Base shear calc

download Base shear calc

of 8

Transcript of Base shear calc

  • 8/19/2019 Base shear calc

    1/17

    ONE ADRIATICO PLACESeismic Analysis and Design

    Static Force Procedure (UBC 1630-2)

    Total height of building, hn = 119.20 !oil "#o$le T%&e, (Table 16-')

    !eii *one +ato#, * = 0.0 (Table 16-)

    &o#tane +ato#, = 1.00 (Table 16-)

    ue#ial Coeiient, = . (Table 16-)

    !eii !ou#e T%&e B (Table 16-U)

     ditane to 4no5n !eii +ato# ≥ 10.00 4

    ea#-!ou#e +ato#, a = 1.00 (Table 16-!)

    ea#-!ou#e +ato#, = 1.00 (Table 16-T)

    Design Base Shear : 7 =

    C 8

    (:. 30-)

    T

    ≤2. Ca

    8(:. 30-)

     

    ≥ 0.11 Ca 8 (:. 30-6)

    ≥0.0 *

    8(:. 30-;)

     

    !eii Coeiient, Ca = 0. a = 0. (Table 16-:)

    !eii Coeiient, C = 0.6 = 0.6 (Table 16-)

    Structure Period T using Method A 

    = (:. 30-)

    Ct = 0.0 fo# dual %te

    = 1.;6 e.

    C 8 = 0.02;; 8

    T

    2 C

    !<

    T   Ct (hn)

    3/

    T  

  • 8/19/2019 Base shear calc

    2/17

    ONE ADRIATICO PLACESeismic Analysis and Design

    +> =

    (:. 30-1)

    T = 1.;6 e. ? 0.;0 e.

    !o +t = 0.0; T 7 

    = @@ 4

    5he#eA

    +> = late#al fo#e a&&lied to leel >

    8 = 5eight at a &a#tiula# leelh = height at a &a#tiula# leel aboe the bae

    +t = &o#tion of the bae hea# onide#ed onent#ated

    at the to& (leel n) in addition to the o&uted +n

    = (fo# T ? 0.;0 e.)

    = 0

    (7-+t) 5>h

    >

    Σ 5>h>

    0.0;T7 ≤  0.2

      (fo# T ≤ 0.;0 e.)

  • 8/19/2019 Base shear calc

    3/17

    ONE ADRIATICO PLACESeismic Analysis and Design

     Lateral Forces by Static Force Procedure using Period from Method A

     7 = 3919;. 4

    T = 1.;6 e. ; T 7 = @@@ 4

    LEVEL

     WEIGTST!"E#EIGT LATE"AL ST!"E# 

    $ EIGT

    4 . . 4- 4 4

  • 8/19/2019 Base shear calc

    4/17

    ONE ADRIATICO PLACESeismic Analysis and Design

  • 8/19/2019 Base shear calc

    5/17

    UBC '97 BASE SHEAR

    SOUTH LUZON MEDICAL CENTER

    No. of oors, n = 10 To!" #$% of '(%")%n&, #n = *+.00

    So%" -ro"$ T$, ro T!'"$ 1645

    S$%s% Zon$ !or, Z = 0.*0 ro T!'"$ 16I5

    Ior!n$ !or, I = 1.2+ ro T!'"$ 1675

    N($r%!" Co$8%$n, R = 9.+ ro T!'"$ 16N5

    S$%s% So(r$ T$ C ro T!'"$ 16U5

    C"os$s )%s!n$ o :no;n S$%s% !or ≥ 10.00 :

    N$!rSo(r$ !or, N! = 1.00 ro T!'"$ 16S5N$!rSo(r$ !or, N< = 1.00 ro T!'"$ 16T5

    V =Cv I

    WR T

    S$%s% Co$8%$n, C! = 0.** N! = 0.**

    S$%s% Co$8%$n, C< = 0.6* N< = 0.6*

     T = C = 0.031

    = 1.2 s$.

     T ≤ 1.30T

    = 1.6+1 s$.

    V = 0.057 W

    or 5.7 % of W

      T#$ o!" )$s%&n '!s$ s#$!r n$$) no $>$$) #$ fo""o;%n&?

    @ =2.+ C! I

    = BBB R

    or 16.18 % of W

      T#$ o!" )$s%&n '!s$ s#$!r s#!"" no '$ "$ss #!n #$ fo""o;%n&?

    @ = 0.11 C! I = BBB

    6 05 % f W

    SD

    C #n53/*

  • 8/19/2019 Base shear calc

    6/17

    Ver&() *&"r&+!&o, of Se&"-& ore"

    V =

    > = "!$r!" for$ !"%$) o "$

  • 8/19/2019 Base shear calc

    7/17

    S(& ore roe!re AT #:!,04

    SUTH U;

  • 8/19/2019 Base shear calc

    8/17

  • 8/19/2019 Base shear calc

    9/17

    VERTICAL DISTRIBUTION OF LATERAL FORCES, Fx

    V =

    Fx = lateral force applied to level x

    =(V - Ft) Wxhx

    where:W = weight at a particular levelh = height at a particular level above the base

    Ft = portion of the base shear considered concentratedat the top (level n) in addition to the computed Fn

    Ft == 0

    STOREY SHEAR AND OVERTURNING MOMENT, Vx, Mx

    x

    HORIZONTAL DISTRIBUTION OF SHEARS (Sec. 2.2.5.5)

    a! Vx in a store" is distributed to the various elements in proportion  to their stiffness!

    b! #rovide $% accidental eccentricit"

      Vx

    F ! ΣFx

    Σ Wxhx

    0!0*V ≤  0 !+$ for * > 0!0 sec!  for * ≤ 0!0 sec!

