Barone - Hist of Axiomatic Prob

69
A History of t he Axi omatic Formulation of Probabili ty from Borel to Kolmogorov" Part I JACK BARONE & ALBERT NOVIKOFF Communicated by M. KLINE Abstract This paper, the first of two, traces the origins of the modern axiomatic formulation of Probability Theory, which was first given in definitive form by KOLMOGOROV in 1933. Even before that time, however, a sequence of develop- ments, initiated by a landmark paper of E. BOREL, were giving rise to problems, theorems, and reformulations that increasingly related probability to measure theory and, in particular, clarified the key role of countable additivity in Probability Theory. This paper describes the developments from BOREL'S work through F. HAUSDORFF'S. The major accomplishments of the period were BOREL's Zero- One Law (also known as the BOREL-CANTELLI Lemmas), his Strong Law of Large Numbers, and his Continued Fraction Theorem. What is new is a detailed analysis of BOREL's original proofs, from which we try to account for the roots (psychological as well as mathematical) of the many flaws and inadequacies in BOREL's reasoning. We also document the increasing realization of the link between the theories of measure and of probability in the period from G. FABER to F. HAUSDORFF. We indicate the misleading emphasis given to independence as a basic concept by BOREL and his equally unfortunate association of a HEINE-BOREL lemma with countable additivity. Also original is the (possible) genesis we propose for each of the two examples chosen by BOREL to exhibit his new theory; in each case we cite a now neglected precursor of BOREL, one of them surely known to BOREL, the other, probably so. The brief sketch of instances of the "CANTELLI" lemma before CANTELLI's publication is also original. We describe the interesting polemic between F. BERNSTEIN and BOREL concerning the Continued Fraction Theorem, which serves as a rare instance of a contemporary criticism of BOREL's reasoning. We also discuss HAUSDORFF'S proof of BOREL' S Strong Law (which seems to be the fir st valid proo f of the theor em along the lines sketched by BOREL). In retrospect, one may ask why problems of "geometric" (or "continuous") probability did not give rise to the (KOLMOGOROV) view of probability as a form of

Transcript of Barone - Hist of Axiomatic Prob

Page 1: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 1/68

A H istor y of the A xi omat ic F ormulation

of Pr obabi l i ty f r om Bor el to Kolmogorov" Par t I

J A C K B A R O N E & A L B E R T N O V I K O F F

Communicated by M. KLINE

Abstract

This paper , the f i rs t o f two, traces the or ig ins of the m od ern ax iom at ic

formula t ion of P robabi l i ty Theory , which was f i r s t g iven in de f in i t ive form by

KOLMOGOROV in 1933. Ev en b efore tha t t ime, howe ver , a seq uenc e of develop -

ments , in i t i a t ed by a l an dm ark pape r of E . BOREL, were g iv ing r is e to prob lems ,theorems , and re formula t ions tha t inc reas ingly re la ted probabi l i ty to measure

theo ry and , in pa r t i cu la r , c l a r i fi ed the key ro le of countab le ad di t iv i ty in

P r oba b i l i t y T he o r y .

T h i s p a pe r de s cr i be s t he de ve l opme n t s f r om B O R E L ' S w or k t h r ough

F. HAUSDORFF'S. The major accomplishments of the per iod were BOREL's Zero-

On e L aw (also kno wn as the BOREL-CANTELLI Lem mas) , his St ro ng L aw of La rge

Nu mb ers , a nd h i s Con t inue d Fra c t ion The orem . W hat i s new is a de ta i l ed ana lys i s

of BOREL's or ig ina l p roofs , f rom w hich we t ry to acco unt for the root s

(ps yc ho log ica l a s we l l a s mathe mat ica l ) o f the man y f laws and inade quac ies in

BOREL's reasoning . We a l so document the inc reas ing rea l i za t ion of the l inkbe tween the theor ies of measu re and of prob abi l i ty in the pe r iod f ro m G . FABER to

F. HAUSDORFF. We indicate the mis leading emphasis given to independence as a

bas ic co nc ep t by BOREL and his equal ly un for tun ate assoc ia t ion of a HEINE-BOREL

lem ma wi th c oun tab le addi t iv i ty . Also or ig ina l is the (poss ib le ) genesi s we propo se

for each of the two examples cho sen by BOREL to exhib i t h i s new th eory ; in each

case we c it e a now neglec ted precurso r o f BOREL, one of them sure ly kno wn to

BOREL, the o the r , p rob ably so. The b r i e f ske tch of ins tances of the "CANTELLI"

lemma before CANTELLI 's publ icat ion is a lso or iginal .

W e descr ibe the interes t ing pole mic b etwe en F. BERNSTEIN an d BOREL

c onc e r n i ng t he C on t i nue d F r a c t i on T he o r e m , w h i c h se rve s as a r a r e i n st a nc e o f aco nt em po ra ry cr i t ic ism of BOREL's reasoning. W e also discuss HAUSDORFF'S pro of

of BOREL'S S t rong Law (which seems to be the f i rs t va l id pr oo f of the th eor em a long

the l ines sketched by BOREL).

I n r e t r o s pe ct , one ma y a s k w hy p r ob l e ms o f " ge o me t r i c " ( o r " c on t i nuo us " )

pro bab i l i ty did n ot give r ise to th e (KOLMOGOROV) view of pro ba bi l i ty as a form of

Page 2: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 2/68

124 J. BARONE & A. NOVIKOFF

measu re , r a the r t han t he s tudy o f r epea t e d i ndepen den t t r i a ls , wh ich was BOREL 'S

a p p r o a c h . T h i s p a p e r s h o w s t h a t q u e s t i o n s o f " g e o m e t r i c " p r o b a b i l i t y w e r e a l w a y s

t h e e s s e n t i a l g u i d e t o t h e e a r l y de v e l o p m e n t o f t h e t h e o r y , d e s p i t e t h e c o n t r a r y

v i ewpo in t exh ib i t ed by BOREL 'S p re f e r r ed i n t e rp re t a t i on o f h i s own r e su l t s .

Table of Contents

0. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

1. Brief Sketch of Major Results of BOREL (1909) . . . . . . . . . . . . . . . . . . . 126

2. "Countable Independence" as a Key Principle . . . . . . . . . . . . . . . . . . . 129

3. Denumerable Probability versus Measure Theory . . . . . . . . . . . . . . . . . . t31

4. The Evidence from BOREL'S Chapter I . . . . . . . . . . . . . . . . . . . . . . . 133

4.1. Denumerab le P robabi li ty Con tr as ted with Con tinuous P robabi li ty . . . . . . . . . 133

4.2. The Calculation of A 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.3. The Calculation of A1, Az, and A k . . . . . . . . . . . . . . . . . . . . . . . 135

4.4. The Calculation of A~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.5. Addi tio nal Evidence of the Pr im ac y o f C ou nt ab le Ind epe nden ce . . . . . . . . . . 139

4.6. S um ma ry o f BOREL'S C onc ept ual S ho rt co mi ng s fr om C ha pt er I . . . . . . . . . . 141

5. BOREL'S Chapter II: The Strong Law of Large Numbers . . . . . . . . . . . . . . . 142

5.1. The Setting of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.2. The Special Case Pn =½ for Dyadic Expansions . . . . . . . . . . . . . . . . . 143

5.3. Normal Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.4. A Possible Clue to the Genesis of BOREL'S Strong Law . . . . . . . . . . . . . . 147

6. BOREL'S Chapter III: Continued Fractions . . . . . . . . . . . . . . . . . . . . . 148

6.1. The Setting of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.2. The Derivati on of the Key Inequali ty; BOREL'S Cont inue d Fracti on The ore m . . . 149

6.3. Defects in Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.4. A Possible Clue to the Genesis of BOREL'S Continu ed Fraction Theor em . . . . .. 153

6.5. The CANTELLI Modification of the BOREL Zero-One Law . . . . . . . . . . . . . 154

7. BOREL'S earlier works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.2. BOREL (1903): F or es ha do wi ng s o f CANTELLI-like Re aso ni ng . . . . . . . . . . . . 157

7.3. BOREL (1905): An Early Identi fication of Geomet ric Probab ility with

Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

8. The BOREL-BERNSTEIN Polemic . . . . . . . . . . . . . . . . . . . . . . . . . . 1648.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8.2. The Criticism: The Contribution of F. BERNSTEIN (1912) . . . . . . . . . . . . . 165

8.3. BOREL'S Response: BOREL (1912) . . . . . . . . . . . . . . . . . . . . . . . 171

8.4. Early Observations of LEBESOUE and LI;vY .. .. .. .. .. .. .. .. .. .. .. .. .. 175

9. Early Re-working of BOREL'S Strong Law . . . . . . . . . . . . . . . . . . . . . 176

9.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

9.2. The Contr ibuti on of G. FABER: His Query on the Relation of Probability to

Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

9.3. RADEMACHER and HAUSDORFF: The Evidence for the Evo lut ion of a Point of

View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

10. HAUSDORFF'S"Grundztige der Mengen lehre': A Notable Advance in Technique .. .. 182

10.1. General Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18210.2. FIAuSDORFF'S Proo f of the St rong Law: The Use of Mome nt s a nd BIENAYMt~-

TCHEBYCHEFF type Inequalities . . . . . . . . . . . . . . . . . . . . . . . . 183

10.3. [~AUSDORFF'S Method for Calculating Moments . . . . . . . . . . . . . . . . 186

10.4. HAUSDORFF'SContinued Fraction Theorem . . . . . . . . . . . . . . . . . . 188

Page 3: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 3/68

Axiomatic Probability 125

O. Intro duction

Th e overa l l purpose of th i s work is to ske tch the h ighpoin t s in the dev e lop me nt

o f t he a x i oma t i c f o r m u l a t i on o f P r oba b i l i ty T he o r y i n t e r ms o f me a s u r e t he o r y . (I ti s no t our in ten t ion to deprec ia te the reby o the r e f for t s to found the theory of

p r oba b i l i t y on a x i oma t i c ba s es t ha t do no t e mp l oy t he c on c e p t o f me a s u r e t he o r y. )

This axio ma t ic for m ula t io n was f i rs t def ini t ively achie ved by A. KOLMOGOROV in

1933 . T he ne e d f o r a n a x i oma t i c f ounda t i on f o r P r oba b i l i t y T he o r y ha d be e n

s t ressed by HILBERT as par t of the s ixth pr ob lem in his cele brate d l i st of 1900: " . . . :

To t rea t . .. b y means of ax ioms , those phys ica l sc iences (sic) i n w h ic h ma t he m a t i c s

p lays an impor tan t pa r t ; in the f i r s t rank a re the theor ies of P robabi l i ty and

M ech an ics" (HILBERT (1900: 81)) . Thu s this w ork can b e con s ide red a sketch of the

hi s tory of pa r t o f one of HILBERT's problems . Her e we t race the h i s to ry f rom the

wo rk of BOREL (1909) thr ou gh the w ork of HAUSDORFF (1914); subse que nt ly

Par t I I wi ll ca r ry the na r ra t ive forw ard to STEINHAUS, FRI~CHET, CANTELLI,

POLYA, MAZURKIEWICZ and others , culm inat in g in the wo rk of KOLMOGOROV.

The l and ma rk paper , in i t i a ting the m od ern theo ry of probabi l i ty , i s E . BOREL's

" L e s P r oba b il i ti 6 s D 6n omb r a b l e s e t L e u r s A pp l ic a t i ons A r i t hm6 t i que s " o f 1909 .

H e r e w e a r e ma i n l y c onc e r ne d w i t h t he c on t e n t s , ba c kg r ound , a nd i mme d i a t e

reac t ions to th is paper . The key f igures imm edia te ly fo l lowing BOREL are

a . FABER, F. BERNSTEIN,and F. HAUSDORFF. Th eir c on tr ib ut io ns wi l l be dis -

cussed in turn. Key predecessors are A.WIMAN (1900, 1901) , E.VANVLECK

(1908) and, in fact , BOREL himself by vi r tue of a br ie f no te of 1905. Bo th WIMAN

and VAN VLECK are subjects of separa te b r ief note s ; the no te o n VAN VLECK has

alr ead y ap pe are d (NOVIKOFF & BARONE (1977)). O f these earl ie r works, o nly

BOREC's paper of 1905 is discussed a t any length here .

An y a deq ua te d i scussion of the conten t s of BOREL'S l and m ark pap er (which we

shal l refer to as BOREL (1909)) i s of necess i ty del icate an d som ew hat deta i led. T he

reason for th i s is the i ron ica l c i rcum s tance tha t BOREL, the un que s t ioned foun der o f

me a s u r e t he o r y , a t t e mp t e d i n 1909 t o f ound a ne w t he o r y o f " de n um e r a b l e

p r o b a b i l i t y " without r e ly i ng on me a s u r e t he o r y . T he i r ony i s f u r t he r c omp oun de d

in the l igh t of BOREL's paper of 1905 which ident i fi ed "con t inu ou s p rob abi l i t y" in

the uni t in te rva l wi th measure theory the re . Consequent ly , we a re a t g rea t pa ins

bot h to es tab li sh and to co mp reh end BOREL'S re luc tance in 1909 to accept the

unde r ly ing ro le of counta b le addi t iv i ty in h i s new theory . The f ir s t pa r t o f th i s paper

is thus a n a t tem pt to e xam ine BOREL's s ta te of mi nd in 1909, taking into ac co un t his

ea r l i e r ins ight s and h i s re luc tance to explo i t them.

BOREL's paper , "Probab i l i t6s D6 nom brab les" , fal ls in to th ree m ajor d iv i s ions :

a "genera l t he ory " (cu lmina t ing in wha t we have ca l l ed the BOREL Ze ro- On e Law) ,

an appl i ca t ion of th i s theo ry to dec imal an d d yadic expan s ions ( the BOREL S t rong

L a w , o r S t r ong L a w o f L a r ge N um be r s ) , a nd a s e c ond a pp l i c a t i on o f t h is t he o r y ,

t h i s t i me t o C on t i nue d F r a c t i ons ( t he B O R E L C on t i nue d F r a c t i on T he o r e m) .

Since BOREL'S pa pe r is as inte restin g for i ts defects as for its results (as Pr ofe sso r

M. KAC once rem arked , " a l l o f i ts theorem s a re t rue bu t a lm os t a l l o f the proofs a re

fa lse") , we summarize i t s shortcomings in Sect ion 4.6.

BOREL'S immediate successors devoted themselves to c lar i fying both BOREL'S

S t r ong L a w a nd h i s C on t i nue d F r a c t i on T he o r e m by t r e a t i ng t he m bo t h w i t h i n

Page 4: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 4/68

12 6 J. BARONE ~f¢ A. NOVIKOFF

LEBESGUE'S the or y o f me asur e on the real l ine . 1 This c lar i f icat ion, howev er , was a t

the expense o f dras t i ca l ly d imini sh ing BOREL'S emph as i s o n the cons t ruc t io n o f a

ne w ge ne ra l t he o ry o f p roba b i l i t y c onc e rn i ng repeated independent trials.

STEINHAUS (1923) finally in co rp or at ed BOREL'S " g e n e r a l t he o ry" i n to me a s u ret he o ry by e xp l o i t i ng an a x i oma t i c c h a r a c t e r i z a t i on o f me a s u re t he o ry due t o

SIERPII~SKI (1918). STEINHAUS' w or k a nd m or e ge ner ally the in crea sing abs trac -

t ion of m eas ure the or y i t se l f ( ini t ia ted by FRt~CHET (1915) an d CARATHI~ODORY

(1914)) were events which helped pave the way to KOLMOGOROV's culminat ing

achievement . These deve lopments wi l l be d i scussed , among o the rs , in Par t

II.

Whi l e w e ha ve r e s t r a i ne d ou r s e l ve s f rom d ra w i ng ge ne ra l h i s t o r i og ra ph i c

conc lus ions , we be l i eve the conten t s of ou r pap er (both he re and in Par t I I ) furn i sh

am m un i t io n for those w ho wish to i l lus t ra te ( i) DIEUDONNI~ 'S " fu s ion " hy pothes i s

of mathematical progress (DIEUDONNI~ (1975:537)), (i i) LAKATOS' thesis on the

gradu a l r igo r iz ing of pa r t i a l ly un der s to od reason ing v ia d i spute (LAKATOS (1963-

64) ) , and ( i i i ) the doc t r ine tha t " spec ia l problems c rea te genera l theor ies" . The

present s tudy of BOREL'S wo rk br ings to l igh t a s tupen dou s ins tance o f tunne l

vis ion. I t a lso shows that a foundat ional ques t ion (such as HILBERT'S) may have

unex pec te dly comp lex responses. Th e so lu t ion w e t race to HILBERT'S proble m did

no t c om e f rom a d i r e c t a t t a c k ; i t e vo l ve d f rom c om pu t a t i ons w h i c h s uc ce s sfu ll y

deal t w i th a ser ies of par t ic ular , wel l -c hose n ques t ions , f i rs t ra ised by BOREL.

1. Brief Sketch of Major Results of Borel (1909)

BOREL cons id e red an inf in it e sequence of tr i al s , each hav ing only tw o

poss ib le outcomes a rb i t ra r i ly ca l l ed ' " success" and " fa i lure" . The probabi l i t i e s of

"succ ess" and " fa i lu re" on the n h t r i a l a re Pn and qn, respec tive ly , where

0_-<pn, qn<l,

p , + G = l , n = 1 ,2 , 3 , .. . .

Th e tr i a ls a re as sumed indep enden t . In con tem po ra r y t e rms such t ri a ls a re ca l led

"Binomia l " or "PoISSON" t r i a l s . In wha t represent s a dec i s ive new s tep , BOREL

asked for the p rob abi l i ty A k tha t exac t ly k successes occu r in such an inf in i t e

sequen ce (k = 0 , 1, 2 , . .. ) and , mo s t im por ta n t , the p roba bi l i ty A , of the occ ur ren ce

of inf in i t ely m an y successes.

There i s no nota t ion for the se t s (or "event s" ) under cons ide ra t ion in BOREL

(1909). In consequ ence , the re a re a l so no u nions , com plemen ts , in te rsec tions , etc.,

ind ica ted or re fe r red to as such .

1 T h i s s t a t e m e n t m u s t be qua l i f i e d by e m p ha s i z in g f ir s t t ha t N . WIE NE R a nd P . L ~ vY w or ke d a t a

different level, not follow ing BOREL'S lead directly, an d sec ond POLYA, CANTELLI an d MAZURKIEWlCZ

c ons ide r e d r a the r ge ne r a l " r a nd om va r i a b l e s " o r t r i a l s " a s i n B OR EL 'S "ge ne r a l t he o r y" , w i tho u t

a ppe a l ing t o m e a su r e t he o r y .

Page 5: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 5/68

Axiomatic Probability 127

Let us in t roduce the nota t ion , the re fore , tha t

E k= se t o f a l l sequen ces wi th exact ly k successes,

k = 0 , 1 ,2 . . . . .

E~ = se t of al l s equences wi th inf in i te ly many successes .

BOREL then sought express ions for

Ak = P(Ek) , k = O, 1, 2 ,. . . ,

A~ =P(E~)

in t e rms of the g iven num er ica l s equence {p,} , n= 1 ,2 , . . . . BOREL pers i s t en t lyoo

t rea ted separa te ly the cases in which ~Pn converged or d ive rged•1

Th e f i rs t resul t, c onc ern ing th e case k = 0, asser ted tha t

A o = (1 - p~ ) (1 -P 2 ) . . . (1 - p , , ) . .. .

Here the r ight -hand s ide represent s a convergent non-vani sh ing inf in i t e produc t

(f ~ p n c onve rge s a nd i s t o be i n t e rp r e t e d a s z e ro if ~ p , d i verge s a nd he nc e1 1

1

A I = ~ A o Pi _ Ao ul1 1 - P i 1

PiU i

1 - p i

The se ri es on the r ight i s convergen t i f ~P n converges , whi le i t is to be

1o

inte rpr eted as zero i f ~ Pn diverges .1

More general ly, for any f ini te k, BOREL asser ted that

A k = ~ A o u i u i 2. ., ui~, t h e s u m m a t i o n o v e r l < i l < i 2 < . . . < i k < o o .

He re the r igh t-ha nd s ide is to be inte rpr eted as zero i f ~ Pn diverges , bu t BOREL

asse r ted tha t in the conv ergen t case 1

Final ly, le t t ing

0 < A k < l , k = 0 , 1 ,2 ,3 . . .. .

S = A o T A 1 + . . . + A k + . . . ,

Page 6: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 6/68

128 J. BARONE& A. NOVIKOFF

a3 o:3

BOREL sh ow ed tha t i f ~ p , co nve rge s , the n S = 1, whi le i f ~ p , diverges , S = 0. S ince1 1

A~o = 1 - S , t h e r e m a r k a b l e r e s u l t ( " B O R EL ' s Z e r o - O n e L a w " )

/°lf ~ p n c o n v e rg e s

A o 3 ~ 1oo

if ~ pn dive rges .1

is o b t a in e d . T h e r e st o f t h e p a p e r c o n t a i n s , a s i ts i m p o r t a n t r e su l ts , t w o a p p l i c a t i o n s

o f t h is c u r i o u s b e h a v i o r o f A ~ .

