Baterías de flujo: conceptos y aplicación futura Catalonia ... · Catalonia Institute for Energy...

19
Catalonia Institute for Energy Research Baterías de flujo: conceptos y aplicación futura Cristina Flox 26 de Mayo del 2016, Barcelona

Transcript of Baterías de flujo: conceptos y aplicación futura Catalonia ... · Catalonia Institute for Energy...

Catalonia Institute for Energy Research

Baterías de flujo: conceptos y aplicación futura

Cristina Flox

26 de Mayo del 2016, Barcelona

ÍNDICE

1. DEFINICIÓN: Conceptos y arquitectura 2. VENTAJAS3. APLICACIÓN4. MERCADO5. EJEMPLOS6. FUTURO

Flow Batteries: Basic Concepts

REDOX FLOW BATTERY

Reduction and oxidacion reactions

STORE ENERGY in

LIQUID ELECTROLYTE

SOLUTION

CONVENTIONAL BATTERY

Lithium ion battery

e-

e-

Anolyte Catholite

LOAD OR POWER SOURCES

e- (Discharge) e- (Discharge)

AnodeCatode

Ion exchange membrane

An+ /A(n-1)+ B(m+1)+Bm+ /

Carriers

e-

e-

Flow Batteries: Architecture and Components

A(n-1)+

An+

B(m+1)+

Bm+

CONVENTIONAL Li-ion BATTERYGOING WITH THE FLOW

Advantages of flow batteries

�Power rating and energy rating decoupled: versatility�Redox reactions are fast in most cases: fast response time� Long cycle life: durability�Allow full discharge without suffering damage: robustness�Self-discharge can be minimized since electrolytes are stored separately�Modularity: easy upgrading�Allows instant recharge (mechanical)

W Δh = E

Anolyte CatholiteAnolyte Catholite

Δ Volumen

Anolyte Catholite Anolyte Catholite

kW100kW…..MW

Main parameters: Cell voltage and Energy density

e-

e-

LOAD OR POWER

SOURCES

e- (Discharge) e- (Discharge)

Carriers

AnodeCathode

Anolyte Catholite

e-

e-

A(n-1)+

An+

An+ /A(n-1)+

B(m+1)+

B(m+1)+

Bm+

Bm+ /

Ion exchange membrane

Ec=Ec-Ea

Flow Batteries performance is depended on the reaction between electroactive species/ electrode

C : Concentration

n: number of electrons

involved in redox reaction

V: potential of cell (depending

of equilibrium potentials of

active species in the cathodic

and anodic half cells)

Flow battery scheme for chemistries

Classification flow batteries

Timeline of the development of RFB over the past 40 years

NASAM. Skyllas-Kazakos

25-30 WhL-1

40 WhL-1

50 WhL-1

100 -200 Wh L-1

60 kWh

v

v

v

1,000

PSH

0.001 1

0.0001

0.001

0.01

0.1

1

10

100

0.01 0.1 10 100

CAES

Na-S

Li-IonVR

Zn-Br

Ni-Cd

FW

Na-S

EDLC

Ni-MH L/A

Rated Power (MW)

Dis

char

geTi

me

(Hr)

SYSTEM RATINGS

CAES Compressed AirEDLC Dbl-Layer CapacitorsFW FlywheelsL/A Lead-AcidLi-Ion Lithium-IonNa-S Sodium-SulfurNi-Cd Nickel-CadmiumNi-Mh Nickel–Metal HydridePSH Pumped HydroVR Vanadium RedoxZn-Br Zinc- Bromine

PSH

Local back up Transmission&Distribution

back up

Energy management

Peak shaving, load leveling and price arbitrage

Stability

Power Quality

All-liquid flow batteries

Inorganic flow batteries

Vanadium Redox Flow Battery (VRB)

side Redox process Ered°ocv/V (vs SHE)

+ VO2+ + 2H+ + e ���� VO2+ + H2O 1.00

- V2+ ���� V3+ + e 0.26

Cell voltage: 1.26V

Characteristics

- same metal used in both compartments: no

crossover contamination

- catholyte (1-2 M VOSO4 + 2-5 M H2SO4),

anolyte (0.5-1 M V2(SO4)2 + 2-5 M H2SO4),

proton – or anion-exchange membrane

- V2SO4 solution protected with N2

atmosphere

SINCE SULFURIC ACID SOLUTION is used as

supporting electrolyte, carbonacuos material

are preferaly chosen as electrode for :

-high surface area-chemical stability

-wide potential window

Market overview: RFB large – scale application

300 kWh

60 kWh

2 200 mm

(7ft)4 500 mm (15 ft)

2 5

00

mm

(8ft)

10kW/100kWh

11

Market overview: VRFB for self-consumption (home application)

10 kWh, 2 kW

15/20/25/30 kWh , 5 kW10 kWh, 2 kW15,30 KWh, 5kW

2.08 m

1.33 m

2.15 m

• Almost unlimited energy storing• Safe and environmental• Flexible energy storage device• Robust and durable (up to 20 year) with low maintenance requirements• Low self-discharge

Ambient temperature range: -20 to 55ºC

(6.4 kWh, 3.3 kW)100 kg

1300 mm

860 mm

180 mm

Prototype :25 KW/52 KWh

Vanadium Redox Flow Battery: REDOX 2015 project

Source: EERA Joint Programme “Smart Grids”, Deliverable D4.1Source* : 2011 Technology Map of the European Strategic Energy Technology Plan (SET-PLAN)

Comparison of technology feature

Levelized Cost of storage energy: LCOSE

Flow Batteries: Versatile energy storage solution

Timeline of the development of FB over the past 40 years

2014 2015

Metal-free RFB

Li metal

Li-S

Na SSFB

All-Cu

1.4 WhL-1

20 WhL-1

25-30 WhL-1

50 WhL-1

40 WhL-1

100 -200 Wh L-1

Ejemplos bibliográficos:

SistemaVoltaje de

descarga (V)

Densidad de

energía teórica

(WhL-1)

Densidad de

energía teórica

(Wh kg − 1 )

Li Co O 2

Li 4Ti5 O12

2,35 397 168

Li Ni 0.5 Mn1.5 O4

Li 4Ti 5O 12

3,2 353 150

Li Co O 2

grafito3,8 615 309

Costes : SSFB 10-20 euros/kg en material de electrodo

30- 40 euros /Kg en electrolito

40-70 euros kWh en suspensiones

VFRB 90-120 kWh (EASE- EERA road map)

Semi solid Flow Batteries:

Lithium ion batteryTehachapi, California 32 MWh 6,300 square-foot

20 ft8 ft

19

ft

VFRB1,6 MWh

3040 m3

Baterías de flujo de vanadio 1 L ~ 40 kWh

Baterías de flujo semi solidas 1 L ~ 100- 200 kWh

1 MWh

VFRB 25000L

SSFB 6666L

Power (kW/m2)PbAcid 0.22Li-ion 0.01 (Gf/LFP)VFRB 2.85

Darling. et al Energy and Environmental Science, 2014, 7 3459

18

Sponsors:

We are loking for student….. If you are interested, please contact to me: [email protected]