BBH initial data - Astrophysics...2 Formalism & Numerics H. Pfeiffer, NumRel 2005, Goddard Space...

35
1 Quasi-equilibrium binary black hole initial data Harald P. Pfeiffer California Institute of Technology Collaborators: Greg Cook, Larry Kidder, Mark Scheel, Saul Teukolsky, James York Numerical Relativity 2005, Goddard Space Flight Center, Nov 4, 2005 Outline: 1. Formalism & Numerics 2. Non-uniqueness in conformal thin sandwich 3. Properties of the constructed ID sets 4. Public initial data repository H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

Transcript of BBH initial data - Astrophysics...2 Formalism & Numerics H. Pfeiffer, NumRel 2005, Goddard Space...

  • 1

    Quasi-equilibrium binary black hole initial data

    Harald P. Pfeiffer

    California Institute of Technology

    Collaborators: Greg Cook, Larry Kidder, Mark Scheel,

    Saul Teukolsky, James York

    Numerical Relativity 2005, Goddard Space Flight Center, Nov 4, 2005

    Outline:

    1. Formalism & Numerics

    2. Non-uniqueness in conformal thin sandwich

    3. Properties of the constructed ID sets

    4. Public initial data repository

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

  • 2

    Formalism & Numerics

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

  • 3Quasi-equilibrium method

    Basic idea:Approx. time-independence in corotating frame

    Approx. helical Killing vector

    (both concepts essentially equivalent,

    both useful depending on context)

    History:

    • Wilson & Matthews 1985: Binary neutron stars

    • Gourgoulhon, Grandclement & Bonazzola, 2002a,bBBH ID with inner boundary conditions

    basically right, but various deficiencies

    • Cook & HP, 2002, 2003, 2004 (especially Cook & Pfeiffer, PRD 70, 104106, 2004)General quasi-equilibrium method with isolated horizon BCs

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

  • 4

    Quasi-equilibrium method (the easy pieces)

    • Time-independence in corotating frame

    ⇒ vanishing time derivatives

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

  • 4

    Quasi-equilibrium method (the easy pieces)

    • Time-independence in corotating frame

    ⇒ vanishing time derivatives

    • Extented conformal thin sandwich formalism

    ∂tg̃ij = 0 = ∂tK∇̃2ψ −

    1

    8R̃ψ −

    1

    12K

    4+

    1

    8ÃijÃ

    ij=0

    ∇̃j

    ψ6

    2NLβij

    !−

    2

    6∇̃iK−∇̃j

    ψ6

    2Nũij

    !=0

    ∇̃2`Nψ´−Nψ

    „1

    8R̃+

    5

    12K

    4+

    7

    8ÃijÃ

    ij«

    =

    −ψ5(∂t − βk∂k)K

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

  • 4

    Quasi-equilibrium method (the easy pieces)

    • Time-independence in corotating frame

    ⇒ vanishing time derivatives

    • Extented conformal thin sandwich formalism

    ∂tg̃ij = 0 = ∂tK∇̃2ψ −

    1

    8R̃ψ −

    1

    12K

    4+

    1

    8ÃijÃ

    ij=0

    ∇̃j

    ψ6

    2NLβij

    !−

    2

    6∇̃iK−∇̃j

    ψ6

    2Nũij

    !=0

    ∇̃2`Nψ´−Nψ

    „1

    8R̃+

    5

    12K

    4+

    7

    8ÃijÃ

    ij«

    =

    −ψ5(∂t − βk∂k)K• Boundary conditions at infinity

    ψ = 1

    βi= (~Ωorbital × ~r)

    i

    N = 1

    • New contribution: inner boundary conditions (next slides)

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

  • 5Quasi-equilibrium excision boundary conditions

    pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    ppppppppppppppppppppppppppppp

    ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    pppppppppppppp

    pppppppppppppp

    pppppppppppppp

    pppppppppppppp

    pppppppppppppp

    pppppppppppppp

    pppppppppppppp

    pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    ppppppppppppppppppppppppppppppppppppppppp ppppp ppppp ppppp ppppp ppppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppppppp pppppppppp pppppp pppppp pppppppppppp pppppppppppppppppppppppppppppp

    pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    ppppppppppppppppppppppp pppppppppp ppppp ppppp ppppp pppppppppp ppppppppppppppppppppppppppppp ppppppppppppppppppppppppp ppppppppppppppp pppppp pppppp pppppp pppppp pppppppppppppppppppppppppppp

    pppppppppppppppppppppppppppppppppppppppppppp

    ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    Σ

    S

    • Excise topological spheres S

    • Require1. S be apparent horizons2. The AH’s remain stationary in evolution

    3. Shear of kµ vanishes (isolated horizon)

    ⇒ Lkθ = 0 ⇒ AH moves along kµ and MAH initially constant

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

  • 5Quasi-equilibrium excision boundary conditions

    pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    ppppppppppppppppppppppppppppp

    ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    pppppppppppppp

    pppppppppppppp

    pppppppppppppp

    pppppppppppppp

    pppppppppppppp

    pppppppppppppp

    pppppppppppppp

    pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    ppppppppppppppppppppppppppppppppppppppppp ppppp ppppp ppppp ppppp ppppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppppppp pppppppppp pppppp pppppp pppppppppppp pppppppppppppppppppppppppppppp

    pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    ppppppppppppppppppppppp pppppppppp ppppp ppppp ppppp pppppppppp ppppppppppppppppppppppppppppp ppppppppppppppppppppppppp ppppppppppppppp pppppp pppppp pppppp pppppp pppppppppppppppppppppppppppp

    pppppppppppppppppppppppppppppppppppppppppppp

    ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    Σ

    S

    • Excise topological spheres S

    • Require1. S be apparent horizons2. The AH’s remain stationary in evolution

    3. Shear of kµ vanishes (isolated horizon)

    ⇒ Lkθ = 0 ⇒ AH moves along kµ and MAH initially constant

    • Rewrite in conformal variables ⇒ BC’s on ψ and βi

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

  • 5Quasi-equilibrium excision boundary conditions

    pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    ppppppppppppppppppppppppppppp

    ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    pppppppppppppp

    pppppppppppppp

    pppppppppppppp

    pppppppppppppp

    pppppppppppppp

    pppppppppppppp

    pppppppppppppp

    pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    ppppppppppppppppppppppppppppppppppppppppp ppppp ppppp ppppp ppppp ppppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppppppp pppppppppp pppppp pppppp pppppppppppp pppppppppppppppppppppppppppppp

    pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    ppppppppppppppppppppppp pppppppppp ppppp ppppp ppppp pppppppppp ppppppppppppppppppppppppppppp ppppppppppppppppppppppppp ppppppppppppppp pppppp pppppp pppppp pppppp pppppppppppppppppppppppppppp

    pppppppppppppppppppppppppppppppppppppppppppp

    ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    Σ

    S

    • Excise topological spheres S

    • Require1. S be apparent horizons2. The AH’s remain stationary in evolution

    3. Shear of kµ vanishes (isolated horizon)

    ⇒ Lkθ = 0 ⇒ AH moves along kµ and MAH initially constant

    • Rewrite in conformal variables ⇒ BC’s on ψ and βi

    • General spin possible (→ Greg Cook’s talk)

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

  • 5Quasi-equilibrium excision boundary conditions

    pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    ppppppppppppppppppppppppppppp

    ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    pppppppppppppp

    pppppppppppppp

    pppppppppppppp

    pppppppppppppp

    pppppppppppppp

    pppppppppppppp

    pppppppppppppp

    pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    ppppppppppppppppppppppppppppppppppppppppp ppppp ppppp ppppp ppppp ppppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppppppp pppppppppp pppppp pppppp pppppppppppp pppppppppppppppppppppppppppppp

    pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    ppppppppppppppppppppppp pppppppppp ppppp ppppp ppppp pppppppppp ppppppppppppppppppppppppppppp ppppppppppppppppppppppppp ppppppppppppppp pppppp pppppp pppppp pppppp pppppppppppppppppppppppppppp

    pppppppppppppppppppppppppppppppppppppppppppp

    ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

    Σ

    S

    • Excise topological spheres S

    • Require1. S be apparent horizons2. The AH’s remain stationary in evolution

    3. Shear of kµ vanishes (isolated horizon)

    ⇒ Lkθ = 0 ⇒ AH moves along kµ and MAH initially constant

    • Rewrite in conformal variables ⇒ BC’s on ψ and βi

    • General spin possible (→ Greg Cook’s talk)

    • One still must specify...1. Conformal metric g̃ij2. Shape of excision surfaces S3. Mean curvature K

    4. Lapse boundary condition

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

  • 6Spectral elliptic solver (HP, Kidder, Scheel & Teukolsky, 2003)

    Expand solution in basis-functions & solve for expansion-coefficients

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

  • 6Spectral elliptic solver (HP, Kidder, Scheel & Teukolsky, 2003)

    Expand solution in basis-functions & solve for expansion-coefficients

    Smooth solutions ⇒ exponential convergence

    30 45 60 75 90N

    10-8

    10-6

    10-4

    10-2

    ||H||2||M||2|δEADM||δMK||δJz|

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

  • 6Spectral elliptic solver (HP, Kidder, Scheel & Teukolsky, 2003)