T h e f i rs t a p p l i c a t i o n c o n c e r n s t h e d y a d i c e x p a n s i o n o f a r e a l n u m b e r x c h o s e n

" a t r a n d o m " i n [ 0 , 1 ] :

x = . b l b 2 . . . b , . . . - ~ - b n1 2n

w h e r e b , = b,(x) i s e i t he r 0 o r 1 . I t is a s s um ed tha t t he se quen ce {b ,} is genera t ed , o r

t h e n u m b e r x is " c h o s e n " , s o t h a t e a c h b i n a r y d i g i t b , (x) h a s p r o b a b i l i t y ½ o f b e i n g 0

o r 1, a n d a l s o s o t h a t t h e v a r i o u s d i g it s n = 1, 2 , 3 . . . . a r e e x a m p l e s o f i n d e p e n d e n t

t r ia l s . BOREL cho ose s a f i xed sequen ce 2 , go ing t o i n f in i t y wi th n bu t t h a t

£ = 0i m ] / n "

L e t v, (x) d e n o t e t h e n u m b e r o f o n e s a m o n g t h e f ir st n b i n a r y d i g it s b~(x),b z (x ) , . . . , b n (x ) . F o r e a c h d y a d i c e x p a n s i o n B O R EL c o n s i d e r e d t h e a s s o c i a t e d

sequ ence o f " t r i a l s " t he n th t r ia l o f wh ich i s de f ined as success i f an d on ly i f

Ivz,(X)-nl~£~, n=1,2,3,....

L e t Pn b e t h e p r o b a b i l i t y o f t hi s o c c u r r e n c e a n d q , = 1 - p , t h e c o m p l e m e n t a r y

p r o b a b i l i t y . ( W e h a v e r e v e r s e d B O R E L 's n o t a t i o n f o r p , a n d q n t o c o n f o r m w i t h o u r

n o t a t i o n f o r Eoo.) B y a n a p p l i c a t i o n o f t h e C e n t r a l L i m i t T h e o r e m , B O RE L a t t e m p t sco

t o e s t ab l i s h t h a t ~ p , c o n v e r g e s , a n d h e n c e b y a n a p p l i c a t i o n o f h i s m a i n e a r l ie r1

r es u lt , t h a t Aoo = P ( E ~ ) = 0 . H e c o n c l u d e d t h e n t h a t t h e e ve n t,

h a s p r o b a b i l i t y 1 , i.e.,

lim Vzn(X) _ 1

,~oo 2n 2'

1 The formulas for A0, A 1,..., Ak, ... are extensions o f formulas for finite numbers of trials to thecase of denumerably many. The case of A~ is utterly new, since E~ is empty for a finite number of trialsand in that case its probability is of no interest.

Page 7: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 7/68

Axiomatic Probability 129

This resu l t is ca lled var ious ly BOREL's Law of Large Num bers , the S t rong L aw of

Large Num bers , or BOREL's Law of No rm al Num bers . BOREL'S a rgu me nt wi ll be

anal yzed in § 5.

The second appl ica t ion cons iders the expan s ion in cont in ued f rac t ions of a" r a n do m l y" c hose n i r r a t iona l num be r c hose n f r om [ 0, 1 ]:

x = l

a l + l

a 2 + 1

a 3 + 1

+ 1

a . +i

° , .

Here each a , = a,(x) is a pos itive integ er, n = 1, 2, 3 .. ..

BOREL cons tructe d a sequence of tr ia ls , and associa ted "s ucce ss" an d

"fai lu re" , by ch oosin g a f ixed sequence ~b(n) and def ining for each ir ra t ion al x the n h

" t r ia l" as be ing a "success" or " fa i lure " (wi th cor responding probabi l i tie s p , , q , )

according as a ,>qb(n) or a , <¢(n) . Thus BOREL has assoc ia ted wi th each inf in ite

cont in ued f rac t ion an ins tance of an inf in i te sequence of tr ials , each t r ia l having

only two outcomes; he then seeks to apply h is Zero-One Law ment ioned above

to this collect ion of sequences of t r ia ls .By adro it m ani pu lat io ns of con tinu ed fract ions (see below), BOREL established

the inequali t ies

2 1 33 ( k + l ~ < P(a .(x)> k) < k +~"

cO

Repla cing k by q~(n) in this ineq uali ty sh ows tha t ~ p. converges if and only if

~ ~ j - does . 1Ag ain ap pealing to his earl ier result concerning A ~, BOREL asser ted1

tha t

1if ~ ( n ) converges, then with pro bab il i ty 1, a , wil l ul t im ately sa t isfy a , < qS(n)

whi le

1if ,~O~n) diverges, the n with prob abil i t y 1, a , wil l inf ini te ly of ten vio la te

tha t inequa l i ty .

This result w il l be cal led hencefo r th BOREL'S Continued Fraction Theorem.

2. "Countable Independence" as a Key Principle

As is evident f rom this br ief sketch, the proper ty of independence of tr ia ls

under l ies the formulas for Ao, A1, . . . ,A k, . . . and A~, and hence a lso the two

Page 8: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 8/68

130 J. BARONE & A. NOVIKOFF

a pp l i c a t i ons . We p r opos e t o u s e t he ph r a s e "countable independence" for the

pr inc ip le tha t BOREL expl ic i t ly in t rod uce d a nd on which a l l o f h i s resu l t s a re based .

Thi s i s the as se r t ion , usua l ly t ak en as a hypothes i s , tha t a g iven co l l ec t ion of events ,

B1, B2 . . . . . Bn, . . . sa t is fy

P ( ~ B i ) = O P (B I). (2.1)

W hen the co l l ec t ion of event s is fin it e , the cor re spon ding pr inc ip le was know n as

the " lo i des probabi l i t6s com pos6es" , a l th oug h the no ta t io n for s e t in te rsec t ion was

not genera l ly emp loyed . BOREL assumed the pr inc ip le i f the event s B~ re fe r red to

d i f fe ren t t r ia l s for d i f fe ren t i and , m os t im por ta n t , a s sumed i t to h o ld even i f the

range of the index were inf in i te . A par t i cu la r ins tance o f spec ial impo r tance , which

we might ca ll the limited pr inc ip le o f countab le ind ependen ce , i s tha t (2 .1) ho lds i feach P(BI)= 1.T he r e a de r c a n s e e a n a na l ogy ( w h ic h w e be l ie ve mus t ha ve a c t e d pow e r f u l ly on

BOREL) wi th the b eh av ior o f length app l ied to d is joint intervals , B~, on the real l ine 1

1

This ex tens ion to the inf in i t e range and espec ia lly the in te rp re ta t io n o f the l e f t -handoo

s ide as a sor t o f genera l i zed l ength i f @ B i was no t i t se l f an in te rva l (or even

1express ible as a f ini te un ion of intervals ) l ies a t the hea rt of BOREL'S ear l ier ,

p r o f o und l y i mpo r t a n t d i s c ove r y o f t he t he o r y o f me a s u r e . I n pa r ti c u l ar , t he t he o r y

of measure , by focuss ing on th i s pr inc ip le ( "cou ntab le addi t iv i ty" ) i s l ed to e x tend

the c lass J o f in te rva l s to a mu ch wider and mo re s ign i f ican t cl as s N , wi th the key

pr op er ty tha t i f each of the Bi i s a se t of this w ider c lass N, and the B~ are d is joint ,oo

@ Bi is necessar i ly wi thin the c lass N.1

BOREL in 1909 may have fe lt h imse l f em bark ing on a s imi la r explora t ion , us ing

indep end ence o f t r ia l s a s the co unt e rp ar t to d i s jo in tness of in te rva l s and wi th

num e r i c a l p r o duc t s r e p l a c ing num e r i c a l s ums . I nde e d , t he ve r y na me B OR EL gavehi s theory , denumerable probab i l i ty , re fe rs prec i se ly to the ran ge of the index i in the

" lo i des probabi l i t~s com pos6es" . I t mos t ce r t a in ly does not r e fe r t o t he num be r o f

poss ib le d i s t ingui shable ou tcomes (i.e. sequen ces of t r ia ls ) as BOREL him self wel l

knew. (Fo r examp le , BOREL explo i t s the dy adic exp ans ion of num bers in the uni t

in te rva l a s an exam ple of h i s theory . The co l l ec t ion of such expan s ions has the

c a r d i na l num be r o f t he c on t i nuum. ) S om e how B OR EL f el t t ha t " de num e r a b l e

prob abi l i ty" , h is new theory , was poi sed be tween c las sica l " f in i t e pro bab i l i ty" an d

" ge o me t r i c p r oba b i l i t y " . G e om e t r i c p r oba b i l i ty , he w e ll kne w (cf BOREL (1905)),

ma y be ge ne r a li z e d to m a ke u s e o f h is ow n t he o r y o f me a s u r e a nd e ve n to m a ke u s e

o f L E B E S G U E ' S ne w i n t e g r a t i on t he o r y ( na me l y f o r t he c om pu t a t i o n o f me a nva lues ). In add i t ion to a " lo i des probab i l i t6s com pos6es" , c l as sica l p rob abi l i ty a l so

1 W h e n a u n i o n of disjoint se t s i s t a k e n , t h e sy m b o l @ A k wil l be used in s tead of U Ak t o e m p h a s i z e

th a t t h e A k are (pair-wise) disjoint .

Page 9: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 9/68

Axiomatic Probability 131

has a " lo i des probabi l i t6s to ta les " :

N

the e vents B~ being assum ed dis joint (i.e. mut ua l l y i nc ompa t i b l e ) . I n s ome ke y

ins tances BOREL exte nd ed this a lso to th e inf ini te range,

co

P @ Bi) = ~ P(Bi) (countable addi t ivi ty) ,

but , as we shal l argue, a l l the internal evidence is that BOREL regarded countableindependenceas the essent ia l , new (and proba bi l is t ic) ingre dient o f his new theory .

By cont ras t he used countableadditivityse ldom (of ten sur rep t it ious ly) , and he never

explored i t s impl ica t ions ; about i t he had rese rva t ions so deep tha t he f requent ly

of fe red "a l t e rna t ive" proofs to evade re l i ance on i t .

This assessment , w hich we shal l defend by sui table analys is , explains a t leas t in

pa rt wh y BOREL fai led to dra w the co nclus ion , a t t r ib ute d to CANTELLI (1917a,

1917b), thatco

A c o = 0 i f ~ p , c o n v er g es1

even i f the t r ia ls are not a s s ume d i nde pe nde n t .

BOREL's fasc ina t ion wi th the pr inc ip le of counta b le indepe nden ce s imi lar ly

may expla in h i s fa i lu re to use anywhere n BOREL (1909) an arg um en t that

co

P(~Bi)<~P(Bi) (countab le sub-addi t iv i ty)

which fo l lows f rom coun tab le addi t iv i ty even i f the B~ a re not mut ua l l y i nc om-

pa t ib le . Wh ene ver an event is shown to hav e pro babi l i ty 0 , i t is no t b y pro of tha t i t

ha s " s ma l l c ove r s ", bu t r a t he r by p r oo f t ha t i t s c om pl e m e n t ha s p r ob a b i l i t y 1 . T h i s

l a t te r r e f o r m u l a t i on be c om e s a n a s s e rt i on a bo u t t he p r oba b i l i t y o f a n i n t e r se c t i on

and rest s on the pre fe r red pr inc ip le of coun tab le indep endence , o f t en in the

" l i m i t e d" f o r m.W e shal l sho w below (§ 7.2) tha t BOREL kn ew the CANTELLI pa rt of the BOREL-

CANTELLI lem ma s as ear ly as 1903, but in the co nte xt of a geom etr ic , not an

abs t rac t , space . M ore exac t ly , BOREL assoc ia ted th i s type of reasoning wi th the

HEINE-BOREL Cove r ing T he ore m as a pre l iminary . Thi s fur the r suppor t s ou r the -

s is tha t BOREL did n ot s ee the fu ll ana logy of prob abi l i ty w i th measu re except when

t h e p r o b l e m p e r m i t t e d a geometric interpretation.In our op in ion , the ana logy was

imper fec t ly seen even the n (cf the discuss ion of his exch ang e wi th F. BERNSTEIN,

§ 8).

3. Denumerable Probability versus Measure Theory

Befo re we exa min e BOREL's text in some deta i l , i t i s ins t ruct iv e to su m ma rize a

few more recent ly acqui red ins ight s . In contempora ry t e rms , each " t r i a l " cons id-

Page 10: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 10/68

132 J. BARONE& A. NOVIKOFF

ered by BOREL is a 2-p oin t m easure space .Th e inf in it e sequences of ou tcom es a re jus t

poin t s of the (den ume rable ) CARTESIAN pro du c t of such 2-p oin t spaces. To each

sequence o f ou tc om es can b e as soc ia ted a sequence o f 0 's and l ' s, where fa i lu re

co rre spo nd s to 0, say, and success to 1. This pro vide s a m ap pin g fr om /~ {0, 1}~,

whic h is the CARTESIAN pr od uc t o f 2-p oint spaces , to the uni t interv al . This

ma p p i ng is 1 - 1 e xc e p t t ha t e a c h dya d i c r a t i ona l nu mb e r ma y ha ve t w o d i s t i nct

pre - images , one t e rmina t ing in 0 ' s , the o the r in l ' s . Fur the r , the as sumed

independence be tween d ig i t s un ique ly de te rmines the probabi l i ty , o r a s we would

say equiva len t ly now, measure , o f each dya dic in te rva l [Pn , P -~- I ] ; t h i s measur e ~

can be shown to sa t i s fy

m ( ~ B i )= ~ m(Bi)1

co

i f each B i is a d yad ic interv al , a nd @ B i i s again a dya dic in terval . F inal l y i t fol lows1

fro m al l this (by ins ights gaine d af te r 1909) that th e sequ ence {Pn} dete rm ines a a-

addi t ive measu re on the a -a lg ebra o f "BOREL se t s " N of [0 , 1 ]. I f p = l , n

= 1, 2 , 3 , . . . , t hen the m easure i s the ve ry one in t ro duc ed ea r l i e r by BOREL himsel f.

I f the {p,} a re no t iden t i ca l ly ½, the co r resp ond ing measu re i s a va r i an t o f the ab ove

(of the typ e la ter envis ioned by RADON (1913)) , a sor t of STIELTJES me asu re

assoc ia ted wi th a su i t ab le d i s t r ibu t ion func t ion F(x) bu t s t i ll def ined a t leas t on theBOREL se ts of [0, 1 ] . Thu s BOREL'S new th eor y o f" de nu m er ab le pro bab i l i ty" is, i f

each p , =½, es sent ia l ly a d i sgui sed ve rs ion of h i s own ea r l i e r theory of mea sure in

the uni t in te rva l , the proba bi l i s t i c im pac t of which h e rea l i zed a t l east pa r t i a l ly

w h e n t h e p r o b l e m w as o n e o f " g e o m e t r i c p r o b a b i l i t y " (cf § 7.3). There is no

evidence in favor of the sup pos i t ion tha t BOREL un der s too d th a t the case of genera l

{p ,} a l so gave r i s e to a "genera l i zed" BOREL measure (i.e., a d i f fe ren t countab ly

addi t ive m easure on the same cou ntab ly add i t ive f ie ld of sets). Th ere i s ev idence

t ha t i n t he c a s e p , =½ , n=1 , 2 , 3 , . . . , h e d i d s e ns e t he c onne c t i on be t w e e n

" p r oba b i l i t 6 s d dnom br a b l e s " a nd h is ow n t he o r y o f me a su r e . I n t hi s c a se he s pea ks

of the "p oin t de vue g6om 6t r ique" , re fe r r ing to the in te rva l [0 , 1 ] wi th i t s a s soc ia tedBOREL measure , and the "p oin t de vu e log ique" , re fe r r ing to the inf in i t e s equences

of t r ia ls , which w e deno te X {0, 1}i. BOREL asser ts that on e can em plo y e ither . (Cfi=1

§ 5.1 for the exact c i ta t ion. ) He m ake s this co m m en t o nly in discuss ing the specif ic

c a se p , =½ , n = l , 2 , 3 , . . . . O t he r i n t e r na l e v i de nc e t o s up por t a ll o f t he a bov e

asse r t ions concern ing wha t BOREL rea l i zed or rea l i zed imper fec t ly , wi l l be

di scussed be low.

Th e c ruc ia l ev idence aga ins t a s se r ting tha t BOREL rea l i zed tha t " de nu m era ble

p r o b a b i l i t y " was mea sure t heo ry in [0 , 1 ] is h is repea ted evas ion of counta b le

addi t iv i ty and cou ntab le sub -addi t iv i ty in a lm os t a l l o f h i s reasoning . Thi s ev idence

seems to us decis ive . A lesser evide nce of the same sort i s his seeing som ethi ng n ew

in the fac t tha t s e t s o f pro bab i l i ty ze ro ne ed no t be em pty . An d of course the re i s h i s

own as se r t ion ( in the face of h i s own con t ra ry as se r t ion for the case p ,=½, n

Page 11: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 11/68

Axiom atic Probability 133

= 1 , 2 , 3 . . . ) tha t "d en um era b le p ro ba bi l i ty" i s in genera l a theo ry intermediate to

f in i te o r c o m b i n a t o r i c p r o b a b i l i t y , a n d g e o m e t r i c o r c o n t i n u o u s p r o b a b i l i t y . 1

We turn no w to BOREL'S Cha pte r I (pp . 247-257) to jus t i f y the abo ve

i m p u t a t i o n s .

4. The Evidence From Borel's Chapter I

4.1. Denumerable Probability Contrasted with Continuous Probability

" On e g e n e r a l l y d i s t i n g u i s h e s , i n p r o b a b i l i t y p r o b l e m s , t wo p r i n c i p a l

ca tegor ies , accord in g to w he the r the n um be r o f poss ib le cases i s f ini t e o r

in f in i te : the f i rs t ca teg ory co ns t i tu tes wh a t o ne ca l l s discontinuous p robabilities,

o r p r o b a b i l i t i e s i n a d i s c o n t i n u o u s d o m a i n , wh i l e t h e s e c o n d c a t e g o r y

c o m p r i s e s continuous probabilities o r geometric probabilities. Such a classif i-

c a t i o n a p p e a r s i n c o m p l e t e wh e n o n e r e f er s b a c k t o t h e r e su l ts a c q u i r e d i n th e

theo ry of s e t s ; be tw een the ca rd in a l i ty o f f in i te s et s and the ca rd ina l i ty o f the

c o n t i n u u m s t a n d s th e c a r d i n a l it y o f d e n u m e r a b l e s e ts ; I p r o p o s e t o s h o w b r ie f ly

t h e i n t e re s t wh i c h i s a t t a c h e d t o q u e s t i o n s o f p r o b a b i l i t y i n wh o s e s t a t e m e n t

such se ts intervene; I wil l ca l l them, for shor t , denumerable probabilities.

Before de f in ing more prec i se ly denumerab le p robabi l i ty , I wish to ind ica te

in a f ew word s the r easons aga ins t f u r the r f a il ing to s tudy i t. P r inc ipa l am on g

t h e se r e a s o n s i s th e i m p o r t a n c e o f t h e n o t i o n o f d e n u m e r a b l e s e ts ; th i s

i m p o r t a n c e wa s n o t c o n t e s t e d b y a n y m a t h e m a t i c i a n ; b u t i t s e e m s t o m e t o b e

grea te r s t i l l than one be l ieves .

M an y an a lys t s , indeed , pu t in the fi r st r an k the idea of the con t inu um ; i t i s

th i s concept which in te rvenes more or l e s s exp l ic i t ly in the i r r easoning . I have

i n d i c a t e d r e c e n t l y h o w t h is n o t i o n o f t h e c o n t i n u u m , c o n s i d e r e d a s h a v i n g a

c a r d i n a l i t y g r e a t e r t h a n t h a t o f t h e d e n u m e r a b l e , s e e m s t o m e t o b e a p u r e ly

n e g a t i v e n o t io n . T h e c a r d i n a l i t y o f d e n u m e r a b l e s et s a l o n e b e i n g wh a t we m a y

k n o w i n a p o s i t i v e m a n n e r , t h e l a t t e r a l o n e i n t e r v e n e s effectively in our

r easonings . I t is de a r , indeed , tha t the se t o f ana ly t ic e leme nts tha t can be

a c t u a l l y d e f i ne d a n d c o n s i d e r e d c a n b e o n l y a d e n u m e r a b l e s e t; I b e l ie v e t h a t

t h is p o i n t o f v i e w wi ll p r e v a i l m o r e a n d m o r e e v e r y d a y a m o n g m a t h e m a t i c i a n s

a n d t h a t t h e c o n t i n u u m wi ll p r o v e to h a v e b e e n a t r a n s i t o r y i n s t r u m e n t , wh o s e

prese n t -da y u t i l i ty i s no t neg l ig ib le (we wil l supp ly ex amp les a t once) , bu t i t wi l l

c o m e t o b e r e g a r d e d o n l y a s a m e a n s o f s t u d y i n g d e n u m e r a b l e s et s, wh ic h

cons t i tu te the so le r ea l i ty tha t we a r e cap able o f a t t a in ing . " BOREL (1909: 147-

248).

