Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

60
Basics of Pharmaco-/ Toxicokinetics Dr. Robert Doblhofer www.granzer.biz

Transcript of Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

Page 1: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

Basics of Pharmaco-/ Toxicokinetics

Dr. Robert Doblhoferwww.granzer.biz

Page 2: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

Agenda

Introduction

A Absorption (esp. after oral ingestion)

D Distribution

M Metabolism

E Excretion

Concentration in plasma and derived pharmaco-/toxicokinetic parameters

(Possibilities and limitations of pharmaco-/toxicokinetics)

2

Page 3: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

Material

Pharmakokinetik: Derendorf, Gramatté, Schäfer

Parameter zur modellunabhängigen PK: Cawello

Arzneimittelwirkungen: Mutschler

Funktionelle Histologie der Haussäugetiere, Liebich

Der Körper des Menschen: Benner

3

Page 4: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

4

INTRODUCTION

Page 5: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

5

Page 6: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

Friedrich Hartmut Dost (Pediatrician), 1953 6

Page 7: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

7

Page 8: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

8

ABSORPTION

Page 9: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

ca. 0,1 m2 > 100 m2

Gastro-Intestinal Tract

9

Page 10: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

10

Gain of Surface in the Intestines

10

Page 11: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

11

Gain of Surface in the Intestines

11

Page 12: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

12

)( ia CCLFDq −⋅⋅=

q = rate of diffusion

D = diffusion-constant

F = membrane surface

L = membrane thickness

Ca = concentration in intestinal lumen

Ci = concentration in intestinal epithelial cell

Fick`s Law (Passive Diffusion)

12

Page 13: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

cell membrane

Ca Ci

passive diffusionuncharged, amphiphilic, driven byconcentration gradient Ca > Ci

diffusion through poressmall, hydrophilic

active transportglucose, amino acids, Na+,…

carrier-mediated diffusion

pinocytosis

efflux transporter

phagocytosis

Absorption Processes at the Intestinal Wall

13

Page 14: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

solubilitydissolution rate particle size

Substance is dissolved

Substance is uncharged

Substance is amphiphilic

- H+

pka

amphiphilic

intestinal epithelial cell

Bloo

d ca

pilla

ry

Requirements for Passive Diffusion

14

Page 15: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

Blood Flow in Villi

15

Page 16: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

16

DISTRIBUTION

Page 17: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

Total body water (~60%) Blood (~8%)

Plasma proteins Blood cells (esp. erythrocytes) Fatty tissue (highly lipophilic substances, e.g. DDT) Bones (Ca2+-mimetics, e.g. Pb2+, Sr2+)

Distribution Spaces

total body water~42 l (0.6 l/kg)

interstitial water~15 l (0.2 l/kg)

plasma water~3 l (0.04 l/kg)

intracellular water~24 l (0.35 l/kg)

extracellular water~18 l (0.25 l/kg)

17

Page 18: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

Examples: blood-brain-barrier kidney, intestines liver

Blood-to-Tissue Transit from Capillaries

A: closed capillary B: fenestrated capillary C: open capillary with discontinuous endothelium

18

Page 19: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

19

METABOLISM

Page 20: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

Metabolism

Phase I: Activation Mainly CYP450 enzymes Localization of CYPs: Liver Intestines Lung Kidney Skin Blood…

Phase II: Conjugation Glucuronidation Sulphatation Acetylation Conjugation with GSH …

improved aqueous solubility glomerular filtration

20

Page 21: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

First-Pass-Effect

CAVE: no/limited FPE after sublingual and rectal administration!21

Page 22: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

22

EXCRETION

Page 23: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

Biliary Excretion

23

Page 24: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

The Kidney

24

Page 25: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

The Nephron

25

Page 26: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

cut-off: ~70.000 Da (see below)

Glomerular Filtration

26

Page 27: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

Glomerular Filtration

27

Page 28: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

Glomerular Filtration

28

Page 29: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

Pharmacokinetics = ADME

Absorption: uptake into the (blood-)circulation

Distribution: via blood, different types of capillaries

Metabolism: phase I: activationphase II: conjugation (solubility ↑)first-pass-effect after oral administration

Excretion: via urine (glomerular filtration in the kidney)and bile (liver)

