using phenylisothiocyanate derivatization and high-pressure liquid

chromatographic separation Anal. Biochem., 186: 135.

117

TELLEZ-LUIS, S. J., URESTI, R. M., RAMIREZ, J. A. and VAZQUEZ, M. 2002.

Low-salt restructured fish products using microbial transglutaminase as

binding agent. J. Sci. Food and Agric., 82: 953–959.

TOKUNAGA, F., YAMADA, M., MIYATA, T., DING, Y.L., HIRANGA, M. and

MUTA, T., 1993. Limulus hemocyte transglutaminase:its purification and

characterization and identification of the intracellular substrates. J. Biol.

Chem., 268: 252–261.

TOYODA, K., CAMBEWARRA, I. ,FAJITA, T., NAUWIGEWAUK, S.F. and LEE ,

C.C., 1992. Surimi manufacturing from whitefish. In: T.C. Lanier and C.M.

Lee, Editors, Surimi technology, Marcel Decker, New York : 79–112.

TRAORE, F. and MEUNIER, J.C. 1991. Cross-linking activity of placental factor

XIII a. J. Agric. Food Chem., 40(3): 399-402.

TRAORE, F.T. and MEUNIER, J.C., 1992. Cross-linking activity of placental F XIIIa

on whey proteins and casein. J. Agric. Food Chem., 40: 399–402.

TSAI, G., LIN, S. and JIANG, S., 1996. Transglutaminase from Stretoverticillium

ladakanum and application to minced fish product. J. Food Sci., 61 (6): 1234–

1238.

TSAO, C. Y., KAO, Y. C., HSIEH, J. F. and JIANG, S. T. 2002. Use of soy protein

and microbial transglutaminase as a binder in low-sodium restructured meats.

J. Food Sci., 67(9): 3502–3506.

TSENG, T. F., CHEN, M.T. and LIU, D, C., 2002. Purification of transglutaminase

and its effects on myosin heavy chain and actin of spent hen. Meat Sci., 60 (3):

267-270.

TSUKAMASA, Y. and SHIMIZU , Y., 1990. Setting properties of sardine and

Pacific mackerel meat. Nippon Suisan Gakkashi, 56 : 1105–1112.

TSUKAMASA, Y. and SHIMIZU, Y., 1991. Factors affecting the transglutaminase-

associated setting phenomenon in fish meat sol, Nippon Suisan Gakkashi, 57:

535-540.

TSUKAMASA, Y., SATO, K., SHIMIZU, Y., IMAI, C., SUGIYAMA, M.,

MINEGISHI Y. and KAWABATA , M., 1993. ε-(γ-glutamyl) lysine crosslink

formation in sardine myofibril sol during setting at 25 °C. J. Food Sci., 58 :

785–787.

*VAN WERSCH, J.W., 1993. Eur. J. Clin. Chem. Clin. Biochem., 31: 467–471.

118

VAN-DEN TRUONG, CLARE, D.A., CATIGNANI, G.L. and SWAISGOOD, H.E.,

2004. Cross-linking and rheological changes of whey proteins treated with

microbial transglutaminase. J. Agric. Food Chem., 52: 1170-1176.

VENUGOPAL, V., KAKATKAR, A., BONGIRWAR, D.R., KARTHIKEYAN, M.,

MATHEW, S. and SHAMASUNDAR, B.A. 2002. Protein denaturation in

frozen fish. Adv. Food. Res., 26, 275-311.

VISESSANGUAN, W., OGAVA, M., NAKAI, S. and AN, H., 2000. Physico-

chemical changes and mechanism of heat induced gelation of arrow tooth

flounder myosin. J. Agric. Food Chem., 48: 1016-1023.

WAN, J. and SEKI, N., 1992. Effect of salts on transglutaminase-mediated cross-

linking of myosin in suwari gel from walleye pollack. Nippon Suisan

Gakkashi, 58: 2181 -2187.

WAN, J., KIMURA, I., SATAKE, M. and SEKI, N., 1994. Effect of calcium ion

concentration on the gelling properties and transglutaminase activity of

walleye pollack surimi paste. Fish. Sci., 60: 107–113.

WAN, J., KIMURA, I., SATAKE, M. and SEKI, N., 1995. Causes of inferior gel-

forming ability of salmon surimi paste. Fish. Sci., 61 : 711–715.

WANG, S., LANIER, T.C., 1999. Effects of endogenous fungal and microbial

transglutaminase in Pollack surimi gelation. J. Agric. Biol. Chem., 63:155-163

WASHIZU, K., ANDO, K., KOIKEDA, S., HIROSE, S., MATSUURA, A.,

TAKAGI, H., MOTOKI, M. and TAKEUECHI, K. 1994. Molecular cloning

of the gene for microbial transglutaminase from Streptoverticillium and its

expression in Streptomyces lividans. Biosci. Biotech. Biochem., 58 (1): 82-87

*WEBER. E. 1993. In: (3rd ed.), Thesis, Philipps University, Marburg, Germany.