The se ope ning word s ind ica te tha t BOREL be l ieves tha t the se t o f poss ib le

outcomes which he wi l l d i scuss and which in modern te rms i s h i s s ample space , i s

d e n u m e r a b l e . No t h i n g c o u l d b e m o r e m i s l e a d i n g : t h e s a m p l e s p a c e s h e d i s c u s s e s

a r e a l wa y s d e n u m e r a b l y i n fi n it e p r o d u c t s o f f in it e, o r a t m o s t d e n u m e r a b l y i nf in i te ,

f ac tor spaces. I ndeed , ev en the s imples t o f these, the den um erab leCARTESIAN

1 Ind eed the class of denumerable sam ple spaces is intermediate between finite and non -

denumerable ones. But the space /~ {0, 1}i under conside ration in 1909 is not among them, being ratheri = 1

a different way of viewing the un it interval [0, 1].

Page 12: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 12/68

134 J. BARONE& A. NOVIKOFF

p r o d u c t o f 2 - p o i n t s p a ce s , is n o n - d e n u m e r a b l e , a s h a d b e e n s h o w n e a r l i er b y

G. C ANT OR . T h e r e p r e s e n t a t i o n o f t h e u n i t i n t e r v a l a s a p r o d u c t o f 2 - p o i n t s p a c e s is

a b r i l l i an t idea , bu t i t cann ot a l t e r i ts fami l ia r , and to BOP,EL r epug nant , ca rd ina l

n u m b e r c . T h e e v i d e n c e f o r t h e r e p u g n a n c e , a n d t h e m i s c o n c e p t i o n a s t o t h ec a r d i n a l n u m b e r o f t h e s a m p l e s p a c e s c o n s i d e r e d r e - e c h o e s i n th e c l o s i n g li n es o f

t h e p a p e r :

" A t s u c h t i m e a s t h e t h e o r y o f d e n u m e r a b l e p r o b a b i l i t i e s is d e v e l o p e d i n t h e

m a n n e r j u s t i n d i c a t e d , i t w il l b e i n t e r e st i n g t o c o m p a r e t h e r e s ul t s s o a c q u i r e d

wi t h t h o s e o b t a i n e d i n t h e t h e o r y o f c o n t i n u o u s o r g e o m e t r i c p r o b a b i l i t y .

I n t h e g e o m e t r i c c o n t i n u u m t h e r e exist cer ta inly ( if i t i s no t a misu se to

e m p l o y t h e v e r b to exist) s o m e e l e m e n t s wh i c h c a n n o t b e d e f i n e d : s u c h i s t h e

r e al s en s e o f t h e i m p o r t a n t a n d c e l e b r at e d p r o p o s i t i o n o f M r . G e o r g C a n t o r : t h e

c o n t i n u u m is n o t d e n u m e r a b l e . S h o u l d a d a y c o m e w h e n t h e s e undefinablee leme nts cou ld be pu t a s ide as no longe r neede d m ore or le s s impl ic i t ly , it wo uld

c e r t a i n ly b r i n g g r e a t s i m p l i f i c a t i o n in t h e m e t h o d s o f An a l y s i s ; I s h o u l d b e

h a p p y i f t h e p r e c e d i n g p a g e s c o u l d h e l p a r o u s e t h e i n t e r e st wh i c h t h e s t u d y o f

such ques t ions deserves ." ( I ta l ics in the or iginal . ) BOP,EL (1909: 271).

On e o f the b es t wa ys to fa i l to see a re la t io n (e.g . tha t X {0, 1}~ an d [0, 1] arei=~

equiva len t a s ca rd ina l s e t s and even as measure spaces ) i s to yea rn tha t no such

r e l a t i o n h o l d. B ORE L s u r e ly d i d n o t w i s h h i s o wn " d e n u m e r a b l e p r o b a b i l i t i e s " t o

jo in the con t inuum as a fu ture fos s i l , a mere t r ans i to ry dev ice .

4.2. The Calculation o f A o

BOREL turned f i r s t to e s tab l i sh ing the fo rmula fo r Ao

A 0 = (1 - p~)(1 - P2) -.. (1 - p, ) .. .. (4.1)

co

BOREL exc ludes in advan ce a ny p , = 1 so he can conc lude , i f~ . p , is conve rgent , tha t1

0 < A 0 < 1. ° ' I n the case of convergen ce , the ex tens ion of the p r inc ip le o f com po s i teprob abi l i t i e s goes wi tho ut s a y ing . . . " (BOREL (1909: 249). Fur t he r s ince the l imi t o f

the pa r t i a l p rod uc ts i s pos i t ive , they ap pr oa ch the i r l imi t wi th smal l r e la t ive e r ror a s

wel l a s abso l u te e r ror . I n conc lus ion , " . . . ; the pass age to the l imi t tha t w e have

pe r for me d thus does no t r a i se any d i f fi cu lt i es an d i s en t i r e ly jus t i fi ed . " BOREL

(1909: 249).

In f ac t , wha t BOREL i s sk imming over i s the l imi t r e la t ion

2 i m P ( @ B i ) = P ( @ B i ) . (4.2)

An a s s u m e d i n d e p e n d e n c e a s s u re s a d d i t i o n a l l y t h a t i f e a c h B i h a s p r o b a b i l i t y

qi, t h e nn

P(~11Bi)=I~ P(B~)=~[(1-p~)'I

Page 13: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 13/68

Axiom atic Probab ility 135

T h e l i m i t r e l a t i o n (4 .2 ), h o w e v e r , h a s n o t h i n g t o d o w i t h i n d e p e n d e n c e ; i t is o n e o f

t h e m a n y c o n s e q u e n c e s , a n d e v e n e q u i v a l e n t fo r m s , o f c o u n t a b l e a d d i ti v i ty . T h e

l i m i t r e l a t i o n (4 .2 ) is, f o r B O R E L, b o t h t o o d e s i r a b l e t o b e f a l s e a n d t o o e v i d e n t t o

r e q u i r e d i s cu s s io n o r e l a b o r a t i o n . I n d e e d , s in c e h e n o w h e r e e m p l o y s a n o t a t i o n f o rt h e a l g e b r a o f s e ts o r e v e n f o r s e ts t h e m s e l v e s o r f o r s e t f u n c t i o n s , it w o u l d n o t h a v e

b e e n e a s y f o r h i m t o s t a t e e x p l i c i t l y . H a d h e e m p l o y e d t h e s y m b o l i s m P ( @ B i ) ,

p e r h a p s h e m i g h t h a v e b e e n d r i v e n t o q u e s t i o n t h e d o m a i n o f t h e s e t f u n c t i o n P ( - )

j u s t a s h e h a d e a r li e r q u e s t i o n e d a n d e x t e n d e d t h e d o m a i n o f " l e n g t h " f o r p o i n t- s e t s

in [0, 1] .

T h e d i v e r g e n t c a s e h er e , a n d l a te r , c al ls f o r sp e c i al " p r e c a u t i o n s " . F o r

" p r o b a b i l i t 6 d i s c o n t i n u e " ( i . e . , f i n i t e s a m p l e s p a c e s ) p r o b a b i l i t y z e r o m e a n s

i m p o s s i b i l i ty . F o r " p r o b a b i l i t 6 c o n t i n u e " t h i s is n o t a b l y f a ls e , a n d B O R E L r e f e rs t h e

r e a d e r t o h i s o w n p a p e r o f 1 90 5. I n t h i s p a p e r ( c f § 7 .3 ) he ha d def ined t h e g e o m e t r i c

p r o b a b i l i t y o f B O R E L s e ts o n [ 0 , 1 ] a s b e i n g t h e i r m e a s u r e . T h i s e x t e n d s it s fa m i l i a r

d e f i n i t io n . I n t h is w a y h e p r o v e s , f o r i n s t a n c e , t h a t t h e p r o b a b i l i t y f o r a n u m b e r

p i c k e d a t r a n d o m t o b e i r ra t i o n a l is z e r o , e v e n t h o u g h t h is o u t c o m e is n o t

i m p o s s i b l e . H e n o w s a y s i t i s t h e s a m e i n " p r o b a b i l i t 6 d d n o m b r a b l e " : i n t h e

d i v e r g e n t c a s e t h e f o r m u l a ( 4 . 1 ) f o r A 0 g i v e s t h e v a l u e z e r o , s i n c e t h e r e l a t i o n

n

l i m 1 ~ ( 1 - p i ) = A on ~ o 3 1

is e v i d e n t l y a c c e p t e d , d e s p i t e t h e f a c t t h a t t h e s e q u e n c e o f u n b r o k e n s u c c e s se s

h a p p e n s t o e x is t. N o n - e m p t y s ets m a y h a v e z e r o - " p r o b a b i li t6 d 6 n o m b r a b l e " j u s t a s

n o n - e m p t y s e t s ( f o r e x a m p l e , t h e r a t i o n a l s ) m a y h a v e m e a s u r e z e r o ; h e d o e s n o t

c l a i m t h a t t h e y a re s e ts o f m e a s u r e z e r o s i n c e h e i n t r o d u c e s n o m e a s u r e .

4.3 . The Calculation o f A1 , A2, and A k

T h e d e r i v a t io n o f t h e f o r m u l a f o r A 1 i n v o lv e s a m o r e o v e r t u s e o f c o u n t a b l e

a d d i t i v i t y , b u t , l i k e t h e h i d d e n u s e i n t h e l i m i t r e l a t i o n ( 4 . 2 ) , t h i s a p p l i c a t i o n

p a s s e s w i t h o u t c o m m e n t . I f t h e l o n e s u c c e s s i n a s e q u e n c e o f t r ia l s i s a t t h e n h

t r ia l , t h e n t h e p r o b a b i l i t y o f t h i s s e q u e n c e i sG

A o = p , F I (1 - p i ) ,co~ 1 - P n i = 1

i ~ - n

i n t e r p r e t e d a s z e r o i n t h e d i v e r g e n t c a s e. I t fo l lo w s , b y t a c i t u s e o f c o u n t a b l e

a d d i t i v i t y , t h a t A a i s th e s u m o f th e s e c o,. I n t r o d u c i n g t h e n o t a t i o n

P ,U n - -

1 - p , 'w e h a v e

A1 = ~ (Ao u,) (4.3)1

which BOREL wr i t e s a s c~

A o ~ u, . (4.4)1

Page 14: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 14/68

136 J. BARONE~: A. NOVIKOFF

This raises the q uest ion: in the dive rge nt case, is A ~ a sum of zeros as in (4.3) , and

hen ce zero , or i s it a pro duct of (0) (Go) as in (4 .4), and h ence indeterm inate? ~ in fact

BOREL does no t f ind the former reason ing , a rout ine ex amp le o f countab le

addi t iv i ty , compe l l ing :

. . . On the other hand, one can say that the des ired probabi l i ty Aa i s the sum of

separate p robabi l i t ies co, each of whi ch i s zero; how ever , s ince they are not f in ite

in number , one cannot conc lude wi thout spec ia l care tha t the to ta l probabi l i t y

i s zero , in v i ew o f the fact tha t zero probabi l i t y does no t denote imposs ib i l i t y .

BOREL (1909" 250).

This i s an interest ing lapse: there i s no reason why a sum o f zeros can fa i l t o be zero ,

unless i t be that

1

i.e. coun table addit iv i ty i s expl ic i t ly false," BOREL'S subsequent argument i s to

coun ter just that poss ibi l i ty . This i s ev ide nce that cou ntab le ad dit iv i ty was no t a

presup posed t ra it o f probabi l it y . The rea l i za t ion tha t a probabi l i t y o f zero need no t

mea n imposs ib i l i t y shou ld not l e ssen one ' s conf idence in countab le add i t iv i ty so far

as we can see .

BOREL, in any case , at tempts an a l ternat ive argument to show that in the

diverge nt case A 1 = 0 . Let o-, be the pr obab i l i ty that there i s exact ly one success in

the f irst n trials . Then BOREL asserts that

a . = (1 - P l ) - . . ( 1 - p n ) ( U l q - " " q - U n ) < e - ( m + ... + p n ) ( u I q _ . . . _}_Un

and hence tha t l im a , = 0 .

n~oo

The conc lus ion , thou gh t rue , does n o t fo l l ow f rom the g iven upper e s t imate . 2

He conc ludes " In t he d ive rgen t case."

co co

1 S i n c e y ~ u , = o o i f ~ G = o o .

1 1

2 T o sh ow that BOREL'S orig inal uppe r est ima te is defic ient in i ts intended pu rpose, co nsider, for

example , the choicee 2n 1 u =p,,= e2."

P , = ~ + e Z , , q , l + e 2 , , q,co

Th e n ~ p , i s divergent and n1 ~Uk~btn~e2n,

1

w h i l e n

~ p k < n ,

so that e -(p~ +"+P~)(u1 +u 2 + - . - +u , )> e - " e 2~= e' .

This sho ws that for at l east some choice o f p , such that ~ p, i s diverge nt e - ~ P ~ u need no t tend to zero .

1 1I n fac t th i s whene ver the su f f i ci ent ly rap id ly to 1 , which i s sure ly cons i s tent wi tha p p e n s Pn c o n v e r g e

the demand for d ivergence of ~ p , . I t i s true , howeve r , that l im cr = 0, as is establ ished in BARONE1 n~oa

( 1974 : 69- - 70) , whe re the defective upp er est ima te for a n is replaced by a val id o ne.

Page 15: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 15/68

Axiom atic Probability 137

A I = 0 . " ( I t a l i c s i n t h e o r i g i n a l . ) B O R E L ( 1 9 0 9 : 2 5 0 ) .

W h y is A 1 = 0 a c o n s e q u e n c e o f l ir a a , = 0 ? P r e s u m a b l y b e c a u s e

A 1 = l i m a , .n~oo

L e t u s i n t r o d u c e s o m e n o t a t i o n l a c k i n g i n B O R E L'S p a p e r : w e d e n o t e b y E z t h e s et

o f s e q u e n c e s h a v i n g e x a c t l y o n e s u cc e ss , a n d b y E ~ th e s e t o f s e q u e n c e s w i t h e x a c t l y

o n e s u c c e s s a m o n g t h e f i rs t n o u t c o m e s . T h e r e l a t i o n b e t w e e n t h e s e ts E I a n d t h e

s e t s E ] i s t h a t , a s s e t s ,

E 1 = l i m E l .

I t f o l l o w s , by countable additivity, t h a t

A 1 = P ( E 1 ) = l ir a P (E ] )= l im ~r ,. 1n~o3 n~oo

T h e f a c t t h a t B O R E L c o u l d i m a g i n e h e h a d f o u n d a n alternative a r g u m e n t t oo3

e s t a b li s h A 1 = ~ c o , i n t hi s f a s h i o n o n l y r e in f o r c es t h e i m p r e s s i o n t h a t h e n e i t h e r

f u ll y re c o r g n i z e d w h e n h e w a s e m p l o y i n g c o u n t a b l e a d d i t iv i t y n o r a p p r e c i a t e d i ts

p r i m a c y i n l i m i t r e l a t i o n s .

T h e c a s e s A 2 a n d t h e n A k a r e t r e a t e d s i m i l a r ly . B O R E L w r i t e s

Ak = Ao ~ uil ... ui~

a n d n o t

A~ = ~ (Ao u ~ , . . . u ~ ) .

T h i s g a v e ri se t o t h e s a m e m i s g i v i n g s a b o u t t h e d i v e r g e n t c a s e q u o t e d a b o v e i n

c o n n e c t i o n w i t h ( 4 . 3 ) a n d ( 4 . 4 ) .

4.4. The Calculation of Ao3

T h e d e r i v a t i o n o f A o3 f u r n i s h e s s t i ll m o r e e v i d e n c e o f B O R E L 'S r e l u c t a n c e t o r e l y

f u l ly o n c o u n t a b l e a d d i t i v i t y . F i r s t, i n t h e c o n v e r g e n t c a s e , e a c h A k is p o s it i v e , k

= 1 , 2 , 3 , . . . , a n d i f w e d e f i n e S b y

t h e n

S = A o + A 1 + A 2 + " ' + A k + ' " ,

S = A o ( 1 + Z u f l + Z u i ~ u i 2 + . . . + Z u h u i 2 . . , u i + . . . )

= A o ( 1 + u l )( 1 + u 2 ) . . . (1 + u , ) . . . .

1 Theorem s evaluating lira P(E,)under v arious circumstances were the m ain results in the periodn~co

before BOREL 1909). BERNOULLI'S "W eak") Law of Large N umb ers, an d the Central Limit Theoremare theorem s of this type. They did n ot assert th at this lim it was itself the probab ility o f any single event,howe ver, wh ereas BOREL'S heorem did.On this im portant point, see the discussion in § 5.3 of BOREL'S("Strong") L aw o f Large Num bers.

Page 16: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 16/68

138 J. BARONE& A. NOVIKOFF

I t is t h is p r o d u c t f o r S ( r a t h e r t h a n t h e d e f i n i n g s u m ) w h i c h is t h e n e m p l o y e d . S i n c e

i t f o l l o w s t h a t

P n

U n - - l _ _ p n '

1l + u . -

1 - p . "

T h u s t h e i n f i n i t e p r o d u c t i n t h e e x p r e s s i o n f o r S c a n b e e v a l u a t e d b y o b s e r v i n g

[ [ ( l + u . ) = 1 1

I 1 Ao '

s o t h a t

S = I .oo

T h i s i s a p e r f e c t ly r i g o r o u s m a n i p u l a t i o n o f c o n v e r g e n t i n fi n it e p r o d u c t s s i n ce ~ u ,1

c o n v e r g e s. T h e a p p e a l t o c o u n t a b l e i n d e p e n d e n c e o c c u r s i n th e e x p r e s s i o n f o r A o.

T h e a s s e r t i o n t h a t A ~ = I - S " 6 v i d e m e n t " is a c as e o f d i sg u i se d c o u n t a b l e

a d d i ti v it y , p a s s e d o v e r w i t h o u t c o m m e n t .

I n t h e d iv e r g e n t c a se " o n p e u t i n d u i r e " t h a t e a c h A k i s z e r o ; h e n c e a l s o t h e i r s u m

S a n d h e n c e Aoo = 1. T h e r e s u lt is " e x a c t e " , b u t " l e r a i s o n n e m e n t p r d c 6 d e n t m a n q u e

d e r i g u e u r , p o u r d e s r a i s o n s d 6 j / t i n d i q u 6 e s " . B O R E L ( 1 9 0 9 : 2 5 1 ) .

B O R EL t h e r e f o r e c o n s i d e r s a n a l t e r n a t iv e a p p r o a c h , p r e s u m a b l y m o r e r i g o r o u s ,

i n t r o d u c i n g t h e s e t o f s e q u e n c e s w i t h m o r e t h a n m s u c c e s s es a m o n g t h e f i rs t n t r ia l s .

L e t u s c a l l t h i s s e t F 2 , s i n c e B O R E L ' s p a p e r l a c k s a n o t a t i o n f o r it . B O R EL a s s e r t s t h a t

i t i s e a s y t o c a l c u l a t e P ( F 2 ) a n d e a s y t o s h o w t h a t

l i r a P ( F ~ ) = 1 , fo r ev ery m = 1 , 2 , 3 . . . .

H e l e a v e s t h e a r g u m e n t t o t h e r e a d e r . T h e f o l l o w i ng is t h e " o b v i o u s " p r o o f t h a t

p r e s e n t s i t s e l f .

I fE " ~ = t h e s e t o f s e q u e n c e s w i t h e x a c t l y m s u c c e s se s a m o n g t h e f i rs t n o u t c o m e s ,

t h e n b y ( f i n i t e ) a d d i t i v i t y

S i n c e

P ( F 2 , ) + P ( E ~ o) + P ( E " ~ ) + . . . + P ( E T , ) = 1 .

• nh m E k - E k , k = 1 , 2 , 3 , . . . ,

n~ c o

a s s e t s , t h e r e f o r e

l im P ( E ~ ) = P ( E k ) = A k = O ,n~ oo

( b y c o u n t a b l e a d d i t i v i t y ) a n d s o

k = 1 , 2 , 3 , . . .

l i m P ( F ~ ) = 1 , k = 1 , 2 , 3 , . . . .n ~ o o

I f t h is i s t h e a r g u m e n t B O R E L i n t e n d e d t o s u p p l y , i t i s i n d e e d a n e a s y o n e , b u t n o

i m p r o v e m e n t w i t h r e sp e c t t o " l a c k o f r i g o r " i n a s m u c h a s t h e u n d e r l y i n g l im i t

Page 17: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 17/68

Axiom atic Probab ility 139

r e l a ti o n s a r e n o t e s t a b l is h e d . P e r h a p s B O R EL i n t r o d u c e d t h e s e ts w h i c h w e h a v e

c a l le d F ~ b e c a u s e t h e y a r e d e f i n e d b y e x p l i c it c o n d i t io n s o n t h e f ir st n o u t c o m e s (i.e.,

t h e y a r e " c y l i n d e r s e t s " in t h e p r o d u c t s p a ce ) . I f s o , th i s i n c r e a s e i n e x p l i c i tn e s s is

n o t a c c o m p a n i e d b y a n y i n c r ea s e i n r ig o r : a t s o m e p o i n t a li m i t o f p r o b a b i l it i e s,

s u c h a s l i m P(FT,) , i s c o m p u t e d . S u c h a l i m i t c a n b e i d e n t i f ie d a s b e i n g i t s e l f an ~ o o

p r o b a b i l i t y o n l y b y e m p l o y i n g c o u n t a b l e a d d i t i v i t y . T h a t i s ,

(as se t s ) and

• nh m F.~ = F, .n ~ o o

l im P(F2, = P( l i m F2)n ~ o o n - - ~ o o

( b y c o u n t a b l e a d d i t iv i t y ) to g e t h e r y i e l d

P(Fm)= l i m P( F~) .

