Barry C. Sanders Institute for Quantum Information Science, University of Calgary with G Ahokas...

23
Barry C. Sanders Institute for Quantum Information Science, University of Calgary with G Ahokas (Calgary), D W Berry (Macquarie), R Cleve (Waterloo), P Hoyer (Calgary), N Wiebe (Calgary) Efficiently algorithm for universal quantum simulation Quantum Information and Many Body Physics Workshop University of British Columbia, 1 December 2007 Comm. Math. Phys. 270(2): 359 - 371 (March 2007) + New
  • date post

    19-Dec-2015
  • Category

    Documents

  • view

    216
  • download

    0

Transcript of Barry C. Sanders Institute for Quantum Information Science, University of Calgary with G Ahokas...

Page 1: Barry C. Sanders Institute for Quantum Information Science, University of Calgary with G Ahokas (Calgary), D W Berry (Macquarie), R Cleve (Waterloo), P.

Barry C. SandersInstitute for Quantum Information Science, University of

Calgarywith G Ahokas (Calgary), D W Berry (Macquarie), R Cleve

(Waterloo),P Hoyer (Calgary), N Wiebe (Calgary)

Efficiently algorithm for universal quantum simulation

Quantum Information and Many Body Physics Workshop

University of British Columbia, 1 December 2007

Comm. Math. Phys. 270(2): 359 - 371 (March 2007) + New Work.

Page 2: Barry C. Sanders Institute for Quantum Information Science, University of Calgary with G Ahokas (Calgary), D W Berry (Macquarie), R Cleve (Waterloo), P.

Simulating evolution: quantum state generation

Page 3: Barry C. Sanders Institute for Quantum Information Science, University of Calgary with G Ahokas (Calgary), D W Berry (Macquarie), R Cleve (Waterloo), P.
Page 4: Barry C. Sanders Institute for Quantum Information Science, University of Calgary with G Ahokas (Calgary), D W Berry (Macquarie), R Cleve (Waterloo), P.

ClassicalPreprocessor

ClassicalPreprocessor

Λ ≥sup H , &H , &&H3 ,K{ },dimH ,

ε ,T ,d = sparseness H( )

n (including ancillae) , %ti{ }

Page 5: Barry C. Sanders Institute for Quantum Information Science, University of Calgary with G Ahokas (Calgary), D W Berry (Macquarie), R Cleve (Waterloo), P.

Background

t3/2

(d+1)2 n6

Lie-TrotterLie-Trotter

Graph ColouringGraph Colouring

t3/2

d2 n2

Lie-TrotterLie-Trotter

Graph ColouringGraph Colouring

t1+1/2k

d2 log*n

Lie-Trotter-Suzuki(kth order)

Lie-Trotter-Suzuki(kth order)

Deterministic Coin Tossing

Deterministic Coin Tossing

ATS 2003ATS 2003

Childs 2004Childs 2004

Our ResultsOur Results

Feynman 1982: Quantum Computer would efficientlysimulate dynamics of quantum systems.

Lloyd 1996: Formalized conjecture, assumed tensorproduct structure, showed efficient algorithm.

Page 6: Barry C. Sanders Institute for Quantum Information Science, University of Calgary with G Ahokas (Calgary), D W Berry (Macquarie), R Cleve (Waterloo), P.

Optimal in t; nearly constant in n

t1+1/2k

d2 log*n

Lie-Trotter-Suzuki(kth order)

Lie-Trotter-Suzuki(kth order)

Deterministic Coin Tossing

Deterministic Coin Tossing

Our ResultsOur Results

log*n is the height of the smallesttower of powers of 2 that exceeds n:

Page 7: Barry C. Sanders Institute for Quantum Information Science, University of Calgary with G Ahokas (Calgary), D W Berry (Macquarie), R Cleve (Waterloo), P.

%ψ '

%U = %U jN

L %U j2%U j1

j1 j2 j3 j4

0L 0 0L 0

Page 8: Barry C. Sanders Institute for Quantum Information Science, University of Calgary with G Ahokas (Calgary), D W Berry (Macquarie), R Cleve (Waterloo), P.

