BasicMech-epilepsy introduce-from NCBI

download BasicMech-epilepsy introduce-from NCBI

of 30

Transcript of BasicMech-epilepsy introduce-from NCBI

  • 8/14/2019 BasicMech-epilepsy introduce-from NCBI

    1/30

    B-SlideB-Slide 11

    Basic Mechanisms Basic Mechanisms

    Underlying SeizuresUnderlying Seizuresand Epilepsyand Epilepsy

    American Epilepsy Society

  • 8/14/2019 BasicMech-epilepsy introduce-from NCBI

    2/30

    B-SlideB-Slide 2 2

    Basic Mechanisms Underlying Basic Mechanisms Underlying Seizures and Epilepsy Seizures and Epilepsy

    Seizure: the clinical manifestation of anabnormal and excessive excitation andsynchronization of a population of corticalneuronsEpilepsy: a tendency toward recurrentseizures unprovoked by any systemic or acute neurologic insults

    Epileptogenesis: sequence of events thatconverts a normal neuronal network into ahyperexcitable network

  • 8/14/2019 BasicMech-epilepsy introduce-from NCBI

    3/30

    B-SlideB-Slide 33

    Basic Mechanisms Underlying Basic Mechanisms Underlying Seizures and Epilepsy Seizures and Epilepsy

    Feedback andfeed-forwardinhibition, illustratedvia cartoon andschematic of simplifiedhippocampal circuit

    Babb TL, Brown WJ. Pathological Findings in Epilepsy. In: Engel J. Jr. Ed.Babb TL, Brown WJ. Pathological Findings in Epilepsy. In: Engel J. Jr. Ed.Surgical Treatment of the Epilepsies. New York: Raven Press 1987: 511-540.Surgical Treatment of the Epilepsies. New York: Raven Press 1987: 511-540.

  • 8/14/2019 BasicMech-epilepsy introduce-from NCBI

    4/30

    B-SlideB-Slide 44

    Basic Mechanisms Underlying Basic Mechanisms Underlying Seizures and Epilepsy Seizures and Epilepsy

  • 8/14/2019 BasicMech-epilepsy introduce-from NCBI

    5/30

    B-SlideB-Slide 5 5

    EpilepsyGlutamate EpilepsyGlutamate

    The brains major excitatory neurotransmitter

    Two groups of glutamate receptors Ionotropicfast synaptic transmission

    NMDA, AMPA, kainate Gated Ca ++ and Gated Na+ channels

    Metabotropicslow synaptic transmission Quisqualate Regulation of second messengers (cAMP and

    Inositol) Modulation of synaptic activity

    Modulation of glutamate receptors Glycine, polyamine sites, Zinc, redox site

  • 8/14/2019 BasicMech-epilepsy introduce-from NCBI

    6/30

    B-SlideB-Slide 6 6

    EpilepsyGlutamate EpilepsyGlutamate

    Diagram of thevarious glutamatereceptor subtypesand locations

    From Takumi et al, 1998

  • 8/14/2019 BasicMech-epilepsy introduce-from NCBI

    7/30

    B-SlideB-Slide 7 7

    EpilepsyGABA EpilepsyGABA

    Major inhibitory neurotransmitter in theCNS

    Two types of receptors GABA Apost-synaptic, specific recognition

    sites, linked to CI - channel

    GABA B presynaptic autoreceptors, mediatedby K + currents

  • 8/14/2019 BasicMech-epilepsy introduce-from NCBI

    8/30

    B-SlideB-Slide 8 8

    EpilepsyGABA EpilepsyGABA

    Diagram of the GABA A receptor

    From Olsen and Sapp, 1995

    GABA siteGABA site

    Barbiturate siteBarbiturate site

    BenzodiazepineBenzodiazepinesitesite

    Steroid siteSteroid site

    Picrotoxin sitePicrotoxin site

  • 8/14/2019 BasicMech-epilepsy introduce-from NCBI

    9/30

    B-SlideB-Slide 99

    Cellular Mechanisms of Cellular Mechanisms of Seizure Generation Seizure Generation

    Excitation (too much) Ionicinward Na +, Ca ++ currents

    Neurotransmitterglutamate, aspartate

    Inhibition (too little)