T h e t o t a l a b s e n c e o f s et n o t a t io n a n d s et a lg e b r a c a n o n l y h a v e m a d e i t m o r e

d i f f i cu l t f o r BO REL t O f o r m ul a t e , i n a c l ea r w ay , t he c r i t i c a l r e l a t i on

lira/7,~ = F , , .

B O RE L e m p h a s i z e d t h e s i g n i fi c an c e o f t h e c o n c l u s i o n , w h i c h i n o u r n o t a t i o n is,

l i ra P(F, ] )= 1:t l ~ o o

. .. ; t h is m e a n s t h a t o n e c a n p r o f i t a b l y b e t o n e f r a n c a g a i n s t a r b i t r a r i ly l a rg e

o d d s t h a t t h e n u m b e r o f s u c c es s es w i ll e x c e e d a n y f i xe d n u m b e r m ; th i s is th e

p r e c is e m e a n i n g o f t h e a s s e r t i o n t h e p r o b a b i l i t y A ~ i s o n e. BOREL (1909: 251) .

4 . 5 . A d d i t i o n a l E v i d e n c e o n t h e P r i m a c y o f C o u n t a b l e I n d e p e n d e n c e

B e f o r e c o n c l u d i n g h i s C h a p t e r I , B O R EL c o n s i d e r s v a r i o u s g e n e r a l i z a t io n s

a n d m o d i f i c a ti o n s o f t h e a b o v e m a i n t h e o r e m c o n c e r n i n g A 0 , A 1 , A 2 , . .. , a n d A ~

i n t h e c o n v e r g e n t c a se . A s a p r e l i m i n a r y h e c o n s i d e r s t h e c a s e o f a s i n g le t r i a l in

w h i c h t h e r e is a d e n u m e r a b l e i n f in i ty o f o u t c o m e s . H e a l so c o n s i d e r s a n i n f in i te

s e q u e n c e o f s u c h t r ia ls , a s s u m e d i n d e p e n d e n t , t h e p r o b a b i l i t y o f t h e n th o u t c o m e

o n t h e d h t r i a l d e n o t e d P , ,s . B O R E L t h e n a s s u m e s

~ p , , s = l f or s = 1 , 2 , 3 . . . .n = l

w h i c h m e a n s t h e o u t c o m e s a r e e x h a u s t i v e i n e a c h t r i a l . H e f u r t h e r r e s t r i c t s

c o n s i d e r a t i o n t o t h e " f u l l y c o n v e r g e n t " c as e, m e a n i n g t h a t ~ P,,s c o n v e r g e s f o r

n = 1 , 2 , 3 , . . . , s = l

T h o u g h t h e t r ia l s a r e a s s u m e d i n d e p e n d e n t , t w o e v e n t s d e t e r m i n e d b y th e

n u m b e r o f o c c u r r e n c e s o f t w o d i ff e re n t o u t c o m e s n e e d n o t b e i n d e p e n d e n t .

Page 18: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 18/68

14 0 J. BARONE & A. NOVIKOFF

L e t u s i n t r o d u c e t h e f o l l o w i n g n o t a t i o n :

E , , k = s e t o f t ri a l s eq u e n c e s f o r w h i c h t h e n th o u t c o m e o c c u r s e x a c t l y k t i m e s ,

E , , ~o = s e t o f tr i a l s e q u e n c e s f o r w h i c h t h e n th o u t c o m e o c c u r s i n f i n i te l y o f t e n ,

E , ,k = s e t o f t r i a l s e q u e n c e s f o r w h i c h t h e n th o u t c o m e o c c u r s a t m o s t k ti m e s .

I f w e c o n s i d e r a n y o n e i n d i v i d u a l o u t c o m e , s a y t h e n th, i t f o l lo w s f r o m t h e

" c o n v e r g e n c e " h y p o t h e s i s t h a t

P ( E n , ~ ) = 0

o r , e q u i v a l e n t l y ,

P ( G , o o )= 1.

N o w w e e n c o u n t e r a n e x a m p l e o f w h a t w e h a v e c al le d " l i m i t e d " c o u n t a b l e

i n d e p e n d e n c e ; a l t h o u g h t h e d if f er e n t o u t c o m e s n e e d n o t i n g e n e r a l b e i n d e p e n d e n t ,

t he eve n t s E c co,, n = 1 , 2 , . . . , h a v i n g p r o b a b i l i t y 1, a r e o f n e c e s si ty m u t u a l l y

i n d e p e n d e n t . I n w o r d s , g i v e n th e " f u l l y c o n v e r g e n t " h y p o t h e s i s , th e r e is p r o b a b i l i t y

1 t h a t a ll o u t c o m e s o c c u r o n l y f in i te l y o ft e n .

I n o u r n o t a t i o n , P ( U , , oo) = 1 fo r n = 1 , 2 , 3 , . . . im pl i es

P E c, oo = I ~ P ( E ~ , ~ ) = 1 . (4 .5 )1

T h i s l i n e o f r e a s o n i n g p r o v o k e s B O R E L t o o n e o f t h e r a r e i n s t a n c e s i n w h i c h

c o u n t a b l e i n d e p e n d e n c e ( e ve n in t h e " l i m i t e d " f o r m ) g iv e s r is e to e x p l ic i t d o u b t s :

I t m a y h e l p t o e x a m i n e t h e q u e s t i o n m o r e c lo s el y, t o b e s u re t h a t o u rr e a s o n i n g i s s t r ic t : t h e f a c t t h a t t h e r e i s a d e n u m e r a b l e i n f in i t y o f f a c t o r s e q u a l t o

1 c o u l d i n d e e d l e a v e s o m e d o u b t a s t o t h e v a l u e o f t h e i r p r o d u c t . B O R EL ( 1 9 09 '

255).

B O R EL t h e n r e a s s u re s h i m s e l f b y p r o v i d i n g a n e l a b o r a t e p r o o f o f a n a s s e rt i o n, i n

t w o p a r t s , w h i c h r e f i n e s a s w e l l a s " r e - e s t a b l i s h e s " t h e r e s u l t i n q u e s t i o n .

F i rs t , h e p r o v i d e s a n a r g u m e n t t h a t f o r e v e r y p o si ti v e i n te g e r k ,

( I n w o r d s , t h e p r o b a b i l i t y t h a t a l l o u t c o m e s o c c u r a t m o s t k t i m e s f o r a n y f i x e d f in i te

i n t e g e r k i s z e r o . ) T h i s i s e s t a b l i s h e d b y a n i n g e n i o u s c a l c u l a t i o n , t h e d e t a i l s o f

w h i c h a r e l e ft t o t h e r e a d e r ( c f B A R O N E (1 9 7 4 : 1 0 1 - 1 1 3 ) f o r a d e t a i l e d d i s c u s s i o n ) ,

t o g e t h e r w i t h t h e t a c i t l y a s s u m e d r e l a t i o n

P & , k = P ( & , O .n 1 n= l

T h i s r e l a ti o n i s t a n t a m o u n t t o a s s u m i n g i n d e p e n d e n c e o f t h e e v e n t s/ ~ , ,k , i . e . , o f

o u t c o m e s , n o t j u s t o f t ri a ls .S e c o n d , g i v e n a n y e > 0 , o n e c a n c h o o s e t h e s e q u e n c e k~ s o t h a t

P(/~,~, j < ek = l

Page 19: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 19/68

Axiomatic Probability 141

since P(En, oo)=0 for each n. Th en it follows readily, if e<½ , th at

-P (E , , k ,) )= l~I P(/~,,kn) > 1 - 2 e . (4.7)n = l n = l

B O R E L conc ludes :

One can thus, for a given arbitrary e, choose the numb ers k, in such a way that

the proba bili ty that the n th outcom e occurs no more than k, t imes differs fro m unity

by less than 2e. (Italics in th e origin al.) BOR EL (1909: 257).

In o ther words , BOREL is in te rpre t ing the abov e inequa l i ty by aga in us ing

independen ce be tween the events /~ , ,k , th is t ime in the form :

n = l

The validi ty of this requires tha t n ot only events def ined by dif ferent t r ia ls but a lso

those def ined by d i f fe rent outcom es a re assumed independent . T hus BOREL has

replaced reasoning based on the ( faul t le ss) pr inc ip le of " l imi ted" countable

independen ce by reasoning which employs a tac i t use of countable independence .

This s econd use suffers f rom the defect tha t i ts applicat io n is val id only subject to an

addi t ion a l hypothes is . (Once aga in , the fact tha t ve rba l conc lus ions abo ut events

a re drawn f rom sym bol ized re la t ions be tween numbers , wi th no in te rvening

notat ion for se ts or events , helps disguise the transgression from a suff ic iently

casual reader , perh aps f rom BOREL himself . )

Thu s BOREL emp loys (4.6) and (4.7) to o vercom e do ubts abo ut the reaso ning of

(4.5) . Of necessi ty these two new asser t ions themselves require countable inde-

pendence and hold only subjec t to an addi t iona l , f a r - reaching (and tac i t )

assu mpt ion, w hereas (4.5) i tse lf can be established with no add it io nal assu mptio ns

bey ond the in i t ia l ly s ta ted ones .

The "ob vio us" p roof of (4 .5), mak ing no appea l wh a tever to independenc e of

outcomes , namely the complemented asse r t ion

P E, ,~ < P(E, ,oo)=0,

is consp icuou sly absent , s ince i t hinges on co unta ble sub -addit ivi ty, never used by

BOREL in the paper of 1909.

This c onclu ding section of BOREL'S Ch apte r I furnishes anot her instance of his

predi lec t ion for avoid ing a rguments based on sub-addi t iv i ty and countable

addi t iv i ty , and for offe ring ins tead a rgu ments based o n countab le independence .

Indeed, this insight into BOREL is the ch ief interest a t t ach ed to this sect ion; i ts

results are nowhere appealed to la ter .

4.6. Summ ary o f Borel ' s C once ptual S hortcom ings in Ch apter I

In sum mary, BOREL fai ls to em ploy sub-addi t iv i ty and seems to d ou bt rout ine

arguments involv ing countable addi t iv i ty , of fe r ing a l te rna t ives which employ

Page 20: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 20/68

142 J. BARONE~z A . NOVIKOFF

s o p h i s t i c a te d r e f o r m u l a t i o n s o f c o u n t a b l e a d d i t i v i t y s u c h a s

P ( l i m E , ) = l i ra P ( E . ) ;

h e b a s e s h i s r es u lt s, s o m e t i m e s n e e d l es s ly , o n c o u n t a b l e i n d e p e n d e n c e a n d a s s u m e s

t h e m v a l i d i n c i r c u m s t a n c e s w h e r e n o i n d e p e n d e n c e h a s b e e n a s s u m e d o r

e s t a b li s h e d . C o u n t a b l e i n d e p e n d e n c e i t s e lf is t a k e n a s b e in g e v i d e n t b y a n a l o g y

w i t h t h e f i n i t e c a s e d e s p i t e o c c a s i o n a l r e s e r v a t i o n s . N o n o t a t i o n i s i n t r o d u c e d f o r

s et s, a n d h e n c e n o n e f o r se t fu n c t i o n s . T h e a d j e ct i ve " d e n u m e r a b l e " , a p p r o p r i a t e

f o r th e n u m b e r o f t ri a ls , is o c c a s i o n a l l y a n d e r r o n e o u s l y c o n s t r u e d t o r e fe r to t h e

s iz e o f t h e s a m p l e s p a c e , a n d i t i s as s e r te d t h a t t h e t h e o r y o f " d e n u m e r a b l e

p r o b a b i l i t i e s " is a m o r e " e f f e c t iv e " t h e o r y t h a n t h a t o f t h e c o n t i n u u m , s i n ce th e

l a t te r c l a im s t o t r e a t o f m o r e t h a n d e n u m e r a b l y m a n y e l e m e n t s a s b e i n g o n e

c o l l e c t i o n . ( C f t h e o p e n i n g r e m a r k a n d c o n c l u d i n g l i n es o f BO R EL 's p ap e r , b o t hg iven in § 4 .1 .) Th i s l a s t d i s t in c t io n i s o f cours e i l l u so ry .

H a d t h e p a p e r c o n t a i n e d n o m o r e , it w o u l d h a v e f u r n i s h e d n o e v i d e n c e

w h a t e v e r t o f a v o r t h e h y p o t h e s i s t h a t B O R E L u n d e r s t o o d t h a t h i s " p r o b a b i l i t 6 s

d 6 n o m b r a b l e s " w a s a f o r m o f m e a s u r e t h e o r y ( in p a r t i c u l a r t h a t c o u n t a b l e

a d d i t i v i t y w a s a n i n t ri n s ic p a r t o f i ts a p p a r a t u s ), a n d a ll t h e a f o r e m e n t i o n e d t o

d i s p u t e it . H o w e v e r , t h e t w o r e m a i n i n g s e c t i o ns o f t h e p a p e r s o m e w h a t c o u n t e r b a l -

a n c e t h i s o v e r - s i m p l e i n t e r p r e t a t i o n .

5. Borel's Chapter II: The Strong Law of Large N umbers

5 .1 . The Se t t ing o f the Prob lem

oO

C o n s i d e r t h e d e c i m a l e x p a n s i o n ~ ( b n / 1 0 " ), e a c h b~ b e i n g o n e o f t h e d i g i t s

0 , 1 , . . . , 9 . T h e m o r e g e n e r a l p r o b l e m o f " q - a r y " e x p a n s i o n s , ( b f f q ~ ) ,w h e r e e a c hn=l \

b , is a m o n g t h e i n t e g e r s 0, 1 , . . . , q - 1 , c a n o f c o u r s e b e t r e a t e d i n l i k e m a n n e r . )/

B O RE L p r o p o s e d t o s t u d y t h e p r o b a b i l i t y t h a t s u c h b n " b e l o n g t o a g i v e n s e t "

a s s u m i n g ( 1 ) t h e d i g i t s a r e i n d e p e n d e n t a n d , ( 2 ) e a c h d i g i t h a s e q u a l p r o b a b i l i t y(na m e ly 1 /10 ) o f a ch ie v ing the va lues 0 , 1, . . . , 9 .

I t is n o t n e c e s s a r y to e m p h a s i z e t h e p a r t l y a r b i t r a r y n a t u r e o f t h e s e tw o

h y p o t h e s e s : t h e f i rs t, i n p a r t i c u l a r , i s n e c e s s a r i l y i n a c c u r a t e w h e n o n e c o n s i d e r s ,

as one i f f o r ce d to in prac t i ce , t h a t a d e c i m a l e x p a n s i o n i s d e f i n e d b y a law,

w h a t e v e r m i g h t b e t h e n a t u r e o f t h a t l aw . I t m a y n o n e t h e l e s s b e in t e r e s t in g t o

s t u d y t h e c o n s e q u e n c e s o f t h i s h y p o t h e s i s , p r e c is e l y i n o r d e r t o r e a l iz e t h e e x t e n t

t o w h i c h t h i n g s o c c u r as i f t h i s h y p o t h e s i s w e r e v e r if ie d . T h e s e c o n d h y p o t h e s i s ,

t h a t i s t h e e q u a l i t y o f p r o b a b i l i t i e s f o r t h e v a r i o u s p o s s i b l e v a l u e s o f e a c h d e c i -

m a l d i g i t , s e e m s r a t h e r n a t u r a l , g r a n t i n g t h e f i r s t .

T h e s e t w o h y p o t h e s e s a r e e a s i ly j u s t if i e d a d d i t i o n a l l y b y t a k i n g n o t t h e

l o g i c a l, b u t t h e g e o m e t r i c p o i n t o f v i e w : t h e y a r e, i n d e e d , e q u i v a l e n t t o t h e

f o l l o w i n g : t he dec ima l number be ing r epre sen ted by a po in t o f the in t e rva l [0, 1],

the probabi l i ty that i t i s located in a subinterval i s equal to the length o f that

Page 21: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 21/68

A x i o m a t i c P r o b a b i l i t y 1 4 3

subinterval . O n e c o u l d i n t e r p r e t a n d v e r if y t h e r e s u lt s w e a r e g o i n g t o o b t a i n

f r o m t h is g e o m e t r i c p o i n t o f v i e w ; I w il l n o t d o s o , p r e f e r r i n g t o l e a v e a s i d e f o r

t h e p r e s e n t t h e t h e o r y o f c o n t i n u o u s p r o b a b i l i t y , w h i c h i s c o n n e c t e d , a s I h a v e

s h o w n e l s e w h e r e , t o t h e t h e o r y o f m e a s u r e o f s et s. 1 B O R E L (1 9 0 9 : 2 58 ).

T h u s B O R EL 'S " c o n s t r u c t i v i s m " l e a d s h i m t o a s s e r t t h a t t h e f ir st h y p o t h e s i s i s

" n 6 c e s s a i r e m e n t i n e x a c t e ' . O n e is l e d t o s p e c u l a t e t h a t B O RE L k n e w w h e r e h e

w a n t e d t o g o a n d a r r a n g e d t o g e t t h e re , a t t h e e x p e n s e o f hi s s c ru p l e s i f n e c e s s ar y .

T h e r e m a r k a b o u t t h e s e c o n d h y p o t h e s i s i s , p e r h a p s , e v e n m o r e i n t e r e s t i n g :

n o t h i n g i n t h e f i r s t c h a p t e r ( " p o i n t d e v u e l o g i q u e " ) d e m a n d s e q u a l p r o b a b i l i t i e s

1/q f o r e a c h b n. T h e g e n e r a l t h e o r y o f tr ia ls , e a c h w i t h q o u t c o m e s , a c c e p t s a n y

c h o i ce s p . . .. n = 0 , 1 . . . . q - l , s u c h t h a t

p o , s + p l , s + . . . + p q _ l , s = l , s = 1 , 2 , 3 , . . . .

5 .2 . The Spec ia l Case p , = 1 fo r Dyad ic Exp ans ions

B O R E L r e a l iz e s e x p l i c i tl y t h a t t h e s e c o n d h y p o t h e s i s o f e q u a l l y l i k e ly b , p e r m i t s

p r o b a b i l i t y t o b e i n t e r p r e t e d t w o e q u i v a l e n t w a y s , o n e o f w h i c h i s f a m i li a r. I n t h e

c a s e q = 2 , t h is m e a n s t h e p r o b a b i l i t y o f t h e d i g i t 0 a n d o f t h e d i g i t i i n t h e n t h p l a c e

a r e n o t o n l y i n d e p e n d e n t o f t h e c h o i c e o f di g it s in t h e o t h e r p l a c e s b u t a r e b o t h 1 . ( I t

is a n i n t e r e s ti n g c o m m e n t o n t h e c h a r a c t e r o f m a t h e m a t i c a l e v o l u t i o n t h a t b e f o r e

S TE IN H A U S ( 19 23 ) n o o n e h a d t h e t e m e r i t y to c o n s i d e r w h e t h e r a n y o t h e r c h o i c e o fp r e - a s s i g n e d p r o b a b i l i t i e s { P n} d e p e n d i n g i n g e n e r a l o n n c o u l d a l s o i n d u c e a

m e a s u r e o n [ 0 , 1 ] . 2) B O R E L n o w s t u d i e d t h i s e q u i p r o b a b l e c a s e b y h i s n e w

p r o b a b i l i s t i c m e t h o d s i n p r e f e r e n c e t o m e a s u r e - t h e o r e t i c o n e s ( al so h is o w n

i n v e n t i o n ) .

P r o c e e d i n g t o t h e c a s e o f o n l y t w o o u t c o m e s f o r e a c h t ri a l, t h e c a s e q = 2 , w i t h

t h e c o n v e n t i o n t h a t t h e d i g i t 0 i s a s u c c e s s , o r f a v o r a b l e c a s e , B O R E L s t a t e s

O n e k n o w s t h a t , if o n e c o n s i d e r s 2 n t ri al s, t h e p r o b a b i l i t y t h a t t h e n u m b e r o f

f a v o r a b l e c a s e s w i l l l i e b e t w e e n

is eq ua l to 0( ,~) , l e t t in g

n - , ; L ~ n a n d n ÷ ) d f f n

2 2

BOREL (1909: 259) .

1 T h i s i s th e s o l e r e f e r e n c e t o t h e t h e o r y o f m e a s u r e i n t h e e n t i r e p a p e r o f 1 90 9. I t s r o l e i s t o n o t i f y t h e

r e a d e r t h a t t h e t h e o r y o f m e a s u r e , a n a l t e r n a t i v e a p p r o a c h , i s no t b e i n g e m p l o y e d . B O R E L c l e a r l y i s

r e f e r r i n g t o h i s p a p e r o f 1 9 0 5 t h e c o n t e n t s o f w h i c h w i ll b e d i s c u s s e d i n § 7 .3 .

2 T h e s t u d y o f t h e s e m e a s u r e s , i m p l i c i t ly i n t r o d u c e d b y B O R E L, w a s f i r s t e x p l o r e d i n a n y d e t a i l a s

r e c e n t l y a s 1 9 4 7 (WINTNER) n d 1 9 4 8 (H A R TM A N ). T h e n o t i o n o f g e n e r a l i z i n g B O R R ( o r L EB ES GU E)

m e a s u r e t o o t h e r c o u n t a b l y a d d i t iv e s e t fu n c t i o n s h a d o c c u r r e d w i t h i n i n t e g r a t io n t h e o r y i n 1 91 3

( R A D 6 N ) a n d w i t h i n m e a s u r e t h e o r y i n 1 9 1 4 ( CA R ~r H~ O DO a Y) .