%U = %U jN

L %U j2%U j1

ψ = cl l∑

l

0€

0

0

0€

0

0

l1

~jU

0€

0

0

0€

0

0

l12

~~jj UU

0€

0

0

0€

0

0

j1j2 j3

Page 9: Barry C. Sanders Institute for Quantum Information Science, University of Calgary with G Ahokas (Calgary), D W Berry (Macquarie), R Cleve (Waterloo), P.

l

0

0

0

0

l

˜ U j

˜ U j l

)',max( ll=x

( )',min ll=y

%H x,y , colour(l , l ') = j

0 ,colour(l , l ') ≠ j

⎧⎨⎪

⎩⎪

x

y

0

0

0

0

˜ U j l

˜ U j

0

Page 10: Barry C. Sanders Institute for Quantum Information Science, University of Calgary with G Ahokas (Calgary), D W Berry (Macquarie), R Cleve (Waterloo), P.
Page 11: Barry C. Sanders Institute for Quantum Information Science, University of Calgary with G Ahokas (Calgary), D W Berry (Macquarie), R Cleve (Waterloo), P.

Hamiltonian H generates unitary: break up

H: sum of local Hamiltonians

Trotter (m=2): eiHt(eiH1t/2r eiH2t/r eiH1t/2r)r, HH1+H2.

Number of steps for quantum computer N t3/2.

Suzuki generalization of Trotter formula:

Suzuki proves for small :

H = Hii=1

m

, pk = 4 −41/ 2k−1( )( )−1

5 terms5 terms

Page 12: Barry C. Sanders Institute for Quantum Information Science, University of Calgary with G Ahokas (Calgary), D W Berry (Macquarie), R Cleve (Waterloo), P.

Lemma: Strict bound for Lie-Trotter-Suzuki

qk = 1−4pk'( )k'=2

k

exp −it Hii=1

m

∑⎛⎝⎜

⎞⎠⎟− S2k −i

tr

⎛⎝⎜

⎞⎠⎟

⎣⎢

⎦⎥

r

≤22m5k−1qkτ( )

2k+1

2k+1( )!r2k

12m5k−1qkτ / r ≤1,

32

2m5k−1qkτ( )2k+1

2k+1( )!r2k ≤1.

τ =t × max H j

ε ≤1 ≤4m5k −1qkτ

2k +1( )!62k

Page 13: Barry C. Sanders Institute for Quantum Information Science, University of Calgary with G Ahokas (Calgary), D W Berry (Macquarie), R Cleve (Waterloo), P.

Theorem: Simulation cost nearly linear in time

Theorem:

Optimal choice of k:

Then

N ≤m52k mqkτ( )

1+1/2k

2 2k+1( )!ε⎡⎣ ⎤⎦1/2k

k ≈12

log5

mτε

⎛⎝⎜

⎞⎠⎟

N ≤4m2τ exp 2 log5 mτ / ε( )⎡⎣

⎤⎦

Page 14: Barry C. Sanders Institute for Quantum Information Science, University of Calgary with G Ahokas (Calgary), D W Berry (Macquarie), R Cleve (Waterloo), P.

2

t=0

4

34

Xj = 0 1 1 0 1 0 0 1

Simulation time cannot be sublinear in t

Page 15: Barry C. Sanders Institute for Quantum Information Science, University of Calgary with G Ahokas (Calgary), D W Berry (Macquarie), R Cleve (Waterloo), P.

Lemma (decomposition of H unknown)

∃ decomposition H = H j

j=1

m

∑ , with each H j 1- sparse,

such that m = 6d2, and each query to any H j can be

simulated by O log* n( ) queries to H.

Page 16: Barry C. Sanders Institute for Quantum Information Science, University of Calgary with G Ahokas (Calgary), D W Berry (Macquarie), R Cleve (Waterloo), P.

Graph associated with Graph associated with HH

2

2

2

2

2

1

11

2

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

22

1

1

1

1 1

1

3

3

3

3

3

3

33

3

3

3

3

21

2

22

2

2

2

3

3

3

3

3

3

y1

yd

x :α1

αd

Connect x to yk (x) with an

edge of weight αk (x)

Page 17: Barry C. Sanders Institute for Quantum Information Science, University of Calgary with G Ahokas (Calgary), D W Berry (Macquarie), R Cleve (Waterloo), P.