    Expand solution in basis-functions & solve for expansion-coefficients

    Smooth solutions ⇒ exponential convergence

    • Superior accuracy: Numerical errors � physical effects

    30 45 60 75 90N

    10-8

    10-6

    10-4

    10-2

    ||H||2||M||2|δEADM||δMK||δJz|

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

  • 6Spectral elliptic solver (HP, Kidder, Scheel & Teukolsky, 2003)

    Expand solution in basis-functions & solve for expansion-coefficients

    Smooth solutions ⇒ exponential convergence

    • Superior accuracy: Numerical errors � physical effects• Superior efficiency: Large parameter studies

    30 45 60 75 90N

    10-8

    10-6

    10-4

    10-2

    ||H||2||M||2|δEADM||δMK||δJz|

    HP, Kidder, Scheel, Teukolsky 2003

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

  • 6Spectral elliptic solver (HP, Kidder, Scheel & Teukolsky, 2003)

    Expand solution in basis-functions & solve for expansion-coefficients

    Smooth solutions ⇒ exponential convergence

    • Superior accuracy: Numerical errors � physical effects• Superior efficiency: Large parameter studies• Domain decomposition: Nontrivial topologies & Multiple length-scales

    30 45 60 75 90N

    10-8

    10-6

    10-4

    10-2

    ||H||2||M||2|δEADM||δMK||δJz|

    HP, Kidder, Scheel, Teukolsky 2003

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

  • 7

    Non-uniqueness

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

  • 8Extended conformal thin sandwich equations

    0.01 0.1 1A~

    0.01

    0.1

    1

    10

    100

    ADM energy

    Standa

    rd CT

    S

    Exten

    ded CT

    S

    g̃ij = δij + Ãhij

    ∂tg̃ij = ÃḣijK = ∂tK = 0

    (perturbed flat space w/o inner b’dries)

    HP & York, 2005

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

  • 8Extended conformal thin sandwich equations

    0.01 0.1 1A~

    0.01

    0.1

    1

    10

    100

    ADM energy

    Standa

    rd CT

    S

    Exten

    ded CT

    S

    0.01 0.1 1A~

    0.01

    0.1

    1

    10

    100

    ADM energy

    Standa

    rd CT

    S

    Extented CTS, too!

    Exten

    ded CT

    S

    g̃ij = δij + Ãhij

    ∂tg̃ij = ÃḣijK = ∂tK = 0

    (perturbed flat space w/o inner b’dries)

    HP & York, 2005

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

  • 8Extended conformal thin sandwich equations

    0.01 0.1 1A~

    0.01

    0.1

    1

    10

    100

    ADM energy

    Standa

    rd CT

    S

    Exten

    ded CT

    S

    0.01 0.1 1A~

    0.01

    0.1

    1

    10

    100

    ADM energy

    Standa

    rd CT

    S

    Extented CTS, too!

    Exten

    ded CT

    S

    0.01 0.1 1A~

    0.01

    0.1

    1

    10

    100

    ADM energy

    Standa

    rd CT

    S

    Extented CTS, too!

    Exten

    ded CT

    S

    apparenthorizon

    g̃ij = δij + Ãhij

    ∂tg̃ij = ÃḣijK = ∂tK = 0

    (perturbed flat space w/o inner b’dries)

    Apparent horizons exist for small Ã!

    HP & York, 2005

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

  • 9

    Properties of QE-ID sets

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

  • 10Corotating BBH solutions

    Arbitrary choices: Conformal flatness, S=sphere. Gauge choices: K = 0, ∂n(Nψ) = 0.

    30 45 60 75 90N

    10-8

    10-6

    10-4

    10-2

    ||H||2||M||2|δEADM||δMK||δJz|

    Exponential convergence Lapse positive through horizon

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

  • 11Sequences of quasi-circular orbits & ISCO

    3.6 4 4.4 4.8J/µm

    -0.06

    -0.05

    -0.04

    -0.03

    -0.02

    E b/µ

    CO: MS - d(αψ)/dr = 0CO: MS - αψ = 1/2CO: MS - d(αψ)/dr = (αψ)/2r

    3.39 3.42

    -0.065

    -0.06

    0.08 0.12 0.16mΩ0

    -0.022

    -0.02

    -0.018

    -0.016

    -0.014

    E b /

    m GGB ’02

    Cook&Pfeiffer ’04 (3 data points)

    2,3 PN (standard)1,2,3 PN (EOB)

    Cook ’94

    Cook&Pfeiffer ’04 (3 data points)

    PN (EOB)PN (standard)

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

  • 12Towards evolving these ID

    • ISCO and other diagnostics very promising

    • But, ID only up to AH, whereas evolution codes excise inside AH

    • Extrapolate data inward to 0.75rAH

    • Constraints violated for r < rAH

    0.6 0.8 1 21.4r

    10-10

    10-8

    10-6

    10-4

    10-2Hamiltonian Constraint

    Low resolution "Lev0"

    high resolution "Lev5"Extrapolate

    • The next slides highlight aspects ofevolution which are relevant to ID

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

  • 13Evolution with fixed gauge – horizon motion

    Same data as in Mark Scheel’s talk – separation 10.