Page 22: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 22/68

144 J. BARONE & A. NOVIKOFF

( T h e s t a t e m e n t i s o f c o u r s e u n t r u e , b u t t h e l imit o f t h i s p r o b a b i l i t y , a s n t e n d s t o

i n f i n i t y , i s g i ven by 0 ( 2 ) . ) As s um i ng

A n

l i ra ~nn = 0n ~ o o

b u t 2 , i t s e l f g r o w s u n b o u n d e d l y , B O R E L c o n s i d e r s e a c h s e t o f 2 n i n i ti a l tr i a ls a s

d e t e r m i n i n g a n e v e n t a s f o ll o w s . L e t v,(x) b e t h e n u m b e r o f z e r o s i n t h e f i rs t n d i g it s

o f t h e b i n a r y e x p a n s i o n o f x . F o r e a c h n , t h e " t r i a l " e x a m i n e s v2,(x) , a n d t h e r e s u l t is

a " s u c c e s s " i f

I v z , ( X ) - n l > 2 , 1 f n

a n d a " f a i l u r e " i f

Ivz,(x)-nl <& I/L

T h e p r o b a b i l i t y p , o f a f a v o r a b l e c as e is a ss e rt e d t o b e

2 ~ e_~2d2

a n d t h e p r o b a b i l i t y q , o f a n u n f a v o r a b l e c a s e is g i ve n b y q , = 1 - p ,. 1

B O R E L n o w focuses h is a t t e n t i o n o n t h e s et E ~ o f t h o s e " d y a d i c e x p a n s i o n s " f o rw h i c h i n f in i t el y m a n y " t r i a l s " h a v e " s u c c e s s e s " . A l w a y s f a s c in a t e d b y s e ts o f r e a l

n u m b e r s c h a r a c t e r iz e d b y a d e n u m e r a b l e s et o f c o n d i ti o n s , B OR EL h a d ju s t f o u n d an

n e w s e t, w i th a n e w " d e n u m e r a b l e " d e s c r ip t io n . F u r t h e r m o r e , s i nc e ~ , p , c o n v e r g e s1

i f 2 , g r o w s s u f f i c i e n t l y f a s t (e .g . n~ ), h i s Z e r o - O n e L a w a p p l i e d t o t h is c a s e ( a s s u m i n g

t h e v a l id i t y o f i ts a p p l i c a t io n ) a s s e r ts t h a t A ~ = 0 a n d s o P ( E ~ ) = 1 .

1 This ca lculation of p. and q. is serious ly flawed. Wha t is true is that p. and

oO

2 ~ e_a~ d2

are of the same o rder, b ut since ~.. is not fixed, this is not a case of the classical Central Limit Theorem.

The information needed, that

2 ~o

is a refined and relatively recent result. Without it the convergence of

(which is true if2. grows rapidly enough, e.g., n+) need not imply the convergence of~, p.. However, even

assumin g }~p. converges, one cannot conclude f rom BOREL'S result for A~ that there is a zero

probability of infinitely ma ny un favorable cases, since that result was established on the hypothesis that

the separate trials be independent. The various "trial s", with probability p. a nd q. o f success and failure

as defined above, are by no means independent.

Page 23: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 23/68

Axiomatic Probability 145

To exam ine the se t E~ in mor e de tai l , no te tha t i f the n th t r i a l is unf avo rab le the

r a t i o o f th e n u m b e r o f 0 's to t h e n u m b e r o f l ' s a m o n g t h e f ir st n d i gi ts l ie s b e t we e n

or , equ iva len t ly , be tween

I f the r e c an b e on ly f in i te ly m an y exce pt ions to th i s, i.e., i f there are o nly f ini te ly

m an y "successes" , the r a t io o f 0 's to l ' s mu s t t en d to the l imi t 1 a s n t ends to in f in i ty .

T h u s t h e s et E ~ c o n s is t s o f t h o s e n u m b e r s x wh o s e d y a d i c e x p a n s i o n s h a v e

a s y m p t o t i c a l l y t h e s a m e n u m b e r o f z e r o s as o ne s . S in c e P ( E o o ) = A ~ = 0 , t h e s e

nu mb er s cons t i tu te a set o f p ro bab i l i ty 1. This i s the BOREL Law of l a rge Nu mb er s .

5.3. Normal Numbers

T h e c o r r e s p o n d i n g r e a s o n i n g a p p l i e s t o t h o s e n u m b e r s w i t h i n wh o s e d e c i m a l

expa ns ion s the d ig i t s 0, 1 , 2 . . . . . 9 each have a l imi t ing f r equency o f 1/10 : they fo rm a

se t o f p rob abi l i ty 1. Thes e nu mb er s BOREL ca l led "simply normal" to the base 10.

M or e g enera l ly , BOREL ca l led a num be r s im ply nor ma l to the base q if the d ig i t s in

t h e q - a r y e x p a n s i o n

f o r i = 0 , 1, . . . , q - 1 .

F o r e a c h q t h e s et o f n u m b e r s s i m p l y n o r m a l t o t h e b a s e q is s i m i l a rl y s e en t o b e

of p rob abi l i ty 1. A n um be r i s ca l led entirely no rm al to the base q if i t i s s imply

n o r m a l t o e a c h o f t h e b a s e s q, q2 .... , qk, .... A number i s ca l led absolutely n o r m a l if

i t i s s imp ly norm al to the base q fo r eve ry q = 2 , 3 . . . . I f we deno te the se t o f nu mb er s

s i m p l y n o r m a l t o t h e b a s e q b y Nq, t h e n t h e s e t o f a b s o l u t e l y n o r m a l n u m b e r s is

a n d t h e s et o f n u m b e r s e n t i re l y n o r m a l t o t h e b a s e q is

Page 24: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 24/68

146 J. BARONE& A . NOVIKOVF

B O R E L a s se r ts ( w i t h o u t a r g u m e n t ) t h a t b o t h t y p es o f n u m b e r s a r e o f p r o b a b i l i t y 1.

W h a t is b e i n g t a c i t l y a f f i r m e d i s, a s u s u a l, t h a t

a n d t h a t

P = P ( N q ~ )k= l

q=2

w h e r e e a c h f a c t o r o n t h e r i g h t - h a n d s i d e is 1. T h e s e a r e c a se s o f " l i m i t e d " c o u n t a b l e

i n d e p e n d e n c e . A l a c o n i c f o o t n o t e r e a ds

I d o n o t t h i n k i t s e rv e s a n y p u r p o s e t o r e p e a t t h e d e t a i le d p r o o f o f t h e f a c t

t h a t o n e h a s t h e ri g h t t o a p p l y t h e t h e o r e m o f c o m p o s i t e p r o b a b i l it i e s , d e s p i t et h e d e n u m e r a b l e i n f in i ty o f c as e s. B O R g L ( 1 9 0 9: 2 6 1 : F o o t n o t e (5)).

O f c o ur s e, n o " d e t a i l e d p r o o f o f t h e r ig h t t o a p p l y t h e t h e o r e m o f c o m p o u n d

p r o b a b i l i t i e s " i n t h e d e n u m e r a b l y i n fi n it e c a s e h a s b e e n g i v e n ; r e ca l l th a t i t w a s fi rs t

m e n t i o n e d i n c o n n e c t i o n w i t h

A 0 = ( 1 - p l ) ( 1 - P 2 ) . . . (1 - p , ) . . .

" D a n s le c a s d e la c o n v e r g e n c e , l ' e x t e n s i o n d u p r i n c i p e d e s p ro b a b i l i t 6 s

c o m p o s 6 e s v a d e s o i, . . . " B O R E L (1 9 0 9 : 2 49 ). R e p e a t e d u s e h a s b y t h i s p o i n t

t r a n s f o r m e d t h e p r in c i p l e f r o m a s e lf - e v id e n t t r u t h t o o n e w h o s e p r o o f h a s b e e nd e m o n s t r a t e d a ll t o o o f te n .1

B O R E L ' s r e a s o n i n g , u p t o t h i s p o i n t , i s c h i e f ly f l a w e d i n th e f o l l o w i n g t w o w a y s :

h e e m p l o y s a r e su l t b a s e d o n i n d e p e n d e n c e o f e v e n t s f o r d e p e n d e n t t ri a ls ( th is f la w

w o u l d b e r e m e d i e d b y a " C A N T E L L I " m o d i f i c a t i o n o f h is Z e r o - O n e L a w , c f § 6.4)

a n d h e u s es a f o r m o f t h e C e n t r a l L i m i t T h e o r e m m o r e p r e c is e t h a n w a s t h e n

a v a il a b le . H A U S D O R F F ' s a n d l a t e r p r o o f s w e r e t o a v o i d a n y a p p e a l t o t h e C e n t r a l

L i m i t T h e o r e m w h a t e v e r .

A n a d d i t i o n a l o m i s s i o n is n o t e w o r t h y : d e s pi te a c h o i c e o f n o t a t i o n i d e nt i ca l t o

t h e o n e h e h a d e m p l o y e d f o r d is c u s si n g t h e (B E R N O U LL I) L a w o f L a r g e N u m b e r s i n

h i s t e x t - b o o k o n P r o b a b i l i t y , w r i t t e n e a r li e r i n t h e s a m e y e a r ( BO R E L ( 1 90 9 a : 6 3 -65)), h e m a k e s n o a t t e m p t t o c o m p a r e t h e B E R N O U L L I L a w a n d t h e n e w r es u lt . A

g r e a t o p p o r t u n i t y is l o st t h e r e b y : t r e a t i n g b o t h w i t h in t h e t h e o r y o f m e a s u r e , o n e

w o u l d h a v e b e e n le d t o th e c o m p a r i s o n o f c o n v e r g e n c e " i n m e a s u r e " a n d

c o n v e r g e n c e " a l m o s t e v e r y w h e r e " , a n t i c i p a t i n g t h e t r e a t m e n t s o f S LU T SK Y ( 19 25 ),

F RI~ CH ET (1 9 3 0) a n d t h e e a r l i e r s u c h c o m p a r i s o n s b y C A N T E L L I ( 1 91 7 ) a n d P O L Y A

( 19 21 ). I t is p o s si b l e t h a t t h e s t r o n g e r c h a r a c t e r o f h i s r e su l t b y c o m p a r i s o n w i t h

1 In discussing A0, Ak, A~ independence of trials was assumed. The independence o f the eventsNq, q = 2, 3,..., or o f he events Nqk, k = 1, 2, 3,..., is slightly mo re sophisticated. It is no t to be regarded asan additional ad hoc assumption. Rather one must establish the general fact that if P ( N ) = 1, then

P ( N c ~ A ) = P ( N ) P ( A ) . i .e ., N is independent of a n y other eve nt A. This BORE5 failed to d o.The proo f involves considering the complement of N c~A and then concluding that a set contained

in a set of probability zero m ust itself have probability zero. The form er consideration has the p ossibledrawback, for BOREL,of shifting attention away from "independenc e". As to the latter, BOREL s knownto have rejected the corresponding reasoning w hen employed in the context o f measure theory.

Page 25: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 25/68

Ax ioma tic Probab ility 147

B E RN O U LL I'S w a s s u f f i c ie n t ly e v i d e n t t o B O R EL t h a t n o c o m m e n t w a s f o r t h c o m i n g .

B o t h C A N T E L L I a n d P OL Y A w e r e t o b e e x p l ic i t a b o u t t h e d i s t i n c t i o n b e t w e e n t h e

S t r o n g L a w a n d B E R N O U L L I ' S r e s u l t .

I n d e e d , t h e e a r l i e r s u c c e s s o r s o f BO R EL m a y b e c l a s si fi e d r o u g h l y a s b e i n g

" P r o b a b i l i t y " o r ie n t ed o r " M e a s u r e T h e o r y " o r ie n te d . T h e f o r m e r m a y i n v a r ia b l y

b e d i s t i n g u i s h e d b y th e i r i n t e r p r e t a t i o n o f B O R E L 's S t r o n g L a w a s a n a s t o n i s h i n g

r e f i n e m e n t o f B ER N OU L LI'S o r i g i n a l t h e o r e m , w h e r e a s t h e l a t t e r f a i l t o a s s o c i a t e t h e

t w o , s in c e B E R N O U L L I's t h e o r e m s e e m e d n o t t o b e l o n g t o m e a s u r e t h e o r y .

5 .4 . A P o s s i b l e C l u e t o th e G e n e s i s o f B o r e l ' s S t r o n g l a w

T h e r e s u l t o f BO R EL 'S C h a p t e r I I , n a m e l y , B O R E L 's S t r o n g L a w o f L a r g e

N u m b e r s , h a s p r o v e d t o b e a n e x c e e d i n g l y f r u it fu l a p p l i c a t i o n o f t h e A oo = 0 r e s u lt

o f C h a p t e r I , t h e " g e n e r a l " t h e o r y o f d e n u m e r a b l e p r o b a b i li ti e s . T h e r e r e m a i n s t h e

f a s c i n a t i n g q u e s t i o n , w h a t d r e w B O RE L'S a t t e n t i o n t o t h e i n s t a n c e s o f h i s g e n e r a l

t h e o r y f u r n is h e d b y d i g i ts o c c u r r i n g i n t h e d y a d i c e x p a n s i o n o f n u m b e r s i n t h e u n i t

i n t e r v a l? O n e p o s s i b l e a n s w e r i s, o f c o u rs e , B O R E L 's p r o f o u n d i n t u i ti o n . I t is o f

i n t e r e s t to n o t e , h o w e v e r , t h a t i n 1 9 0 8 th e A m e r i c a n , E . V AN VLECK , h a d b e e n l e d to

s t u d y t h e s e t o f d y a d i c i r r a t io n a l s i n t h e u n i t i n t e r v a l d e f i n ed , i n th e n o t a t i o n

i n t r o d u c e d a b o v e , b y t h e r e l a t i o n

l i m v ~( x) _ ~ n - v n ( x )

o r , e q u i v a l e n t l y ,~ . ( x ) / n - - 1 - v . ( x ) / n

l i m = l i m,~ oo 1 - v , ( x ) / n ,4 00 v , ( x ) / n

L e t u s d e n o t e t h i s s e t b y V0 . B O R E L ' s r e s u l t, i f s t a t e d p u r e l y i n t e r m s o f m e a s u r e

t h e o r y , i s t h a t t h e s e t B o d e f i n e d b y

l im v n ( x ) - 1

n ~ n 2

is o f m e a s u r e 1. I t is i m m e d i a t e f r o m t h e i r d e f i n i t i o n s t h a t B o c V0 . O f g r e a t e s t

i n t e r e s t i n th i s c o n n e c t i o n is VAN V L EC K 'S e x p l i c it a n d p i v o t a l c o n j e c t u r e t h a t Vo i s

n o t a s e t o f m e a s u r e 1 ; V A N V L EC K w a s l e d t o t h e c o n j e c t u r e b y a g e n e r a l c r i t e r i o n

f o r n o n m e a s u r a b i l i t y o f s e ts in t h e u n i t i n t e r v a l. I f Vo w e r e n o t m e a s u r a b l e , o r i f i t

w e r e t o h a v e L E B ES GU E in n e r m e a s u r e l e s s t h a n o n e , t h e n V A N V L E C K w o u l d h a v e

c o n s t r u c t e d a n o n m e a s u r a b l e s e t i n t h e u n it i n t e rv a l w i t h o u t u s i n g th e A x i o m o f

C h o i c e ; t h e s e t c o n s t r u c t e d ( ju s t t h e s e t Vo d e f i n e d a b o v e ) w o u l d h a v e b e e n t h e s e t o f

d y a d i c i r r a t i o n a l s d e f i n e d b y

l im vn(x ) /n ~ 1 - v~ (x ) /n

,~ oo 1 - v , ( x ) / n , 4 00 v , ( x ) / n

V A N V L EC K 'S p a p e r c o n t a i n s m u c h e ls e o f i n t e r e s t a n d is d is c u s s e d i n d e t a i l i n

N O V I K O F F & B A RO N E (1 97 7). T h e r e i t is s h o w n t h a t a n e l e m e n t a r y o b s e r v a t i o n

( w h i c h VAN V L EC K u n a c c o u n t a b l y f a il e d t o m a k e ) s h o w s a t o n c e t h a t Vo is

m e a s u r a b l e a n d i n d e ed , f r o m VA N VLECK ' S o t h e r r e s u l t s , m u s t h a v e m e a s u r e 1. V A N

Page 26: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 26/68

1 4 8 J . BA RO N E & A . N O V IK O FF

V LE CK h a d m a d e B O RE L's a c q u a i n t a n c e i n F r a n c e i n N o v e m b e r 1 9 0 5 - J a n u a r y

1 90 6, w h i l e o n s a b b a t i c a l l e av e , a n d t h e t w o r e m a i n e d o n f r ie n d l y t e r m s f o r y e a r s

t h e r e a f t e r . H a d h e c o m m u n i c a t e d h i s r e s u l t s ( i n c l u d i n g h i s c o n j e c t u r e a b o u t t h e

m e a s u r e o f V 0) t o B O R E L a t o n c e , i t is p o s s i b l e t h a t B O R E L w o u l d h a v e s e e n t h a t t h e

q u e s t i o n o f th e p r o b a b i l i t y ( n o t " m e a s u r e " ) o f V , a n d i n d e e d , t h e m o r e d e l i c a t e

q u e s t i o n o f i ts s u b s e t B 0 , w a s a c c e s s i b le t o h is n e w t h e o r y o f " d e n u m e r a b l e

p r o b a b i l i t y " . W h e n o n e c o n s i d e r s t h a t V A N V L EC K 'S m a i n g o a l w a s t o c o n s t r u c t a

n o n m e a s u r a b l e s e t ( th e v e r y e x i s t e n c e o f w h i c h w a s d i s c o m f o r t i n g to BOREL), h e

o p p o r t u n i t y o f f e r e d B O R EL t o g e t a b e t t e r r e s u l t b y h i s " m o r e e f f e c ti v e " t h e o r y

m i g h t w e l l h a v e d i r e c t e d h is a t t e n t i o n a l o n g t h e t r a i l le a d i n g t o h is f o r m u l a t i o n o f

t h e S t r o n g L a w .

6. Borel's Chapter III: Continued Fractions

6 . 1 . T h e S e t t i n g o f t h e P r o b l e m

I n C h a p t e r I I I, B O R EL r e t u r n s t o c o n t i n u e d f r a c ti o n s , th e s u b j e c t o f h i s e a r li e r

4 5 - p a g e p a p e r o f 19 03 , " C o n t r i b u t i o n fi l ' A n a l y s e A r i t h m 6 t i q u e d u C o n t i n u . "

T h e c o n t i n u e d f r a c t i o n e x p a n s i o n o f an i r r a t io n a l n u m b e r x i n [ 0, 1 ],

1x - -

a l + l

a 2 + l

a 3 + l

w h e r e e a c h e l e m e n t a , = a , ( x ) is a p o s i t iv e i n t e g e r , is in s o m e w a y s p a r a l l e l t o t h a t o f

t h e d e c i m a l ( o r q - a ry ) e x p a n s i o n . B O R E L c o n s i d e r e d i t as a n i n s t a n c e o f a s e q u e n c e

o f in f i n it e ly m a n y t ri a ls ( o n e f o r e a c h i n t e g e r a n) e a c h o f w h i c h m a y h a v e i n f in i t el y

m a n y o u t c o m e s , e .g . G m a y e q u a l 1, 2 , 3 , . . . , k . . . .

T h e p r o b a b i l i t i e s P~,k, th a t a~ = k , sa t i s fy

~ pi ,k = l .k = l

O n e c o u l d , a pr ior i , m a k e a r b i t r a r y h y p o t h e s e s i n a d d i t i o n , b u t B O R E L a s s e r t e d ,

. .. ; w e a r e g o i n g t o s t u d y t h e h y p o t h e s e s t o w h i c h o n e i s l e d w h e n t a k i n g t h e

g e o m e t r i c p o i n t o f v i e w a l re a d y i n d i c a t e d /t p r o p o s t h e d e c i m a l n u m b e r s .

BOREL (1909: 264) .

T h i s m e a n s , i n e f f e ct , t h a t t h e p r o b a b i l i t y f o r x t o l ie in a n y s u b - i n t e r v a l o f [ 0, 1 ]

is th e l e n g t h o f t h a t s u b - i n t er v a l. 1 O n c e a g a i n t h e m o t i v a t i o n f o r th e e x a m p l e c o m e s

f r o m p r o b l e m s o f " g e o m e t r i c " o r " c o n t i n u o u s " p r o b a b i l i t y , in t h e m o s t n a i v e se ns e.

1 B y e x t e n s i o n , i t a l s o m e a n s t h a t t h e p r o b a b i l i t y t h a t x l i e s i n a B O R E L s e t o f [ 0 , 1 ] i s t h e

m e a s u r e o f t h a t s e t , b u t t h i s a ll i m p o r t a n t a n d n o n - n a i v e e x t e n s i o n o f g e o m e t r i c p r o b a b i l it y b y

m e a n s o f m e a s u r e t h e o r y i s n o t e m p l o y e d o r e x p li c it ly a c k n o w l e d g e d i n t h e p a p e r o f 19 09 . S e e

F A BE R 'S r e m a r k (§ 9 .2 ), m a d e a f t e r r e a d i n g t h e p a p e r o f 1 9 09 , w h i c h e x p l i c i t ly q u e s t i o n s w h e t h e r s u c h

a n e x t e n s i o n c a n b e m a d e o f " d e n u m e r a b l e p r o b a bi l it y " .