SymmetricallySymmetrically labeled graphs labeled graphs

2

1

2

1

3

1

31

1

2

1

2

1

3

2

1

1

2

1

1

3

2

1

3

13

1

3

3

3 2

3

2

1

2

3

3

1

32

3

3

2

2

22

2

31

2

3

2

3

1

1

1

2

2

Page 18: Barry C. Sanders Institute for Quantum Information Science, University of Calgary with G Ahokas (Calgary), D W Berry (Macquarie), R Cleve (Waterloo), P.

Non-symmetric caseNon-symmetric caseModify labeling to be symmetric (with an overhead cost)

(a, b)We now have d

2 labels

instead of d labels, but a symmetric labeling

a bx y with x < y

x y

(1, 3)with z < y

with y < w

(1, 2)

(1, 3)

x y

z

w

1 32

1

1

3

Example:

Problem!

(a, b)

(1, 3)

(1, 2)

(1, 3)

Page 19: Barry C. Sanders Institute for Quantum Information Science, University of Calgary with G Ahokas (Calgary), D W Berry (Macquarie), R Cleve (Waterloo), P.

Graph with monochromatic pathsGraph with monochromatic paths1

2

1

3

1

1

33

1

2

1

3

1

3

3

3

1

1

3

1

3

2

3

3

33

2

1

1

3 2

3

2

2

1

3

3

2

21

1

1

1

2

21

1

21

2

1

1

3

2

2

1

1

2

To break up the paths, we increase the number of colours

Page 20: Barry C. Sanders Institute for Quantum Information Science, University of Calgary with G Ahokas (Calgary), D W Berry (Macquarie), R Cleve (Waterloo), P.

x

y

z

w

(a,b, x

(a,b, y

(a,b, z

(a,b, w

n bits

x

y

z

w

x′

y′

z′

w′

d 2 2n

colourslog(n)+1 bits

y′ (i, yi), where i = min{ j : yj zj}

Then y′ = (010,1)

Example: y = 01100101

z = 01001101

010

x < y < z < w

Note: still a valid coloring!x′ y′ & y′ z′ & z′ w′

“Deterministic coin-tossing” [Cole & Vishkin ’86]

Page 21: Barry C. Sanders Institute for Quantum Information Science, University of Calgary with G Ahokas (Calgary), D W Berry (Macquarie), R Cleve (Waterloo), P.

Breaking up the paths IIBreaking up the paths II

x

y

z

w

(a,b, x

(a,b, y

(a,b, z

(a,b, w

n bits

x

y

z

w

x′

y′

z′

w′

x

y

z

w

x′′

y′′

z′′

w′′

d 2 2n

colorslog(n)+1 bits

log(log(n)+1)+1 bits

x

y

z

w

x′′′

y′′′

z′′′

w′′′

6 elements

...

...

...

...

O(log*(n)) iterations

Just 5 iterations for n 101037

Page 22: Barry C. Sanders Institute for Quantum Information Science, University of Calgary with G Ahokas (Calgary), D W Berry (Macquarie), R Cleve (Waterloo), P.

Sketch of Proof:

# of Hj’s is m = 6d2. Need to call the black-box O(log*n) times for each Hj.

Substituting into theorem for upper bound on Nexp gives result.

Page 23: Barry C. Sanders Institute for Quantum Information Science, University of Calgary with G Ahokas (Calgary), D W Berry (Macquarie), R Cleve (Waterloo), P.

Further Reading S. Lloyd, Science 273, 1073 (1996). R. P. Feynman, Int. J. Th.. Phys. 21, 467 (1982). D. Aharonov and A. Ta-Shma, Proc. ACM STOC, 20 (2003). M. Suzuki, Phys. Lett. A 146, 319 (1990); JMP 32, 400

(1991). A. Childs, Ph.D. Thesis, MIT (2004). R. Cole and U. Vishkin, Inform. and Control 70, 32 (1986). N. Linial, SIAM J. Comp. 21, 193 (1992). A. Childs, R. Cleve, E. Deotto, E. Farhi, S. Guttman, and D.

Spielman, Proc. ACM STOC, 59 (2003). R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf, J.

ACM 48, 778 (2001). G. Ahokas, D. W. Berry, R. Cleve, and B. C. Sanders, Comm.

Math. Phys. 270(2): 359 - 371 (March 2007); quant-ph/0508139.