Summary Part I

29

Page 30: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

30

CONCENTRATION IN PLASMA AND DERIVEDPHARMACO-/TOXICOKINETIC PARAMETERS

Page 31: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

tkCtC ⋅−= 00)(

Time0 2 4 6 8 10

Con

cent

ratio

n in

Pla

sma

0

20

40

60

80

100

120

0kdtdC

=−

Zero-Order Kinetics („Saturation“)

31

Page 32: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

CkdtdC

⋅=−

eCtC tk ⋅−⋅= 0)(

Time0 2 4 6 8 10

Con

cent

ratio

n in

Pla

sma

0

20

40

60

80

100

120

tkCC ⋅−= 0lnln

tkCC ⋅−=303,2

loglog 0

Time0 2 4 6 8 10

Con

cent

ratio

n in

Pla

sma

0,01

0,1

1

10

100

1000

First-Order Kinetics („Linear PK“)

32

Page 33: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

Time0 2 4 6 8 10

Con

cent

ratio

n in

Pla

sma

0

20

40

60

80

100

120

eCtC tk ⋅−⋅= 0)(

tkCC ⋅−= 0lnln

Conc. halved

2/100 ln

2ln tkCC

⋅−=

2/100 ln2lnln tkCC ⋅−=−

kt 2ln

2/1 =

kt 693,0

2/1 =

2/0CC = 2/1tat

The Half-life in First-Order Pharmacokinetics

33

Page 34: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

Time0 2 4 6 8 10

Con

cent

ratio

n in

Pla

sma

0,01

0,1

1

10

100

1000

t1/2 = 0,693/kSlope = -k/2,303 (ln/log)

Unit of half-life:t1/2: hk: 1/h resp. h-1

The Half-life in First-Order Pharmacokinetics

34

Page 35: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

Vmax = maximum rate of metabolism/elimination

KM = Michaelis-Menten-constant (=C at Vmax/2)

Vd = volume of distribution (for in vivo studies)

dM VCKCV

dtdC

⋅+⋅

=−)(

max

Michaelis-Menten-Kinetics

Non-Linear Pharmacokinetics

35

Page 36: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

dM VCKCV

dtdC

⋅+⋅

=−)(

max

C>>KM → (KM+C) ≈ C

dVV

dtdC max

=−

Case 1:high concentration/dose:zero-order kineticssaturation (non-linear)

C<<KM → (KM+C) ≈ KM

CVK

VdtdC

dM⋅

⋅=−

max

Case 2:low concentration/dose:first-order kineticslinear pharmacokinetics!

Michaelis-Menten-Kinetics

36

Page 37: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

Michaelis-Menten-Kinetics

37

Page 38: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

Time0 2 4 6 8 10

Con

cent

ratio

n in

Pla

sma

0

20

40

60

80

100

120

AUC [µg·h/ml]

The Area under the Curve (AUC)

38

Page 39: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

eCtC tk ⋅−⋅= 0)( ∫ ⋅=−

z

z

t

t dttCAUC0

0 )(

)1(00

zz

tkt e

kCAUC ⋅−

− −⋅=

kCAUC 0

0 =∞−

The Area under the Curve (AUC)

39

Page 40: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

Time0 2 4 6 8 10

Con

cent

ratio

n in

Pla

sma

0

20

40

60

80

100

120

AUC: The Linear Trapezoidal Rule

40

Page 41: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

Time0 2 4 6 8 10

Con

cent

ratio

n in

Pla

sma

0

20

40

60

80

100

120

tz

Cz

AUC0-tz vs. AUC0-∞

41

Page 42: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

Time0 2 4 6 8 10

Con

cent

ratio

n in

Pla

sma

0,1

1

10

100

1000

tz

Cz

AUC0-tz

AUC0-tz vs. AUC0-∞

kCAUC z

tz =∞− (max. ~20%)

42

Page 43: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

The Volume of Distribution

CXVd =

0CDoseVd =

X = amount of compound present in the body

The amount of compound present in the body (X)is best known immediately after an iv dose.