Page 27: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 27/68

Ax ioma tic Probab ility 149

I t i s r e a d i l y s h o w n t h a t a s a c o n s e q u e n c e o f t h is a s s u m p t i o n

P l , k = p r o b a b i l i t y { a 1 x ) = k }

= p r o b a b i l i t y < x < ~ - k ( k + 1)"

T h e s e t o f al l x s u c h t h a t { a 2 ( x ) = k} i s a u n i o n o f d i s j o i n t i n t e r v a l s , n a m e l y

~ { a l ( x ) = m , a 2 ( x ) = k } .r a = l

T h e c o r r e s p o n d i n g l e n g t h i s a c u m b e r s o m e i n f i n i t e s e r i e s w h i c h e q u a l s P a , k .

S i m i l a r l y P3,k is g i v e n b y a d o u b l e s e r ie s , c o r r e s p o n d i n g t o t h e s u m o f l e n g t h s o f t h e

d i s j o i n t u n i o n

@ { a l ( x ) = m l , a 2 ( x ) = m 2 , a 3 ( x ) = k } .1 <~ml, m 2 < oo

I n s u m m a r y , t h e p r o b a b i l i t i e s P, , k b e c o m e i n cr e as in g ly u n m a n a g e a b l e w i th

i n c r e a s i n g n , a n d a t t e n t i o n m u s t b e d i r e c t e d t o th e m u l t i - i n d e x e d p r o b a b i l i t y o f th e

s e t o f x s a t i s f y i n g

{ a 1 x ) = m 1 , a 2 ( x ) = m 2 , . . . , a j _ 1 = m j _ 1 , a j ( x ) = k } .

T h e p o i n t s x f o r w h i c h t h e s e s p e c if i ed v a l u e s o f a l ( x ) , . . . , a j ( x ) a r e a c h i e v e d

c o n s t i t u t e a n i n t e r v a l , w h i c h w e s h a l l d e n o t e

[ a 1 = m 1, a 2 = m 2 . . . . a j _ 1 = m j _ 1 , a1 = k J .

D i s t i n c t s u c h i n t e r v a l s w i t h t h e s a m e v a l u e o f j a r e d i s jo i n t, w h i l e [ a 1 = m a . . . . . a j

= m j ] i s a s u b - i n t e r v a l o f [-a 1 = m l , . . ., a j _ a = m ~ _ 1] a n d i n f a c t

[ a l = m 1 . . . , a j 1 = m / _ 1 ] = ( ~ [ a l = m l , . . . , a j _ l = m j _ _ l , a i = m j J .m j~ 1

I n t h i s n o t a t i o n

Pn, k = ~ l [ a l = m l , . . . , a , - l = m , - 1 , a , = k ]m t , . . . , m n - 1

t h e s u m m a t i o n b e i n g o v e r a l l p o s i ti v e in t e g e r v a lu e s o f m l , . . . , m n_ 1 a n d l ( J )

= le n g t h o f th e i n t e r v a l J .

6 .2 . T h e D e r i v a t i o n o f th e K e y I n e q u a l i t y

W h i l e P, , k c a n n o t b e p r e c is e l y c a l c u l a t e d , it c a n b e e s t i m a t e d b y i n t r o d u c i n g t h e

" a p p r o x i m a n t s " o f a c o n ti n u e d f r a c ti o n :

P . 1

Q , a 1 + 1

a 2 + l

"+ 1

a n .

Page 28: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 28/68

150 J. BARONE & A. NOVIKOFF

H e r e P n = P n ( a l . . . . . a n) a n d Q , = Q n ( a i . . . . , an ) s a ti sf y t h e c l as s ic a l r e c u r s i o nf o r m u l a e

P , = P , - 2 + a , P n -i , P i = 1 , P o = O ,

Q , = Q n _ 2 + a n Q n j , Q l = a a , Q o = l .

T h e i n t e r v a l [-al = m > . . . , a n _ 1 = m , i , an = k ] h a s e n d - p o i n t s

a n d

Pn(mi . . . . , m n _ i , k ) Pn_2-JckPn_l

Q n ( m l . . . . . m n 1 , k ) - Q n _ 2 q - k Q n _ 1

P ~ ( m ~ , . . . , m , _ , , k + l ) P,, 2 + ( k + 1 ) P , _ lQ n ( m ~ , . . . , m , _ i , k + l ) Q , 2 + ( k + l ) Q , _ ~

I n v i r t u e o f t h e c l a s s ic a l i d e n t i t y

1 ( 2 n_ ~ = ( -

t h e l e n g t h o f t h i s i n t e r v a l i s g i v e n b y

1 1. E a l = . l = . l an = k -Q l. . .

k + k + l + Q '°2 ]Q._~!

H e r e ( 2 , _ i = Q , _ l ( m a , m 2 , . . . , m , _ O , Q n _ 2 -- _Q n _ 2 (m l ,m 2 . . . . . rnn 2) a r e con -

v e n i e n t b u t d a n g e r o u s a b b r e v i a ti o n s .

I t f o ll o w s t h a t t h e f a c t o r 1 / Q 2 i is c o m m o n t o b o t h l [ a 1 = m ~ . . . . , a , ~ = m , _ 1,

a , = k ] a n d l [ a z = m i , . . . , a , _ , = m , ,, a , = k + l ] s o t h a t t h e ir r a t io is

S i n c e

k-~Q n 2 ( m l , ' ' ' , m n - 2)

k + 2 + (2 , 2 ( m > . . . ,m , _ 2 )"( 2 , _ l( m j , . . . , m , _ ~)

0 < ~ < 1

f o r a l l c h o i c e s o f m l , . . . , m , _ i , t h i s r a t i o l ie s b e t w e e n

k k+land

k + 2 k + 3

Page 29: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 29/68

Axio matic Probability 151

f o r a l l c h o i c e s o f m ~ , . . . , m , _ 1 - I t f o l l o w s ~ t h a t

k + lk <Pn,k+l < _ _ ( 6 . 1 )

k + 2 P,,k k + 3

f r o m w h i c h i n e q u a l i t y B O R E L p r o c e e d s . T h e s e t o f n u m b e r s x s a t i s fy i n g G ( x ) = k is a

u n i o n o f i n t e r v a l s a n d n o t i t s el f a n i n t e r v a l ; t h e b a s i c i n t e r v a l s, w h o s e l e n g t h s a r e

c a l c u l a b l e i n t e r m s o f P , ' s a n d Q , ' s , a r e o f t h e f o r m [ a 1 = r e x, . . . , a , 1 = m , _ 1, a , = k -l.

S i n c e e a c h G ( x ) i s t h o u g h t o f a s a " t r i a l " d e t e r m i n e d b y x, s u c h a b a s i c i n t e r v a l

r e p r e s e n t s t h e s e t o f " t r i a l " s e q u e n c e s w i t h p r e s c r i b e d o u t c o m e s o n t h e f i rs t n t r ia l s.

I n th e l a n g u a g e o f C a r t e s i a n p r o d u c t s s u c h s et s h a v e c o m e t o b e c a l l e d cyl inder sets,

w i t h " b a s e " i n t h e p r o d u c t s p a c e o f t h e f ir s t n f a c t o r s p a c e s.

W h a t B O R E L h as c a l c u l a t e d is, f ir st , i n e q u a l i t i e s f o r t he r a t i o s o f p r o b a b i l i t i e s o f

c y l i n d e r s e t s

k l [ a l = m l , . . . , a , _ l = m , _ t , G = k + l ] k + l< . . . . (6.2)

k + 2 l [a~ = m,, 7 .77S 72 mZ ~,~TG~-- -I- < ~ "

T h e c o m p a r a b l e i n e q u a l i t y fo r t h e r a t i o P,,k+~ o f a priori p r o b a b i l i t i e s i s

Pn, k

k + l<Pn, k+l <_

k + 2 P n , k k + 3 "

T h i s l a s t i n e q u a l i t y y i e l d s , b y r e c u r r e n c e ,

i.e.

( k - 1 ) ( k - 2 ) . . . ( 2 )( 1) < Pn, k (k ) (k - 1) . . . (3 ) (2 )

( k + l ~ . ( ~ ) ) Pn, 1 ( k + 2 ) ( k + l ) . . . ( 5 ) ( 4 )

2 P n k < 6

( k ) ( k + l ) p ,, ~ ( k + l ) ( k + 2 )

1 To state this mor e explicitly: what is established in the text (in not atio n tha t reg rettably suppresses

the indices m l, rn2, ..., m,, 1) is that

k Pr[al=ml ,a~=m 2 . . .. a ,_l= m, ,_l ,G =k+ l ] k + l- - <k + 2 Pr[a l= ml ,aa= m 2 . .. . G_l= m ,_ i , a ,= k] < ~ "

Here the strength of the inequalities lies in the fact that the given bounds hold for all choices of

ms, mz, ..., m,_ ~. It follows th at if one m ultiplies this inequa lity by Pr [a 1 = ml, ..., a,._ 1 = r G - 1, an = k]

and then sums over all possible values of ml, ..., rG_ 1, one obtains

k k + lk+ 2 P"'k<P"'k+l < ~ 3 Pn, k

which is the d esired sta teme nt (6.1). This follow s since

~ - . . ~ P r [ a a = m 1 . . . . a,, l=rn,_ l,a,=k~= Pr[a,= k~.mi - -1 m2= l mn- I

(It should be emphas ized again th at th e set of x for which [ a, = k] is a sum o f disjointopen intervals and

not itself an interval.)

Page 30: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 30/68

152 J. BARONE& A. NOVIKOFF

O n e c a n f r e e t h i s o f p , , a b y u s i n g ~ , P , , k = 1. S u m m i n g t h e a b o v e i n e q u a l i t ie sk = l

w e o b t a i n

i .e .

• Pn, k6<k=~ <

( k ) ( k + 1 ) P n,1 ( k + 1 ) ( k + 2 ) '

12 < < 3 ,

P n , 1

½ < Pn , l < ½ •

T h u s i n e q u a l i t i e s a r e o b t a i n e d f o r p . , k :

2 /3 3

( k ) ( k + 1) < P . , k < ( k + 1 )( k + 2 )"

L et P. , k = P. , 1 + Pn, Z+ " " + P .,k = P {a . (x ) < k} . Th en

1 - Pn, k = P ro ba bi l i ty {an(x > k } = P n, k + ~ + P . , k + 2 + ' " "

T h e i n e q u a l it i e s g o v e r n i n g Pn, e i m p l y t h e i n e q u a l i t y

2 __ ~ 2 ~ 3 3

3 ( k + l ) j = k + l 3 (j )( j+ l~ < I - P ~ k < j = k + a ( j + l ) ( j + 2 ) k + 2 "

A t t h i s p o i n t B O R E L i d e n t if i e s e a c h c o n t i n u e d f r a c t i o n w i t h a n i n f i n it e s e q u e n c e

o f d i c h o t o m o u s t r i a ls s o t h a t h e c a n a p p l y h i s A ~ r e su l t. T o d o t h i s h e i n t ro d u c e s a n

i n t e g e r v a l u e d f u n c t i o n ~ b(n ), a n d c o n s i d e r s f o r e a c h f i x e d i r r a t i o n a l x i n t h e u n i t

i n t e r v a l t h e s e q u e n c e o f e v en t s d e f i n e d b y a n ( x ) > qS(n ) ( " succe ss" ) , n = 1 , 2 , 3 . . . .

I f ~b n) i s chosen so tha t

1

F~ ~(~)

c o n v e r g e s , t h e n

(1 - p . , ~ ( . ) )

c o nv e rg e s. I f ~ n ) d i v e r g e s , t h e n . = 1 ( 1 - P . ,o ( . )) d i v e rg e s . F r o m t h e r e su l t o n A oo

B O R E L c o n c l u d e s

T h e B o r e l C o n t i nu e d F r a c t i o n T h e o r e m . Prob {aN(x > qS(n) i n f i n i t e l y o f t e n } i s

10 o r 1 a c c o r d i n g a s ~ ~ ( n ) c o n v e r g e s o r d iv e r g e s .

Page 31: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 31/68

Axiomatic Probability 153

BOREL next observes th a t th is sharp a l te rna t ive map be pu t in to even more

1 1str iking form. Indee d, i f ~O-~n) converges, then there exists a O(n) such tha t ~ '

0(n)

1converges while l i ra ~(n) = 0 an d correspo nding ly, i f ~ ~ diverges, there exists

° ~ ~(n) '

1 ~(n)a ~(n) suc h th at ~ ~ dive rges wh ile ...vlim~(n) - - ~" I t fol lows from the o r iginal

formula t ion appl ied to ~ (n) tha t the theorem can be re formula ted thus :

f an 0 ) Prob~limm a, = o o ; = 1 accordingly as ~ 1P r o b l l i m ~(n ) = ~ = 1 or [ O(n) J ~(n )

converges or diverges.

BOREL wrote o f th is theorem: " In th is form i t appears to me to be the m ost

interest ing o f those we have ob taine d in this mem oir ." BOREL (1909: 269). As a

his tor ica l note BOREL adds " the n ota t i on l im, d ue to Pr ingshe im, denotes ' l a p lus

grande l imi te ' de f ined by Cauchy, and made prec ise by du Bois Reymond and

H a d a m a r d . "

6.3. Defect in Reasoning

The defect in reaso ning h ere is l ike that of the case of the decim al f ract ion, but

more grave . In the dec imal case only the ze ro par t of the Zero-O ne Law was used ,09

wh en th e co nclus ion Ao~ = 0 was asser ted for a sequence of t r ia ls with ~P n < oo.1

Th ou gh the tr ia ls were no t in depe nden t, the "CANTELLI" genera l izat ion o f BOREL'Soo

pr oo f tha t Aoo = 0, whe never ~ p, is convergen t , suff ices to v alidate this aspect of the

reasoning. 1

Fo r the case of the cont in ued f rac t ion , where once aga in the " t r ia l s" und er

cons idera t io n a re dependent , the conc lus ion tha t Aoo - -0 ma y aga in be jus t i fied inoo

th is fash ion , i f ~ p , converges. Howev er the com panio n resul t for cont in ued1 co

fraction s, th at A co = 1 if ~, p, diverges, requires a different gen eral izati on of BOREL'S1

or ig ina l d iscussion of the d ivergent case to cope wi th the d ependence of the " t r ia ls"

(that is, the digits a l , a 2 . . . ). Th at the tr ia ls are dep ende nt is c lear bo th

geom etr ical ly and a lgebraical ly. We shall re turn to this point , and give the required

genera l izat ion of the Aoo = 1 result , in § 8.2 below which deals w ith the wo rk of

F. BERNSTEIN.

6.4. A Possible Clue to the Genesis of the Borel Continued Fraction Theorem

Once again, as in the case of the BOREL Strong Law , one can ask w hat led

BOREL to the rema rkab le ( if f lawed) discussion o f con tinu ed fract ions as an exam ple

of h is general theo ry of denu merab le probabi l i ty . As before , one can s imply appea l

to the intu i t ion of a prof ou nd and fert i le inte l lect . In this case, however , an

Page 32: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 32/68

154 J. BARONE& A. NOVIKOFF

a l t e r n a t i v e o f c o n s i d e r a b l e w e i g h t m u s t b e c o n s i d e r e d . T h e r e l e v a n t fa c t is t h a t t h e

S w e d i s h m a t h e m a t i c i a n A . W I M A N h a d o b t a i n e d a n a n a l o g o u s r e su l t d a t in g b a c k

t o 1 9 0 0 - 1 9 0 1 w h i c h a s s e r t s z e r o p r o b a b i l i t y f o r a s e t i n th e u n i t i n te r v a l . W IM A N 'S

s e t ( a s u b s e t o f t h e i r r a t i o n a l s i n t h e u n i t i n t e r v a l ) w a s a l s o d e f i n e d b y as o p h i s ti c a te d c o n d i t i o n o n t h e a s y m p t o t i c b e h a v i o r o f t h e t e rm s a n ( x ) o f t h e

e x p a n s i o n o f i ts m e m b e r s i n c o n t i n u e d f r a c t io n s . T h e c a l c u l a ti o n s s h o w i n g i t t o

h a v e z e r o " p r o b a b i l i t y " o v e r l a p p e d s e v e r a l o f B O R EL 'S . W I M A N ' s p r o o f i n v o l v e d

a n e x p l ic i t u se o f B O R EL 's n e w t h e o r y o f m e a s u r e t o e x t e n d t h e s c o p e o f c l as s ic a l

g e o m e t r i c p r o b a b i l i t y a n d r e li e d o n a s c r u p u l o u s u s e o f c o u n t a b l e s u b - a d d i t i v it y o f

s u c h m e a s u r e i n t h e p r o o f (WIMAN ( 1900 ; 1901)). WIMAN h i m s e l f was r e pa i r i ng

s e r i o u s d e f e c t s in t h e p r e v i o u s w o r k o f h i s c o l l e a g u e T . B R O D t~ N (1 90 0), i n a p o l e m i c

t h a t r a g e d b e t w e e n t h e t w o . T h e p r o b l e m t h e y d e b a t e d h a d a r is e n in t h e c o n t e x t o f

C e l e s t i a l M e c h a n i c s w h e r e i t h a d b e e n r a i s e d b y t h e S w e d i s h m a t h e m a t i c i a n -

a s t r o n o m e r H . G Y L DI2 N; a s a re s u l t t h e i r p o l e m i c w a s d i s p u t e d i n j o u r n a l s r e a d b y

N o r d i c m a t h e m a t i c a l a s t r o m e r s b u t w a s h a r d l y f am i li ar t o t h e g e n e r a l E u r o -

p e a n m a t h e m a t i c a l c o m m u n i t y . I n c o n t r a s t t o t h e c o r r e s p o n d i n g c a s e o f V AN

V L EC K 'S w o r k o n d y a d i c d ig it s, t h e r e is n o d o u b t o f BO R EL 'S a c q u a i n t a n c e w i t h

t h i s p r i o r w o r k ; i n 1 9 0 5 BO R E L e x p l i c i t y g a v e W I M A N p r i o r i t y f o r t h e i n -

t r o d u c t i o n o f m e a s u r e i n to g e o m e t r i c p r o b a b i li ty . T h i s a c k n o w l e d g e m e n t , a c c o m -

p a n i e d b y a b i b l i o g r a p h i c r e f e r e n c e t o W I M A N ' s p a p e r s , o c c u r s i n B O R EL (1 90 5),

w h i c h i s d i s c u s s e d b e l o w ( c f § 7 .3 ). Ho w ev e r , BOREL do es no t , i n 1905 , r e f e r t o

t h e c o n t e n t o f W I M A N ' s re s u lt , n o r d o e s h e e v e n m e n t i o n t h e o c c u r r e n c e o f

c o n t i n u e d f r a c t io n s i n t h e f o r m u l a t i o n o f t h e p r o b l e m s o l v e d b y W IM A N . T h e

m u c h m o r e i n f lu e n t i a l p a p e r o f 1 90 9 la c k s a n y r e f e r e n c e to W I M AN 'S w o r k

w h a t s o e v e r , c o n s i s t e n t w i t h it s o m i s s i o n o f a n y i n t e r p r e t a t i o n i n t e r m s o f

m e a s u r e o f t h e r e s u l t a b o u t c o n t i n u e d f r a c t io n s .

B O RE L s aw h i s C o n t i n u e d F r a c t i o n T h e o r e m a s a n e x a m p l e o f a g e n e r al t h e o r y

o f p r o b a b i l i t y o n a b s t r a ct s ets (t h e p r e s u m e d m e a n i n g o f " p o i n t e d e v u e l o g i q ue " ) .

O n t h e e v i d e n c e p r e s e n t e d a b o v e , h e w a s a t b e s t u n c l e a r t h a t h is g e n e r a l t h e o r y w a s ,

i n th i s c a s e, e q u i v a l e n t t o m e a s u r e t h e o r y . I t i s e n t i r e l y p o s s i b le h e t h o u g h t

d e n u m e r a b l e p r o b a b i l i t y a p p l i e d t o c o n t i n u e d f r a c t io n s o f f er e d a d is t in c t , m o r e

" e f f e c t i v e " (i.e., " c o n s t r u c t i v i s t " ) a l t e r n a t i v e . I n a n y c a s e B O R E L u n q u e s t i o n a b l y

k n e w o f a t l e a st o n e p r o b a b i l i s t i c r e s u lt c o n c e r n i n g c o n t i n u e d f r a c ti o n s b e f o r e 1 9 09

a n d t h is c o u l d w e l l h a v e b e e n t h e g e n e s i s o f h is o w n e x a m p l e o f t h e g e n e r a l t h e o r y .

T h e d i s t i n c t i o n b e t w e e n W I M A N a n d V A N VLECK a s p r e c u r s o r s o f B O RE L ism a r k e d i n tw o w a y s : f ir st , w h i le b o t h e m p l o y e d m e a s u r e t h e o r y , WIMAN,u n l i k e

VAN VLECK, e x p l i c it ly c o n s i d e r e d h is t h e o r e m a s a s o l u t i o n t o a p r o b l e m o f

p r o b a b i l i t y ; s e c o n d , w h i le V A N V L E C K 's w o r k m a y h a v e b e e n k n o w n t o BOREL,

WIMAN's u n q u e s t i o n a b l y w a s k n o w n .

