Basic mathematics integration

20
THP-FTP-UB

Transcript of Basic mathematics integration

THP-FTP-UB

Integration or antidifferentiation is thereverse process of differentiation.

The symbol 𝑓 π‘₯ 𝑑π‘₯ denote the integral of

𝑓 π‘₯ with respect to the variable π‘₯.

For example𝑑

𝑑π‘₯π‘₯4 = 4π‘₯3, so the integral of

4π‘₯3 with respect to π‘₯ is written by:

4π‘₯3𝑑π‘₯ = π‘₯4

See that

Because any constant term in the originalexpression becomes zero in the derivative. Wetherefore acknowledge the presence of suchconstant term of some value by adding a symbol𝐢 to the result of integration:

4π‘₯3𝑑π‘₯ = π‘₯4 + 𝐢

π‘ͺ is called constant integration and must always beincluded.

Polynomial expression are integrated term byterm with the individual constant ofintegration consolidated into one symbol 𝐢 tofor whole expression.

Example

Integration of Functions of a Linier Function of 𝒙

If:

then:

For example:

( ) ( ) f x dx F x C

( )( )

F ax bf ax b dx C

a

7 76 6 (5 4)

so that (5 4)7 7 5

x x

x dx C x dx C

If the integrand is an algebraic fraction thatcan be separated into its partial fractionsthen each individual partial fraction can beintegrated separately.

2

1 3 2

3 2 2 1

3 2

2 1

3ln | 2 | 2ln | 1|

xdx dx

x x x x

dx dxx x

x x C

If the numerator is not of lower degree than thedenominator, the first step is to divide out.

For example

Determine 3π‘₯2+18π‘₯+3

3π‘₯2+5π‘₯βˆ’2𝑑π‘₯ by partial fraction

First we divide 3π‘₯2 + 18π‘₯ + 3 by 3π‘₯2 + 5π‘₯ βˆ’ 2, so weget

Then, we solve 1 +13π‘₯+5

3π‘₯2+5π‘₯βˆ’2𝑑π‘₯ = 1𝑑π‘₯ +

13π‘₯+5

3π‘₯2+5π‘₯βˆ’2𝑑π‘₯. To solve the form

13π‘₯+5

3π‘₯2+5π‘₯βˆ’2𝑑π‘₯ we just

can use the rule like previous example.

Find

Find

(i)

For example

(ii)

For example

( ) 1( ) ln ( )

( ) ( )

f xdx df x f x C

f x f x

2

2

2 2

2 3 ( 3 5)ln 3 5

3 5 3 5

x d x x

dx x x Cx x x x

(iii)

Example

Since 1

π‘π‘œπ‘ 2π‘₯= 𝑠𝑒𝑐2π‘₯, 𝑒 = π‘₯2,

𝑑𝑒

𝑑π‘₯= 2π‘₯, π‘ π‘œ

Evaluate

Β© (d)

The part formula is

For example

( ) ( ) ( ) ( ) ( ) ( ) u x dv x u x v x v x du x

( ) ( )

( ) ( ) ( ) ( ) where ( ) so ( )

( ) so ( )

.

x

x x

x x

x x

xe dx u x dv x

u x v x v x du x u x x du x dx

dv x e dx v x e

x e e dx

xe e C

Many integrals with trigonometric integrands canbe evaluated after applying trigonometricidentities.

Trigonometric identities such as:

𝑠𝑖𝑛2π‘₯ =1

21 βˆ’ π‘π‘œπ‘ 2π‘₯

π‘π‘œπ‘ 2π‘₯ =1

21 + π‘π‘œπ‘ 2π‘₯

𝑠𝑖𝑛π‘₯. π‘π‘œπ‘ π‘₯ =1

2𝑠𝑖𝑛2π‘₯

For example: 2 1

sin 1 cos22

1 1cos2

2 2

sin 2

2 4

xdx x dx

dx xdx

x xC

Example Then we make substitution

if 𝑓integrable on π‘Ž, 𝑏 , moreover π‘Žπ‘π‘“ π‘₯ 𝑑π‘₯ , called

the definit integral of 𝑓 from π‘Ž to 𝑏.

Then π‘Žπ‘π‘“ π‘₯ 𝑑π‘₯ = 𝐹 𝑏 βˆ’ 𝐹 π‘Ž

which is 𝐹 be any antiderivative of 𝑓 on π‘Ž, 𝑏

For example

βˆ’1

2

2π‘₯ + 3𝑑π‘₯ = π‘₯2 + 3π‘₯ βˆ’12

= 22 + 3.2 βˆ’ βˆ’1 2 + 3.βˆ’1 = 10 βˆ’ βˆ’2 = 12

The techniques integration of definite integrals aresame with indefinite integral.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.