    Vx = Ft , Σ Fi

    x = Ft (hn - hx) , Σ Fi (hi - hx)

    *x

     = Vx (0!0$), ,

    Vx

    c!

    m!

    0!0$

  • 8/19/2019 Base shear calc

    10/17

    HORIZONTAL TORSIONAL MOMENTS (Sec. 2.2.5.")

      *orsional moments occur if the center of mass is not coincident withthe center of rigidit"!

      .x!

    shearwall

    Vx

    OVERTURNING (Sec. 2.2.5.#)

      .ver" structure shall be designed to resist the overturning effectscaused b" earth/uae forces specified in 1ec! +!+!$!2! 't an" level3 theoverturning moments to be resisted shall be determined using those seismicforces (Ft and Fx) which act on levels above the level under considereation!'t an" level3 the incremental changes of the design overturning momentshall be distributed to the various resisting elements in the manner pres-cribed in 1ec! +!+!$!$! 4verturning effects on ever" element shall becarried down to the foundation!

    STOREY DRIFT LIMITATION (Sec. 2.2.5.$)

    1tore" 5rift - displcement of one level relative to the level above orbelow it!

    &imitations :

    0!02h6w

    *  = Vx e

    a! For buildings with *

  • 8/19/2019 Base shear calc

    11/17

    %&DELTA EFFECTS (Sec. 2.2.5.')

     # *he resulting member forces and moments and the  Vx x

     ∆ in the evaluation of over-all structural frame stabilit"!

    drift does not exceed 0!0+h86w!

    Vx#

      x

    store" drifts induced b" #-∆ effects shall be considered

    #-∆ effects need not be considered when the store"

  • 8/19/2019 Base shear calc

    12/17

    EAM%LE * 5etermination of 1eismic &ateral Forces using the 19# (;;+)./uivalent-1tatic-Force ethod!

    !$ m!

    !$ m!

    < ba"s 0m!

    %LAN

    2!0 m!

    2!0 m!

    2!0 m!

    LONGITUDINAL SECTION

    7DATA*

    + >7

    >7

    +

    TRANSVERSE column si?e: 0!

  • 8/19/2019 Base shear calc

    13/17

    1 = !$0 (1oil *"pe 7)

    * = 9t = 0!0$ (9oncrete)hn = + m!

    * = 0!2>2 sec!+

    9 =!+$ 1

    9 = 7!022 9max =+!$

    ence :

    V =

    E @ 9 W

    6w

    V = +07>2 0!2< ;$< ;$< 7>+

    + > 2 >7 2 0!7< 20 7 72;+ 0!> 70 +0>;<

    TOTAL 2252$ .++ 2+"5

    1ample 9alculation:

    (V - Ft)

    2

    9thn782

      +.#+ /ec. ∴ F =

    * +87

     Σ-

    F+ =

    W+h

    +

    ΣWh

  • 8/19/2019 Base shear calc

    14/17

    4verturning oment3 x:

    = ;$ - 2)= 0

  • 8/19/2019 Base shear calc

    15/17

    7 H = 7

    *orsional Force per Frame:

    =  V =

    =

    FRAMERe013e R46 R

    T710 F78ce

    6 C7e99ce:

    7 0!27 ,70 ;00 +00 0!0+;2 0!+2

    + 7 0!27 ,+0 200 +00 0!0;< 0! 0!$+>

    2 7 0!27 0 0 0 0 0!270

    $ 7 0!27 -0 00 700 -0!00;>G 0!$+>

    < 7 0!27 -+0 200 +00 -0!0;

    G@n considering torsional effects3 these InegativeIvalues will be converted to positive values sinceearth/uae can occur in an" direction!

    4*. :   orce coe icient is t e resu tant o irect or

    torsional force on a frame due to a unit load onthe building!

    ILLUSTRATION FOR FRAME LOADINGS*

    *  =

    *   6d+

    d Σ6d+

    7 6d+

    d Σ6d+

    2 R2< R2

    ΣR ΣR2

    , ,

    7

  • 8/19/2019 Base shear calc

    16/17

    F6'. : *otal Force 9oefficient = 0!+2

    ;$7 x 0!+2 = ";2< x 0!+2 = 2'

    77 x 0!+2 = ";

  • 8/19/2019 Base shear calc

    17/17

    0 0.

    0.116 1.1

    0. 1.1

    0.6 1.000

    0.;1 0.901

    0. 0.

    0.9 0.;11

    1 0.6

    1.1 0.2

    1.2 0.3

    1.3 0.92

    1. 0.;

    1.1 0.2

    1.6 0.390

    1.;6 0.36

    1. 0.36

    1.9 0.33;

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    UBC 1997 Design Response Spectrum One Adriatico Place

     Period

       S  p  e  c   t  r  a   l   A  c  c  e   l  e  r  a   t   i  o  n   (  g   '  s   )