6 .5 . T h e C a n t e ll i M o d i f i c a t io n o f t h e B o r e l Z e r o - O n e L a w

T h e B O R EL Z e r o - O n e L a w h a s u n d e r g o n e c o n s i d e ra b l e g e n e r a l i z a ti o n s in c e its

f ir st f o r m u l a t i o n i n 19 09 . I n p a r ti c u l a r , th e " z e r o " c a s e ( A ~ = 0 w h e n ~ p ,

c o n v e r g e s ) h a s s u b s e q u e n t l y b e e n e s t a b l is h e d w i t h n o a p p e a l t o t h e i n d e p e n d e n c e

o f t h e e v e n t s w h o s e p r o b a b i l i t i e s a r e p 1, P 2 , . .- - T h e s e e v e n t s a r e t h e " t r i a l s " o f t h e

o r i g i n a l BO R EL f o r m u l a t i o n . T h i s r e m o v a l o f t h e h y p o t h e s i s o f i n d e p e n d e n c e i n t h e

Page 33: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 33/68

Axiom atic Probability 155

" z e r o " c a s e is a t t r i b u t e d t o C A N T E L L I ( 1 9 1 7 a , 1 9 1 7 b ), w h o s e w o r k w e s h a l l d i s cu s s

i n P a r t I I . H o w e v e r w e h a v e o c c a s i o n t o r e f e r t o t h e " C A N T E L L I " r e s u lt a n d

" C A N T E L L I -l ik e r e a s o n i n g " i n w h a t f o ll o w s . T h e r e f o r e w e i n t e r p o l a t e a t t h is p o i n t

t h e s t a n d a r d m o d e r n f o r m u l a t io n , t o r e n d e r t h e i m m e d i a t e l y e n s u in g d i s c u ss io n

s e l f - c o n t a i n e d . T h i s f o r m u l a t i o n d i f f e r s s u b s t a n t i a l l y f r o m C A N T E L L I ' s o r i g i n a l

o n e i n t h a t i t d e p e n d s o n a n u n d e r l y i n g a - a d d i t i v e m e a s u r e .

C a n t e l l i L e m m a . L et ( f2 , ~ , P) be a proba bi l i ty space , so that ~ is a a- f ie ld o f se ts

fro m f2, and P is a countably a ddi t ive non-negat ive norm al ized measure de f ined on theel3

s e ts o f ~ . I f E l , E2 , . . . , En, . . . are sets in ~ and ~ P (E ,) converges, then P ( l i m s u p E n )1 n~oo

= 0. T h e p r o o f is g iv e n a f t e r s o m e p r e l i m i n a r y r e m a r k s .

R e m a r k s . 1) l i m sup E , is de f i n ed a s ( ~ U E , and so i s i n ~ . I t i s t he s e t o f a l ln ~ N = I n= N

p o i n t s w h i c h a r e i n i n f in i te l y m a n y o f t h e E . ' s .

2 ) I f E c l i m s u p E . , a n d E i s i n ~ , t h e n P(E)__<P(lim s u p E n ), s o t h a t u n d e r t h en ~ co n ~ o o

h y p o t h e s i s ~ P ( E . ) c o n v e r g e s , o n e c o n c l u d e s P ( E ) = O .n = l

3 ) I f N i s c o m p l e t e w i t h re s p e c t t o P , t h e n E c l i m s u p E . i m p l i e s b y r e m a r k 2 )

t h a t E e ~ a n d f u r t h er t h a t P ( E ) = 0 . ~ o o

4 ) T h e n o t a t i o n E . h e r e is n o t t o b e c o n f u s e d w i th t h e n o t a t i o n i n t r o d u c e d b y u s

i n o u r d i s c u s s i o n o f B O R E L (1 90 9), w h e r e E ~ w a s t h e o c c u r r e n c e o f p r e c i s e l y n

s u c c e s s e s a n d A , = P(E~). I n f a c t , w e h e r e u s e E , t o p l a y t h e r o l e o f t h e e v e n t " s u c c e s s

a t t h e n h t r i a l " i n B O R E L ' S t e r m i n o l o g y . T h e p r o b a b i l i t i e s P(En) o c c u r r in g h e r e

c o r r e s p o n d t o t h e p r o b a b i l i ti e s p . i n t r o d u c e d b y B O R EL , a n d P ( li m s u p E ~)

c o r r e s p o n d s t o B O R E L's A o o. I t is th i s n o t a t i o n w h i c h w i ll b e u s e d h e n c e f o r t h .

P r o o f o f t h e C a n t e ll i L e m m a . T h e s e ts ~ ) E n d e c r e a s e w i th i n c r e a s i n g N , s o t h a tn = N

P Q ~ N E n ) i s a n o n - i n c r e a s i n g s e q u e n c e a n d

P( l i m sup En) = l i m P En ,n ~ o O N ~ o o n

b y t h e c o u n t a b l e a d d i t iv i t y o f P . F u r t h e r

oo

b y t h e s u b - a d d i t i v i t y o f P , a c o n s e q u e n c e o f c o u n t a b l e a d d i t iv i ty . S i n c e ~ P ( E , )oo 1

c o n v e r g e s b y h y p o t h e s i s , ~ P ( E , ) t e n d s t o 0 w i t h i n c r e a s i n g N . T h u sN

P ( l i m s u p E . ) = l i m P E ,, < l i m P(En) = 0t l ~ o O N ~ o o N ~ o o

as de s i r ed .

Page 34: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 34/68

15 6 J. BARONE &; A. NOVIKOFF

I f w e r e - i n t roduc e t he no t a t i o n P(En)=p, an d A~o=P(l imsupE,) , t he n w ecO

ob tain the CANTELLI mo dif icat i on of BOREL's resul t : ~ Pn conv erges imp l ies A~o

= 0 , w i t hou t a ny a s s um pt i on a s to i nde pe nde nc e .In § 10.2 below, as wel l as in § 7 imm edi ate l y fol low ing we give ins tances of this

reas oni ng by BOREL, FRt~CHET, and HAUSDORFF, a l l of wh om pre ced ed

C A N T E L L I .

7. Borel ' s Earl ier Works

7.1. Introduction

This sec t ion dea l s wi th two ea r l i e r works of BOREL: "Contr ibut ion & l 'analyse

a r i thm 6t ique du co nt in u" (BOREL (1903) ) and " Re m arq ue s sur ce r t a ines ques t ions

de probabili t6" (BOREL (1905)).

Each of these works wi ll be re la ted to the cons ide ra t ions of BOREL'S "L es

p roba b i l i t 6 s d6nombra b l e s e t l e u r s a pp l i c a t i ons a r i t hm6t i que s " i n o rde r t o g i ve

• fur the r ev idence su ppo r t ing the ana lys is of BOREL (1909) presen ted above .

In the discuss ion of BOREL (1903), the focus wi l l be on the inf ini te sub-additivity

of geom et r i ca l vo lum e. In pa r t i cu la r , we sha ll focus on the resu l t tha t , for su i tab le

sets E, El , E2 . . . . in Eu cl id ean n-d ime nsio nal space, the assum ption s ~ vol(E~) < 0%1

and E c l i ra sup Ei , imp ly v ol (E )= 0. (This i s the resu l t of 1909, nam ely, A~ = 0 in

the case of converg ence , except in geo met r i c an d n ot p robabi l i s t i c t e rms .) The

a bs e nc e o f a ny a s s umpt i ons c o r r e s pon d i ng t o i nde pe nd e nc e i s no t e w or t hy , i.e. this

beco mes a "CANTELLI" resu l t when p ut in a probabi l i s t i c se t ting . I t is prove d b y

BOREL, us ing "CANTELLI- l ike" reason ing a nd some geom et r i c hypoth eses on the

se ts E , E 1, E2 , .. . suf fi c ien t to ensure tha t they h ave "v ol um e" in an e lem enta ry

sense.

I t wi ll be show n, by c i ta t io ns fro m BOREL (1903), that cou nta ble su b-add i t ivi ty,

the ke y to BOREL's pr oo f of the abov e resu l t, was in t imate ly conn ec ted in BOREL's

mind wi th the HEINE-BOREL Th eore m. On th i s ev idence it s eems a t l eas t h ighly

plaus ib le tha t BOREL's re luc tance to employ countable addi t iv i ty and sub-a dd i t i v it y i n de num e ra b l e p roba b i l i t y w a s be c a us e o f t he s t r a nge ne w c on t e x t i n

which the HEINE-BOREL Th eo rem was inappl i cable . Because cou ntab le add i t iv i ty

a nd s ub -a dd i t iv i t y ha d no t p l a ye d a r o l e i n e i the r f in i te o r c on t i nuous p roba b i l i t y

by 1909 1, there was no s t rongly sugges t ive evidence that e i ther was an essent ia l

p r o p e r t y t o d e m a n d o f " d e n u m e r a b l e p r o b a b i l it y " . I n d e pe n d e n c e, o n t h e o t h e r

hand, was a lmos t the ch arac te r i s t i c fea ture of probab i l i ty , and the ex tens ion of

i nde pe nde n c e t o t he de num e ra b l e c a s e e xe r te d a c o r r e s pond i ng l y s tr onge r a ppe a l

to BOREL as the essent ia l ingredient for his new theory in 1909.

In s umm ary , the conten t s of BOREL (1903) he lp con s ide rably in acc oun t ing for

BOREL's t imidi ty about countable sub-addi t iv i ty ( in 1909) , and in provid ingreasons for h i s needles s ly res t r i c t ed as se r t ion about A~ in the convergent case .

* The e xcept ion a l d iscu ss ion of con t in uou s probab i l i ty by WIMAN (1900; 1901) re fe rred to abov e

wil l be t r ea ted in a sepa ra te note .

Page 35: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 35/68

Ax ioma tic Prob ability 157

T h e p a p e r B O R E L ( 19 05 ) r e p r e s e n t s B O R EL 's c h i e f c o n t r i b u t i o n t o p r o b a b i l i t y

p r i o r t o 1 90 9. T h i s p a p e r r e p r e s e n t e d ( fo r al l i ts s h o r t c o m i n g s ) a s i g n i f i c a n t a d v a n c e

i n t h e f o u n d a t i o n s o f p r o b a b i l i t y t h e o r y w h i c h h a s b e e n u n a c c o u n t a b l y n e g l e c te d .

I t p r o p o s e d t h a t i n t h e u n i t i n t e rv a l t h e m e a n i n g o f (g e o m e tr ic ) p r o b a b i l it y ,i d e n t i f i e d w i t h l e n g t h , b e s u b s t a n t i a l l y g e n e r a l i z e d t o b e i d e n t i f i e d w i t h h i s n e w

t h e o r y o f m e a s u re .

B O R E L (1 90 5) u n d e r s c o r e s h o w s i g n i f i c a n t w a s t h e g a p b e t w e e n B O R E L's v ie w o f

( g e o m e t r i c ) p r o b a b i l i t y o n t h e u n i t i n t e r v a l , o n t h e o n e h a n d , a n d h i s v i e w o f

d e n u m e r a b l e p r o b a b i l i t y o n t h e o t h e r . W i t h B O R E L (1 90 5) i n m i n d o n e c a n b e

a l m o s t c e r t a i n t h a t B O R E L 'S r e s e r v a t i o n s ( i n 1 9 0 9 ) a b o u t t h e r o l e o f c o u n t a b l e

a d d i t i v i ty i n " d e n u m e r a b l e p r o b a b i l i t y " s t em f r o m a n i n c o m p l e t e r e c o g n i ti o n t h a t

t h e m a c h i n e r y o f t h e " g e o m e t r i c p o i n t o f v i e w " , a p p li c a b le i n h i s d e c i m a l a n d

c o n t i n u e d f r a c t i o n e x a m p l e s , s h o u l d b e a v a i l a b l e a s w e l l i n t h e g e n e r a l t h e o r y .

T h e a i m o f t h e d e t a i l e d d i s c u s s i o n o f t h e s e e a r l ie r w o r k s i s t h u s t o s h e d l i g h t o n

t h e s h o r t c o m i n g s o f B O R E L (1 90 9) ( n o t e d a b o v e ) b y c o m p a r i n g t h e m w i t h

v i e w p o i n t s B O R E L h i m s e l f p o s s e s s e d b e f o r e 1 90 9.

7 .2 . Bore l (19 03 ) : F oreshadowings o f Can te l l i-L i ke Reason ing

I n B O R E L (1 90 3), c o n t i n u e d f r a c t i o n s h a d b e e n t h e m a i n o b j e c t o f s t u d y a n d n o t

m e r e l y a s o u r c e , a m o n g o t h e r s , o f e x a m p l e s a s t h e y w e r e i n B O R E L ( 19 09 ). T h e

g e n e r a l p u r p o s e o f B O RE L (1 90 3) w a s t o e s t a b l i s h t h e e x i s te n c e o f c o v e r i n g s o f t h e

i n t e r v a l [ 0 , 1 ] b y s u b - in t e r v a l s , m e m b e r s h i p i n w h i c h d e m a n d s a h i g h d e g r e e o f

a p p r o x i m a b i l i t y b y r a t i o n a l s . A t y p i c a l s u c h r e s u l t is , e.g., t h a t every r e a l n u m b e r c~

p o s s e s s e s r a t i o n a l a p p r o x i m a n t s P /Q s u c h t h a t

- ~ < 1 /~ Q 2

wh ere (2 can be req u i red to l ie in a p r e sc r ibe d in t e rv a l (A , B ) , sa t i s fy ing

I O < A < 1 5 A 2 < B .

I n c o n s e q u e n c e , o n e c a n p r e s c r i b e a n i n f i n it e s e q u e n c e o f in t e r v a l s ( A , , B n),s a t i s f y i n g t h e a b o v e , a n d t h e r e w i l l e x i st a s e q u e n c e o f c o r r e s p o n d i n g a p p r o x i m a n t s

T h e m a i n t o o l u s e d i n B O R EL ( 19 03 ) is t h e r e p e a t e d u s e o f f i n it e o r d e n u m a r a b l e

c o v e r s o f [-0 , 1 ] ( o r i ts n - d i m e n s i o n a l a n a l o g , t h e n - d i m e n s i o n a l c u b e) . T h e s e c o v e r s

a r e u s e d t o a s s e r t r e l a t i o n s b e t w e e n t h e l e n g t h s o f t h e c o v e r i n g i n t e r v a l s a n d t h e

l e n g t h ( o r , i n h i g h e r d i m e n s i o n s , v o l u m e ) o f s e ts w h i c h a r e e i t h e r c o n t a i n e d i n a

f in i t e subco ve r , o r , a l t e rn a t ive ly , cove re d in f in i t e ly o f t en .

T h e s e n o t i o n s h a d a l r e a d y b e e n e x p l o it e d b y B O R E L i n b o t h h i s c e l e b r a te d

thesis (BOREL (1895)) an d in h is Lemons sur la Th~orie des Fonct ions (BOREL (1898)).

W h a t i s n o w c a ll e d th e H E IN E -B O RE L T h e o r e m h a d a l r e a d y b e e n s t a t e d b y B O R E L,

f o r d i m e n s i o n n = 1, i n h i s t h es i s a n d i n B O R E L ( 18 98 ). T h e r e is n o q u e s t i o n t h a t t h e

Page 36: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 36/68

1 5 8 J . B A R O N E & A . N O V I K O F F

H E I N E -B O R E L T h e o r e m ( in o n e d i m e n s i o n ) w a s c e n t r a l t o B O R EL 's d e f i n i ti o n o f

m e a s u r e , a n d t o t h e d e f i n i ti o n o f t h o s e s e ts ( s in c e c a ll e d " B O R E L - m e a s u r a b l e " ) t o

w h i c h h e a p p l i e d t h i s t h e o r y o f m e a s u r e . A l t h o u g h B O R EL f a il e d t o g e n e r a l i z e hi s

t h e o r y o f m e a s u r e t o h i g h e r d i m e n s i o n s , h e d i d g e n e r a l i ze t h e H E I N E -B O R E LT h e o r e m , a n d f r o m i t h e d e d u c e d a f o r m o f c o u n t a b l e s u b - a d d i ti v i ty i n h ig h e r

d i m e n s i o n s . T h e e x t e n s i o n o f t h e H E I N E -B O R E L T h e o r e m ( u si n g o n l y o p e n c o v e r s

o f a n e s p e c i a l l y s i m p l e s o r t ) o c c u r r e d i n B O R E L (1 90 3). T h e r e h e g a v e t h e e x t e n s i o n

( T h e o r e m V I I I ) t o b o u n d e d c l o s e d s et s i n d i m e n s i o n n , r e s tr i c ti n g h i m s e l f t o

d e n u m e r a b l e c o v e r s. (B O R EL l a t e r a c k n o w l e d g e d L E BE SG U E 's g e n e r a l i z a t i o n o f t h e

r e su l t to a p p l y t o n o n - d e n u m e r a b l e c o v e r s as w e ll .)

O f s p ec i a l i n t e r e s t is t h e o c c u r r e n c e o f t h e t h e o r e m o n v o l u m e s s t a t e d a b o v e .

T h i s i s T h e o r e m X I b is i n t h e n o t a t i o n o f B O R E L (1 90 3). A s r e m a r k e d i n th e

i n t r o d u c t i o n , i t is a s p e c ia l c a s e o f w h a t is n o w c o n s i d e r e d t h e " C A N T E L L I " p a r t o f

the BOREL-CANTELLIL e m m a s .

T h e s p e c i a li ti e s t h a t s u r r o u n d t h is t h e o r e m o f BO R EL l ie in t h e a s s u m p t i o n s ,

d e r i v i n g f r o m t h e c o n t e x t o f t h e p a p e r o f 19 03 a s a w h o l e , t h a t E l , E 2 . . . . . En, . . . a r e

" d o m a i n s " i n s o m e f ix e d E u c l i d e a n s p a ce s, R k, o f d i m e n s i o n k . A " d o m a i n " is

d e f i n e d as a c l o s e d b o u n d e d p a r t o f k - s p a c e d e t e r m i n e d b y a f in i te n u m b e r o f

a l g e b r a i c i n e q u a l i t i e s

qSj(x 1, . - . , xk) > 0 j = 1, 2 . . . . M .

T h e v o l u m e o f a d o m a i n is a n n - d i m e n s i o n a l ( RIE M A N N) i n t e g ra l , w i th

i n t e g r a n d 1, o v e r th e i n t e r i o r o f t h is d o m a i n . B O R EL c o n s i d e r e d o n l y d o m a i n sw h i c h , i n m o d e r n t e r m i n o l o g y , h a v e n o n - e m p t y i n t e r i o r s a n d w h i c h a r e t h e

c l o s u r e s o f t h e i r i n t er i o r s. I n p a r t i c u l a r , e v e r y d o m a i n c o n s i d e r e d h a s a s t ri c tl y

p o s i t i v e v o l u m e . ( T h u s , f o r e x a m p l e , c l o s e d s p h e r e s a n d c l o s e d c u b e s a r eco

" d o m a i n s " . ) B O R E L s h o w e d t h a t i f ~ v o l ( E , ) is c o n v e r g e n t , t h e n l im s u p E ~ = H1 8 4 o o

h a s " s m a l l c o v e r i n g " . S p e c if ic a ll y , g i v e n e > 0 , t h e r e a r e d o m a i n s

H 1, H a . . . . . H . . . . . s u c h t h a t

H c U ( in t er io r H n), a n d ~ v o l ( H , ) < e .

1 1

T h i s m a y b e c a l l e d B O R E L 'S v e r s i o n o f t h e C A N T E L L I L e m m a . B O R E L's o r i g i n a l

f o r m u l a t i o n w i l l b e p r e s e n t e d b e l o w .

W e n o t e t h a t B O RE L s t o p p e d s h o r t o f c o n c l u d i n g v o l ( H ) = 0 . I n d e e d h e c o u l d

n o t d o t h i s si n ce th e p o i n t s e t H n e e d n o t b e a d o m a i n , a n d s o v o l ( H ) n e e d n o t e x i s t

a s a R IE M A N N i n t e g ra l . A t t h e d a t e o f t h is p a p e r t h e t h e o r y o f m e a s u r e h a d n o t b e e n

g e n e r a l i z e d t o n - d i m e n s i o n a l E u c l i d e a n s p a c e, n o r h a d t h e th e o r y o f t h e

L E B ES G U E i n t e g r a l b e e n e s t a b l i sh e d .

A p a r t f r o m t h e re s t ri c ti o n t o " d o m a i n s " t h e t h e o r e m is t h u s v e r y m u c h t h e

C A N TE LL I L e m m a . W h a t is e m i n e n t l y r e m a r k a b l e is t h e l in e o f r e a s o n i n g

e m p l o y e d b y B O R EL . T h e " C A N T E L L I " p r o o f g i v e n in § 6.5 a b o v e , w h e n s p e c i a li z e dt o t h e c a s e a t h a n d , p r o v i d e s t h e d e s i re d s e t o f d o m a i n s H 1 H 2 , . . . , H . . . . . a s

H i = E N + i w h e r e N i s c h o s e n so t h a t ~ v o l ( E N + i ) < e .i = 1

Page 37: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 37/68

Axi om a t i c P roba b i li t y 159

T h e i n t e re s t i n g q u e s t i o n i s h o w B O R E L a r r a n g e d t o p r o v e t h i s t h e o r e m . T o

e x a m i n e t h i s , i t i s n e c e s s a r y t o r e a d h i s e x a c t f o r m u l a t i o n o f t h i s r e s u l t a n d i ts

i m m e d i a t e p r e c u r s o r , T h e o r e m X I .