    Ionicinward CI -, outward K + currents NeurotransmitterGABA

  • 8/14/2019 BasicMech-epilepsy introduce-from NCBI

    10/30

    B-SlideB-Slide 10 10

    Neuronal (Intrinsic) Factors Neuronal (Intrinsic) Factors Modifying Neuronal Excitability Modifying Neuronal Excitability

    Ion channel type, number, and distribution

    Biochemical modification of receptors

    Activation of second-messenger systems

    Modulation of gene expression(e.g., for receptor proteins)

  • 8/14/2019 BasicMech-epilepsy introduce-from NCBI

    11/30

    B-SlideB-Slide 1111

    Extra-Neuronal (Extrinsic) Factors Extra-Neuronal (Extrinsic) Factors Modifying Neuronal Excitability Modifying Neuronal Excitability

    Changes in extracellular ion concentration

    Remodeling of synapse location or configuration by afferent input

    Modulation of transmitter metabolism or uptake by glial cells

  • 8/14/2019 BasicMech-epilepsy introduce-from NCBI

    12/30

    B-SlideB-Slide 12 12

    Mechanisms of GeneratingHyperexcitable Networks

    Excitatory axonal sprouting

    Loss of inhibitory neurons

    Loss of excitatory neurons drivinginhibitory neurons

  • 8/14/2019 BasicMech-epilepsy introduce-from NCBI

    13/30

    B-SlideB-Slide 1313

    Electroencephalogram (EEG) Electroencephalogram (EEG)

    Graphical depiction of cortical electrical

    activity, usually recorded from the scalp.

    Advantage of high temporal resolution but poor

    spatial resolution of cortical disorders.

    EEG is the most important neurophysiologicalstudy for the diagnosis, prognosis, and treatment

    of epilepsy.

  • 8/14/2019 BasicMech-epilepsy introduce-from NCBI

    14/30

    B-SlideB-Slide 1414

    10/20 System of EEG Electrode10/20 System of EEG Electrode Placement Placement

  • 8/14/2019 BasicMech-epilepsy introduce-from NCBI

    15/30

    B-SlideB-Slide 15 15

    Physiological Basis of the EEG Physiological Basis of the EEG

    Extracellular dipole generatedby excitatory post-synapticpotential at apical dendrite of

    pyramidal cell

  • 8/14/2019 BasicMech-epilepsy introduce-from NCBI

    16/30

    B-SlideB-Slide 16 16

    Physiological Basis of the EEG Physiological Basis of the EEG (cont.)(cont.)

    Electrical fieldgenerated by similarlyoriented pyramidalcells in cortex (layer 5) and detected byscalp electrode

  • 8/14/2019 BasicMech-epilepsy introduce-from NCBI

    17/30

    B-SlideB-Slide 17 17

    Electroencephalogram (EEG) Electroencephalogram (EEG)

    Clinical applications

    Seizures/epilepsy

    Sleep

    Altered consciousness

    Focal and diffuse disturbances incerebral functioning

  • 8/14/2019 BasicMech-epilepsy introduce-from NCBI

    18/30

    B-SlideB-Slide 18 18

    EEG Frequencies EEG Frequencies

    Alpha: 8 to 13 Hz

    Beta: > 13 Hz

    Theta: 4 to under 8 Hz

    Delta:

  • 8/14/2019 BasicMech-epilepsy introduce-from NCBI

    19/30

    B-SlideB-Slide 1919

    EEG Frequencies EEG Frequencies

    EEG FrequenciesA) Fast activity

    B) Mixed activity

    C) Mixed activityD) Alpha activity (8 to 13 Hz)E) Theta activity (4 to under 8 Hz)F) Mixed delta and theta activityG) Predominant delta activity

    (13 Hz)

    Niedermeyer E, Ed. The Epilepsies: Diagnosis and Management.