WICKER, L., LANIER, T.C., HAMANN, D.D. and AKAIHANE, T., 1986. Thermal

transition in myosin- ANS fluorescence and gel rigidity. J. Food Sci., 51:

1540-1543, 1262.

WICKER, L., LANIER, T.C., KNOPP, J.A. and HAMANN, D.D., 1989. Influence of

various salts of heat-induced ANS fluorescence and gel rigidity development

of tilapia (Serotherodon aureus) myosin. J. Agric. Food Chem., 37: 18-22.

WILHELM, B., MEINHARDT, A. and SEITZ, J., 1996. Transglutaminases:

Purification and activity assays. J. Chromatogr. B, 684: 163–177.

119

WILSON, S.A., 1992. Modifying meat proteins via enzymatic cross-linking.

Proceedings of 27ht Meat industry research conference, Hamilton Sep. 1992.

Meat Industry Research Institute of New Zealand, Mirinz: 247-277.

WONG, W. S., BATT, C. and KINSELLA, J. E., 1990. Purification and

characterization of rat liver transglutaminase. Int. J. Biochem., 22: 53-59

WORRATAO, A. and YONGSAWATDIGUL, J., 2003. Cross-linking of actomyosin

by crude tilapia (Oreochromis niloticus) transglutaminase. J. Food Biochem.,

27: 35–51.

WORRATAO, A. and YONGSAWATDIGUL, J., 2005. Purification and

characterization of transglutaminase from Tropical tilapia (Oreochromis

niloticus). Food Chem., 93(4): 651-658.

WU, M.C, LANIER, T.C.and HAMANN, D.D., 1985. Rigidity and viscosity changes

of croaker actomyosin during thermal gelation. J. Food Sci., 50:14-19, 25.

XIONG, L.Y., 1997. Structure function relationship of muscle proteins. In: Food

proteins and their applications. Damodaran, S. and Parat, A. (Eds.). Marcel

Dekker Inc. New York. pp. 341-386.

YAMANISHI, K., LIEW, F. M., KONISHI, K., YASUNO, H., DOI, H., HIRANO, J.

and FUKUSHIMA, S., 1992. Molecular cloning of human

epidermaltransglutaminase cDNA from keratinocytes in culture. Biochem.

Biophys. Res. Commun., 175: 906-91 3.

YASUEDA, H., KUMAZAWA Y. and MOTOKI, M. 1994. Purification and

characterization of a tissue-type transglutaminase from red sea bream (Pagrus

major). Biosci. Biotechnol. Biochem., 58 : 2041–2045.

YASUEDA, H., NAKANISHI, K., KUMAZAWA, Y., NAGASE, K., MOTOKI, M.

and MATSUI, H., 1995. Tissue-type transglutaminase from red sea bream

(Pagrus major) sequence analysis of the cDNA and functional expression in

Escherichia coli. Eur. J. Biochem., 232: 411-419.

YASUI, T., ICHIORISHI, M. and SAMEJIMA, K., 1980. Heat induced gelation of

myosin in the presence of F-actin. J. Food Biochem., 4: 61.

120

YASUNAGA, K., ABE, Y., YAMASAWA, M. and ARAI, K., 1996. Heat induced

changes in myosin heavy chains in salt-ground meat with a food additive

containing containing transglutaminase. Nippon Suissan Gakkaishi, 62: 659-

668.

YONGSAWATDIGUL, J. 2003. Effect of proteinase inhibitors and microbial

transglutaminase on gelation of lizardfish surimi. Session 40-3, IFT Annual

Meating, Chicago

YONGSAWATDIGUL, J. and SINSUWAN, S., 2007. Aggregation and

conformational changes of tilapia actomyosin as affected by calcium ion

during setting. Food hydrocolloid,. 21: 359-367.

YONGSAWATDIGUL, J., WORRATAO, A. and J.W. PARK., 2002. Effect of

endogenous transglutaminase on threadfin bream surimi gelation, J. Food Sci.,

67 (9): 3258–3263.

YOSHIKAWA, M., GOTO, M., IKURA, K., SASAKI, R. and CHIBA, H., 1982.

Transglutaminase-catalyzed formation of coenzymatically active NAD+

analog.casein conjugates. Agric. biol. Chem., 46: 207-213.

ZHU, Y., BOL, J., RINZEMA, A., TRAMPER, J. and WIJNGAARDS, G.,

1999. Transglutaminase as a potential tool in developing novel protein

foods. Agro Food Industry Hi Tech., 10 (1): 8–10.

ZHU, Y., RINZEMA, A., TRAMPER J. and BOLD, J., 1995. Microbial

transglutaminase. A review of its production and application in food

processing, Applied Microbiol. Biotechnol., 44: 277–282.

ZIEGLER, G. and ACTON, J.C., 1984. Mechanisms of gel formation by proteins of

muscle tissue. Food. Technol., 38(5): 77-82.

ZIEGLER, G.R. and FOEGEDING , E.A. 1990. The gelation of proteins. Adv. Food

Res., 34: 203–298

121