    0 1 2 3 4 5t/MAH

    -0.001

    -0.0005

    0

    0.0005

    0.001

    min(rAH) - rinitial

    max(rAH) - rinitial

    Initially at rest, no transient

    N and βi are excellent initial gauge

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

  • 13Evolution with fixed gauge – horizon motion

    Same data as in Mark Scheel’s talk – separation 10.

    0 1 2 3 4 5t/MAH

    -0.001

    -0.0005

    0

    0.0005

    0.001

    min(rAH) - rinitial

    max(rAH) - rinitial

    Initially at rest, no transient

    0 5 10 15 20 25t/MAH

    -0.04

    -0.02

    0

    0.02

    0.04

    0.06

    min(rAH ) - r

    initial

    max(r A

    H) -

    r initial

    Horizon crosses excision bdry

    On longer time-scales, AH deforms

    N and βi are excellent initial gauge

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

  • 14Apparent horizon mass

    0 10 20 30 40 50t / MAH

    1

    1.00002

    1.00004

    1.00006

    MAH / MAH(t=0)(3 different resolutions)

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

  • 15Not all is well – Tidal distortions

    Tidal distortions not captured correctly with current choices for g̃ij and S— Work in progress —

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

  • 16

    Public ID repository

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

  • 17Initial data repository

    • http://www.tapir.caltech.edu/~harald/PublicID• Equal mass BBHs in corotation• Two choices for Lapse-BC – Eq. (59a) or (59b) from Cook&HP, 2004

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

    http://www.tapir.caltech.edu/~harald/PublicID

  • 17Initial data repository

    • http://www.tapir.caltech.edu/~harald/PublicID• Equal mass BBHs in corotation• Two choices for Lapse-BC – Eq. (59a) or (59b) from Cook&HP, 2004

    Concentrate on Lapse-BC (59a) for uniformity

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

    http://www.tapir.caltech.edu/~harald/PublicID

  • 17Initial data repository

    • http://www.tapir.caltech.edu/~harald/PublicID• Equal mass BBHs in corotation• Two choices for Lapse-BC – Eq. (59a) or (59b) from Cook&HP, 2004

    Concentrate on Lapse-BC (59a) for uniformity

    10 20 30 40coordinate separation d

    1

    235

    10

    10 20 30 40

    0.01

    0.02

    0.03

    0.05

    0.1

    mΩ

    orbits un

    til ISCO

    (1.5PN)

    PretoriusBruegmann et al 2004

    Available separations

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

    http://www.tapir.caltech.edu/~harald/PublicID

  • 18Using the public QE-BBH initial data

    http://www.tapir.caltech.edu/~harald/PublicID

    The web-site contains:

    • Data sets, containing gij, Kij, N, βi in Cartesian components

    • Library to interpolate the data to any desired point (x, y, z)(as long as it is inside the covered computational domain)

    • Example executable and example data-set(Schwarzschild in Kerr-Schild coordinates)

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

    http://www.tapir.caltech.edu/~harald/PublicID

  • 19Summary

    • Framework for BBH initial data in a kinematical setting (helical Killing vector)

    • Advantages:1. Agreement with PN

    2. N > 0, AH initially constant, MAH exceedingly constant

    • Tidal distortions not yet captured

    • Data sets publicly availablehttp://www.tapir.caltech.edu/~harald/PublicID

    1. Compute waveforms!

    2. Compare and validate evolution codes on the same initial data

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005

    http://www.tapir.caltech.edu/~harald/PublicID

  • 20Contents of a data set

    1. The data in several resolutions (Lev2, ... Lev5), each in its own subdirectory

    2. The file Convergence listing errors for each resolution:

    #....N Nor-Linf Nor-L2 Ham-Linf Ham-L2 Mom-Linf Mom-L232.184 0.2280 0.03185 0.0339 0.00202 0.00552 0.000217

  • 21Interpolation Library – suggestions welcome!

    • Library libSpECLibraryID.a (compiled with gcc 3.4.3 on RHE 9)

    • Header file PublicID.hpp:#include

    void ReadData(const double Omega); // import from disk

    void InterpolateData(const vector& x,const vector& y,const vector& z,vector& gxx, ... , vector& gzz,vector& Kxx, ... , vector& Kzz,vector& Betax, ... , vector& Betaz,vector& N);

    void ReleaseData(); // free memory

    • Test-executable InterpolateExample.cpp:

    g++ InterpolateExample.cpp libSpECLibraryID.a -lblas

    H. Pfeiffer, NumRel 2005, Goddard Space Flight Center, Nov 4 2005