    Urban and Schwarzenberg, Baltimore, 1990

  • 8/14/2019 BasicMech-epilepsy introduce-from NCBI

    20/30

    B-SlideB-Slide 20 20

    Normal Adult EEG

    Normal alpha rhythm

  • 8/14/2019 BasicMech-epilepsy introduce-from NCBI

    21/30

    B-SlideB-Slide 2121

    EEG Abnormalities EEG Abnormalities

    Background activity abnormalities Slowing not consistent with behavioral state

    May be focal, lateralized, or generalized

    Significant asymmetryTransient abnormalities / Discharges Spikes Sharp waves

    Spike and slow wave complexes May be focal, lateralized, or generalized

  • 8/14/2019 BasicMech-epilepsy introduce-from NCBI

    22/30

    B-SlideB-Slide 22 22

    Sharp Waves Sharp Waves

    An example of aleft temporallobe sharp wave(arrow)

  • 8/14/2019 BasicMech-epilepsy introduce-from NCBI

    23/30

    B-SlideB-Slide 2323

    The Interictal Spike and The Interictal Spike and Paroxysmal Depolarization Shift Paroxysmal Depolarization Shift

    Intracellular andextracellular eventsof the paroxysmaldepolarizing shiftunderlying theinterictalepileptiform spikedetected by surfaceEEG

    Ayala et al., 1973

  • 8/14/2019 BasicMech-epilepsy introduce-from NCBI

    24/30

    B-SlideB-Slide 2424

    Generalize Spike Wave DischargeGeneralize Spike Wave Discharge

  • 8/14/2019 BasicMech-epilepsy introduce-from NCBI

    25/30

    B-SlideB-Slide 25 25

    EEG: Absence Seizure EEG: Absence Seizure

  • 8/14/2019 BasicMech-epilepsy introduce-from NCBI

    26/30

    B-SlideB-Slide 26 26

    Possible Mechanism of Possible Mechanism of Delayed Epileptogenesis Delayed Epileptogenesis

    Kindling model: repeated subconvulsivestimuli resulting in electrical

    afterdischarges Eventually lead to stimulation-induced clinical

    seizures

    In some cases, lead to spontaneous seizures(epilepsy)

    Applicability to human epilepsy uncertain

  • 8/14/2019 BasicMech-epilepsy introduce-from NCBI

    27/30

    B-SlideB-Slide 27 27

    Cortical Development Cortical Development

    Neural tube

    Cerebral vesicles

    Germinal matrix

    Neuronal migration and differentiation

    Pruning of neurons and neuronalconnections

    Myelination

  • 8/14/2019 BasicMech-epilepsy introduce-from NCBI

    28/30

    B-SlideB-Slide 28 28

    Behavioral Cycling and EEG Behavioral Cycling and EEG Changes During Development Changes During Development

    EGA = embrionic gestational ageEGA = embrionic gestational ageKellway P and Crawley JW. A primer of Electroencephalography of Infants,Kellway P and Crawley JW. A primer of Electroencephalography of Infants,Section I and II: Methodology and Criteria of Normality. Baylor University CollegeSection I and II: Methodology and Criteria of Normality. Baylor University Collegeof Medicine, Houston, Texas 1964.of Medicine, Houston, Texas 1964.

  • 8/14/2019 BasicMech-epilepsy introduce-from NCBI

    29/30

    B-SlideB-Slide 2929

    EEG Change During Development EEG Change During Development EEG Evolution and Early Cortical Development

    Estimated GestationalAge, in Weeks

    EEG Evolution

    8 First appearance of EEG signal acrosscortex

  • 8/14/2019 BasicMech-epilepsy introduce-from NCBI

    30/30

    B-SlideB-Slide 30 30

    EEG Change During Development EEG Change During Development (cont.)(cont.)

    EEG Evolution and Early Cortical Development

    Estimated GestationalAge, in Weeks

    EEG Evolution

    40 Predictable cycles of active and quietsleep

    44 - 46 First appearance of sleep spindles duringquiet sleep

    4 Months Post-Term Sleep onset quiet sleep and emergence of

    mature sleep architecture

    Kellway P and Crawley JW. A primer of Electroencephalography of Infants,Kellway P and Crawley JW. A primer of Electroencephalography of Infants,Section I and II: Methodology and Criteria of Normality. Baylor University CollegeSection I and II: Methodology and Criteria of Normality. Baylor University Collegeof Medicine, Houston, Texas 1964.of Medicine, Houston, Texas 1964.