VXC =

dP V

XC =

X X

CTissue > CPlasma

A: „no distribution“ B: distribution to tissue

43

Page 44: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

The Volume of Distribution - Example

3 gC = 1 g/l

0.03 gC = 0.01 g/l

2.97 g

3 g 3 g

Vd = 3 Liter Distribution only

to plasma

44

3 l plasma

Vd = 300 Liter Distribution

to tissue

plasma

fatty tissue

Page 45: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

Time0 2 4 6 8 10

Con

cent

ratio

n in

Pla

sma

0,01

0,1

1

10

100

1000

-k/2,303

C0

Vc = Dose/C0

Unit:Vc: l (Liter)

The Volume of Distribution

45

Page 46: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

The Volume of Distribution

Reference volumes in the body (70 kg):

total body water~42 l (0.6 l/kg)

interstitial water~15 l (0.2 l/kg)

plasma water~3 l (0.04 l/kg)

intracellular water~24 l (0.35 l/kg)

extracellular water~18 l (0.25 l/kg)

46

Page 47: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

rate of elimination: XkdtdE

e ⋅=

AUCDose

CDosekVk

CXk

CCL ede

edtdE

=⋅=⋅=⋅

==0

volume of distribution:0C

DoseCXVd ==

AUC:ek

CAUC 0=

D

X Eke

i.v.

The Clearance

47

Page 48: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

AUCDoseVkCL de == [l/h] or [l/h·kg]

Compare:liver blood flow: ~1,5 l/minrenal plasma flow: ~0,6 l/min

hhh QCL ε⋅=

The Clearance

48

Clearance:proportional to: Vd

antiproportional to: AUC; t1/2

Page 49: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

D

X Eke

i.v.

Compartments

Time0 2 4 6 8 10

Conc

entra

tion

in P

lasm

a

0,01

0,1

1

10

100

1000

49

Page 50: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

D

X Ukr

i.v.

M

km

ke = kr + km

Compartments

Time0 2 4 6 8 10

Conc

entra

tion

in P

lasm

a

0,01

0,1

1

10

100

1000

50

Page 51: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

D

Xc Eke

i.v.

Xp

ADosisVz =

Compartments

51

Page 52: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

D

X Eke

p.o.

Aka

XkAkdtdX

ea ⋅−⋅=

)()(

tktk

ead

ap

ae eekkV

DFkC ⋅−⋅− −⋅−⋅⋅⋅

=

Bateman-Function

Oral Administration

52

Page 53: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

Oral Administration: Bateman-Function

53

Page 54: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

Oral Administration: Bateman-Function

Cmax

tmax

54

Page 55: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

AUC always identical! Extreme: immediate absorption = iv-curve

CLDFAUC ⋅

= → %)100((%) ⋅=iv

po

AUCAUCF

Oral Administration: Bateman-Function

55

Page 56: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

Multiple-Dose PK: „Cumulation“

ss = steady state; sd = single dose; τ = dosing interval

τ(sd)

τ(ss)

AUCAUC

R−

−=0

0„Cumulation“: 2121

1

/tτR

=

56

Page 57: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

Multiple-Dose PK: „Accmulation“

τAUC

C τ(ss)P,ave(ss)

−= 0

„Accumulation“:

10

0 =∞−

(sd)

τ(ss)

AUCAUC

10

0 >∞−

(sd)

τ(ss)

AUCAUC

(toxicologically relevant!)

57

Page 58: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

Linear PK only when saturation does not occur

Very high doses can lead to non-linear PK

First order PK: exponential decrease of CP

t1/2, AUC, Vd und CL

Oral administration: Bateman-Funktion (ka/ke), Cmax, tmax, AUC

Bioavailability F = AUCpo/AUCiv

A high bioavailability does not necessarily lead to high plasmaconcentrations (if the clearance is high)

(Ac-)cumulation is not necessarily of toxicological relevance

Summary Part II

58

Page 59: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

Summary Part II

Parameter Meaning iv po

VC / VZ central/apparent volume of distribution X

CL total body clearance X

t1/2 half-life X (X)

AUC0-∞ infinite AUC (extrapolated to infinity) X (X)

AUC0-t observed AUC X X

Cmax highest observed concentration in plasma X

tmax time, at which Cmax is reached X

F (oral) bioavailability X

59

Page 60: Basics of Pharmaco-/ Toxicokinetics - ddnz.uzh.ch

60

Dr. Robert DoblhoferGranzer Regulatory Consulting & Services GmbH

Kistlerhofstraße 172C

81379 München

[email protected]

Tel: +49 (0)89 780 68 98 - 53

THANK YOU!