T h e o r e m X I . L e t E b e a d o m a i n a n d E l , E 2 , . . . , E h . . . . d o m a i n s s u c h t h a t e v e r y

p o i n t o f E i s i n t e r io r t o a n i n f i n i t y o f t h e m ; t h e n o n e c a n a s s e r t th a t t h e v o l u m e s

v ~ , v 2 , . . . , V h, . . . o f t h e s e d o m a i n s a r e s u c h t h a t t h e s e r i e s

V JC- V2 ~ - . . . -Jr Vh ~- . . •

i s d i v e r g e n t .

T h e o r e m X I bis . L e t E l , E 2 , . . . , E h . . . . . d o m a i n s w i t h v o l u m e s V l , v 2 , . . . , V h, . ..

b e s u c h t h a t t h e s e r i e s

V -}- V 2 -Jf- . . . ~- Uh @ . . .

i s c o n v e r g e n t ; t h e n o n e c a n a s s e r t t h a t t h e s e t H o f p o i n t s w h i c h b e l o n g t o a n

i n f i n i t y o f t h e s e d o m a i n s i s s u c h t h a t , b e i n g g i v e n e a r b i t r a r i l y s m a l l , o n e c a n

c o n s t r u c t d o m a i n s H a , H 2 . . . . . H . . . . . . f i n i t e o r d e n u m e r a b l y i n f i n i t e in n u m b e r ,

s u c h t h a t e v e r y p o i n t o f H i s i n t e r io r t o o n e o f t h e m a n d t h a t , in a d d i t i o n , V~ b e i n g

t h e vo l u m e o f H ~ o n e h a s

v l + v 2 + . . . + v ~ + .- . < e .

( I t a l i c s i n t h e o r i g i n a l . ) B O R E L ( 1 9 0 3 : 3 6 2 ) .

T h e f u l l l in e o f d e v e l o p m e n t l e a d i n g t o th e s e t h e o r e m s p r o v i d e u n a s s a i l a b l e

e v i d e n c e a s to h o w B O R E L, i n t h i s c o n t e x t , a s s o c i a t e d s u b - a d d i t i v i t y a n d t h e

" C A N T E L L I L e m m a " w i t h t h e H E I N E - B O R E L r e su l t . T h i s l in e o f d e v e l o p m e n t i s t h e

f o l l o w i n g c h a i n o f t h e o r e m s , o c c u r r i n g i n S e c t i o n 1 9 o f B O R E L (1 9 03 ).

T h e o r e m V I I I . L e t E b e a g i v e n c l o s e d b o u n d e d s e t, a n d E l , E 2 , . . . , E p . . . . a

d e n u m e r a b l e i n f i n i t y [ f o o t n o t e o m i t t e d ] o f s e t s s u c h t h a t e v e r y p o i n t o f E i s

I N T E R I O R t o a t l e a s t o n e o f t h e m ; i t i s p o s s i b l e t o f i n d a m o n g E l , E 2 , . . . , E p , . . .

a F I N I T E n u m b e r o f s e t s s u c h t h a t e v e r y p o i n t o f E is i n t e r i o r t o a t l e a s t o n e o f

t h e m . ( I t a l ic s i n t h e o r i g i n a l . ) B O R E L ( 1 9 0 3 : 3 5 7 ) 1

This is as c lear a rende ring o f the n-d imen sional HEINE-BOREL heo rem as could b e wished. BOREL

even supplemented i t wi th an extens ion to se t s which a re only c losed (or bounded) a f te r a su i table

projec t ive t ransformat ion . ( In mode rn terms, he cons ide red projective 2-space, or more generally, n-

space.) Such sets he cal led projectively closed o r projectively bounded.

He then g ave a s imple example of three se ts in the pro jec t ive p lane w hich a re projectively closed and

projectively bounded and col lec t ive ly cover the p lane ( two d imensions b e ing chosen for ease of

expos it ion). Thus he could ap ply The orem VII I to each of these se ts . BOREL hen s ta ted a "gen era l ized"HEINE-BORELt he o re m:

The ore m V I I I b i s. If one has a denumerable inf ini ty of sets El , E 2 , . . . , E n , . . . such that every

point of the plane is in the I N T E R I O R of at least one of them (the points at infinity included, ofcourse), one can determine among the E i a fin ite number o f sets such that every point of the plane

is interior to one of them. (Italics in th e original.) BOREL (1903: 359).

Thus BOREL was aw are tha t the se t t ing of the HEINE-BOREL heorem could b e widened f rom n-

dimensions to a t l eas t ce r ta in a l te rna t ive spaces w i thout ch anging the na ture of the asser tion .

Page 38: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 38/68

160 J. BARONE& A. NOVIKOFF

N e x t , r e s t r i c t i ng c ons i de r a t i on t o doma i ns a nd t he i r a s s oc i a t e d vo l ume s ,

BOREL es tabl ished his f i rs t (and key) resul t for sub-addi t ivi ty:

T h e o r e m I X. Wh e n a d o ma i n E i s s u c h t h a t e a c h p o i n t i s i n t e r i o r t o a d o ma i n E i( i = 1 , 2 , 3 . . . . , n . . . ) , one can asser t tha t the s um o f the v o lum es o f the d oma ins E i i s

g r e a t e r t h a n t h e v o l u m e o f E . (Ital ics in the original.) BOREL (1903: 360).

I n o t he r w ords ,

impl ies

oo

E c U ( inter io r(E0)1

oo

vol(E) < y~ vol(E3.1

Th e pro of , to be supp l i ed by the reader , involves the use of the HEINE-BOREL

t h e o r e m ~Th eo re m VII I ) a s a pre l imin ary to as sure the ex i s tence of an N such tha t

N

E c ~) ( inter io r (El)).1

F rom t h i s one c onc l ude s (p r e s uma b l y by e l e me n t a ry c a l c u l us )

N

vol(E ) < ~ vol(Ei)1

and the resul t fol lows.

T he s t a t e me n t o f T h e or e m IX is to be i n t e rp r e t e d a s i nc lud i ng t he c a s e

oo

vol(E /) = + oo.1

BOREL then poin ted out tha t one can g ive th i s same asse r t ion an occas iona l ly

more c onve n i e n t f o rm a s fo l l ow s :

T he ore m IX b i s. Gi v e n a d o ma i n E a n d a d e n u me r a b l e i n f i n i t y o f d o ma i n s

E l , E 2 , . . . , E n , . ..

s u c h t h a t o n e h a s

• vol(Ei) <vol(E),1

t h e n t h e r e a r e p o i n t s o f E n o t i n t h e i n t e r i o r o f a n y E i. (Ital ics in the original.)BOREL (1903: 361).

Thi s i s, o f course , no m ore than a cont ra pos i t ive fo rmu la t ion o f the or ig ina l

T he ore m IX , r e qu i r i ng no fu r t he r p roo f .

Page 39: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 39/68

Axiomatic Probability 161

T h i s pa r t i c u l a r f o rmul a t i on c a n be i mme d i a t e l y s ha rpe ne d by us e o f a n

e lem enta ry a r gum ent w hich em ploys s l igh tly l a rge r doma ins E~ conta in ing El .

T he s ha rpe ne d fo rmul a t i on i s :

T h e o r e m X . I f E has vo lume v, and a denumerab le infinity of domain s E i

( i = 1, 2, . . . , n, . . . ) having volumes vl, are such t h a t

~ v i < v1

the there are points o f E b elonging to none of the E i . (Ital ics in the original.)

BOREL (1 90 3:3 61 362).

Theorem X has a s l igh t ly s t ronger conc lus ion than i t s immedia te predecessor

s ince i t avoids re fe rence to the " in te r ior s " of the se ts E~. Thi s n on- to polo gica lve rs ion i s the one which s t r ikes the contempora ry reader as foreshadowing the

genera l i za t ion to measure theory (or probabi l i ty ) . As we have shown, however , i t

w a s a c h i e ve d on l y a f te r T h e or e m IX bis ( involv ing " in te r iors " ) , and th i s in turn

depended c ruc ia l ly on a HEINE-BOREL argument involv ing "open covers" .

T h e o r e m X I a n d X I bis, c i t ed above , a re now d i rec t consequences of the

preceding. BOREL leaves thei r proofs to the reader .

Summ ar iz ing , BOREL wel l knew tha t in ce r t a in c i rcum s tances i f the se t s E ko0

satisfy ~ m(Ek) < oe, th en th e set H = l im sup Ek, of those p oin t s in inf in i te ly m any of

1the Ek'S, has covers of a rb i t ra r i ly smal l to ta l vo lum e. He d id not s t a t e th i s in the

genera l i ty of measu re theory . Th ere i s no reason to suppo se tha t BOREL so muc h as

c onc e i ve d o f " a bs t r a c t i n g" me a s u re t he o ry t o t he de g re e o f ge nera l it y ne e de d fo r

the CANTELLI imp rov em ent of h i s Zero- On e Law. Indeed , he d id n ot even cons ide r

the s t ra ight forw ard genera l i za t ion of measu re theo ry f rom 1 to n d imens ions . Even

i f he had conce ived of n-d imens ion a l measure , the remain in g s t ep to an ab s t rac t

me asu re re ma ins imm ense. In pa r t icular , the absen ce of a HEINE-BOREL resu l t in

the abs t rac t case might have proved an unbr idgeable gul f , for i t was th i s resu l t

which was bas ic to BOREL's meth ods of proof . The conc lus ion seems inescapable

tha t BOREL knew the "CANTELLI" theo rem in a geom et r i c se t ting only , where

topolo gica l cons ide ra t ions were re levant and ava i l ab le . The l ack of the nota t ion for

l im sup E k for a co l l ec t ion of event s fur the r d i sgui sed the resemblance be tween

the se t H of h i s paper of 1903 and the no wh ere des igna ted se t ( ° 'i n fin it ely ma ny

successes" ) in the paper of 1909 whose probabi l i ty i s A~ .

We a re thus l ed to add an ad di t iona l sp ecula t ion co ncern in g BOREL'S t rea tm ent

of h i s Zero -On e Law : the ab sence of a topolog y in the space of tr i a ls prev ented h im

from es tab l i sh ing a HEINE-BOREL Th eo rem ; th is absence in turn b lock ed the way

for h i s use of coun table sub-ad di t iv i ty in the se t ting of " probab i l i t6 d6n om brab le" ,

e ve n i f he ha d t hough t o f p roba b i l i t y a s a na l ogous t o vo l ume (o r me a s u re ) .

In v iew of the Theorem XI h i s c i t ed above , in which sub -addi t iv i ty i s proved , we

are s im ul tan eou sly led to the surpris ing con clus ion tha t BOREL was as c lose in 1903

to a r igo rous p roo f of the "CANTELLI" ve rs ion of h i s Zero- On e L aw as was

CANTELLI in 1917. The difference is that CANTELLI's work deals explicit ly with

prob abi l i ty a nd so was t aken up by succeeding probabi l i s t s, whi le BOREL'S pap er of

Page 40: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 40/68

162 J. BARONE 8¢ A. NOVIKOFF

1 9 03 , w i t h i ts i n t ri g u i n g T h e o r e m X I bis , r e m a i n e d r e l a t i v e l y n e g l e c t e d . I ts t it l e a n d

e v e n i t s m a i n r e s u l t s g i v e n o c l u e t o i ts i n t e r e s t i n g i n t e r n a l a r g u m e n t s 1.

7 .3 . Bore l (19 05 ) : A n Ea r ly Iden t i f i ca t ion o f Geometr ic P robab i l i ty w i th M easure

T h e p a p e r o f 1 90 5 c o n t a i n s t h e f o l l o w i n g f o u r a s s e r ti o n s o f i n t e re s t :

1) I f o n e u s e s th e c o n v e n t i o n t h a t t h e p r o b a b i l i t y o f a s e t is p r o p o r t i o n a l t o

i ts l e n g t h ( o r a r e a , o r v o l u m e ) , it s h o u l d b e m a d e e x p l i c i t t h a t t h i s is a

c o n v e n t i o n a n d n o t t h e i n tr in s ic m e a n i n g o f p r o b a b i li ty .

A l l t h e p r e c e d i n g is w e l l - k n o w n , b u t q u e s t i o n s o f p r o b a b i l i t y h a v e g i v e n

r is e to s o m a n y v e r b a l c o n t r o v e r s i e s a r is i n g s i m p l y f r o m a l a c k o f a g r e e m e n t

o n t h e c o n v e n t i o n s o f l a n g ua g e , t h a t i t m a y n o t b e s u p e r f lu o u s t o m a k e

p r e c i s e t h e c o n c e p t s w h i c h I w i ll e m p l o y . B O R E L ( 1 9 0 5 : 1 2 4).

2 ) F o r t h e s e t E o f r a t i o n a l n u m b e r s i n [ 0, 1] , a n d w i t h t h e a b o v e c o n v e n t i o n ,

1

P(E ) = j f (x) dxo

w h e r e

= t h e ch a r a c t er i st i c f u n c t io n o f E = ~ I i f x is r a t io n a lf ( x )(o i f x i s i r r a t i o na l .

S i m i l a r l y ,1

P ( E c) = ~ F ( X ) d xo

w h e r e

f ( x ) = ~ l i f x is i r ra t i o n a lF ( x ) = l -

1 0 i f x i s r a t i on a l .

T h e s e i n te g r al s p r o d u c e t h e " r d p o n s e e v i d e n t e " t h a t P ( E ) = O, P ( E c)= 1 , b u t n o t i f

o n e r e s t r i c t s o n e s e l f t o R I E M A N N i n t e g r a t i o n .

H o w e v e r , i f o n e u s es t h e n e w d e f i n i t io n o f i n t e g r a l w h i c h i s d u e t o L e b e s g u e ,

o n e s e e s th a t e a c h o f t h e f u n c t i o n s f ( x ) a n d F ( x ) i s i n t e g r a b l e i n t h e s e n s e o f

L e b e s g u e , o r , m o r e b r ie f ly , L - i n t e g r a b l e a n d t h e i r L - i n t e g r a l p r o v i d e s t h e

c o r r e c t [sic] m e a n v a l u e o r p r o b a b i l i ty s o u g h t. L e b e s g u e 's m e t h o d s t h u s a l l o w

u s t o a p p r o a c h q u e s t i o n s a b o u t p r o b a b i l i t y w h i c h a p p e a r i n a c c e s s i b l e t o t h e

c l a s s ic a l p r o c e d u r e s o f i n t e g r a t i o n . M o r e o v e r , i n c e r t a i n o f t h e s i m p l e s t c a s e s, it

s u f fi c es t o u s e t h e t h e o r y o f s e ts t h a t I c a l l e d measurable a n d w h i c h L e b e s g u e h as

n a m e d B-measurable; t h e a p p l i c a t i o n o f m e a s u r a b l e s et s t o p r o b a b i l i t y t h e o r y

w a s f i r st m a d e , t o m y k n o w l e d g e , b y W i m a n 2. B O R E L ( 1 9 0 5 : 1 2 5 - 1 2 6 ).

1 It shoul d be observed th at CANTELLI himse lf generalized the inequalit y

P(U E,) < Z P(Ek)

from finite unio ns to d enumera ble ones in the s ame easygoing argument -by-ana logy fashion as BOREL

generalized finite independence to count able independence. Th at is, with no effort at proof, and

specifically with no reference to measure theory.

2 Aut hor s' footnote: In a footnote BOREL cites WIMAN (1900; 190i). These papers, and mor e

generally, the polemic between WIMAN and his colleague BRODt~N will be discussed in a s eparate

publication.

Page 41: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 41/68

Axiomatic Probability 163

This shows tha t BOREL regarded the re la t ion

1P(E) = S f~(x) dx

0

w he re

f~ (x ) = { 10 ififx(~EXSE

as applicable to at least al l BOREL sets.

Inc identa l ly , BOREL regards the de te rmina t ion P(E)=0 for the ra t iona l s a s

c l e a rl y " c o r r e c t " w i th no s us t a in i ng a rgum e n t o t he r t ha n a ppe a l t o t he a u t ho r i t y o f

POINCARI~, wh o had inde ed rega rde d i t as evident , before the existence of a t he o ry

of measure . W e h ave ex am ine d POINCARI~'s lec ture n otes , Calcul des Probabilitds(1893-1894 lectures), a t the Ins t i tu t Henr i Poincar6 , Pa r i s , where th i s en igmat ic

p ron oun c e m e n t i s t o be found , a l r e a dy i nc o rpo ra t e d i n the t e x t a t tha t " p r e m a t u re "

da te , some 16 years be fore the publ i ca t ion of h i s Calcul des Probabilit&

3) An exam ple is considered, n am ely th e se t E ("), def ined for each inte ger valu e

of the p a ram ete r n as a ll rea l numb ers e in [-0 , 1] such tha t the re a re re la t ive ly pr ime

integers p, q satisfying

<1q 1 q"

For each in teger va lue of n , i t i s ev ident tha t

E (") c ~ l~)qw he re

I~½ = p 1 p t- ,q" ' q

p, q are re la t ively pr ime, i.e., (p, q) = 1, an d the u ni on is ov er all such pairs p and q. It

i s then as se r t ed (wi thout comment ) tha t

o~ 2

)=q 2 -P(E(')) < 2 1(I~½ O(q) q.(p , q ) = 1

He re ~b(q) = the n um be r of integers less tha n and re la t ively pr im e to q, and the ser iesclear ly con verg es i f n > 2. This i s a wond erfu l ly c lear ex amp le o f BOREL's expl ic i t

use of coun table sub-addi t iv i ty , bu t only in the contex t of geom et r i c probabi l i ty , o r

wha t he was to ca l l in 1909, the "poin t de rue g6om6t r ique" .

I t i s unf or tun a te tha t BOREL did n ot re l a te th i s examp le in the pap er of 1905 to

his ideas of 1903 discussed abov e, by conc ludin g fur t her th at th e se t of poin ts c~

sat is fying for a ny f ixed n > 2 the ine qua l i ty

fo r infinitely many d i s t inc t ra t iona l s p/q has measure zero. As a resul t , we lack

d o c u m e n t a r y e v id e n ce o f a "CANTELLI" - l i ke asser t ion by BOREL that

P(l im sup E. ) = 0 i f ~ P(E,) < oo

Page 42: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 42/68

164 J. BARONE8~; A. NOVIKOVV

i n a m e a s u r e - t h e o r e t i c i n t e r p r e t a t i o n o f p r o b a b i l i t y b y B O RE L , e v e n i n t h e c a s e o f

g e o m e t r i c p r o b a b i l i t y w h e n h e w a s e x p l i ci tl y a w a r e o f s u c h o n i n t e r p r e ta t i o n .

4 ) A r e m i n d e r t h a t B - m e a s u r a b l e s e t s f o r m , i n c o n t e m p o r a r y t e r m s , a a -

a l g e b r a , a n d t h a t t h e a s s o c i a t e d m e a s u r e i s , a g a i n i n c o n t e m p o r a r y t e r m s , o r -

a d d i t i v e .

I n s u m : B O R E L 's i d e n t i f i c a t i o n o f g e o m e t r i c p r o b a b i l i t y w i t h m e a s u r e is e x p li c i t

i n 1 90 5, a n d f u r t h e r t h e s c o p e o f (g e o m e t r i c ) p r o b a b i l i t y i s e x p l ic i tl y e n l a r g e d , t o

a p p l y t o a a - a l g e b r a o f s e ts ( c f fo ot no te 1 , § 6 .2) .

O u r a n a l y s is o f t h e p a p e r o f 1 90 9 a b o v e s h o w s b y c o n t r a s t t h a t o n l y i n t h e

s p e ci a l a p p l ic a t i o n s ( n a m e l y d e c i m a l e x p a n s i o n s a n d c o n t i n u e d f r a c ti o n s w h e r e t h e

c o n v e n t i o n i s e x p l ic i t ly m a d e t h a t t h e p r o b a b i l i t y o f a n i n t e r v a l i s i ts l e n g t h ) is it

e v e n m a r g i n a l l y p o s s ib l e t h a t B O R E L h a d t h e s a m e f a c ts i n v ie w . In t h e p a p e r o f

1 9 0 9 t h e s e e x a m p l e s a r e c o n s i d e r e d o n l y a f t e r t h e f u n d a m e n t a l Z e r o - O n e L a wc o n c e r n i n g A ~ i s o b t a i n e d . T h i s r e s u l t is in t u r n c o n s i d e r e d i n d e p e n d e n t l y o f

g e o m e t r i c c o n s i d e r a t i o n s a n d i n t h e s e e m i n g c o n v i c t i o n t h a t c o u n t a b l e i n d e -

p e n d e n c e i s th e k e y n o t i o n , c a s t i n g s u b - a d d i t i v i t y a n d o - - ad d i ti v it y a s i de . F o r

B O RE L , t h e " p o i n t d e v u e l o g i q u e " h a d e c li p se d t h e " p o i n t d e v u e g 6 o m 6 t r i q u e " i n

1 90 9 ev e n t h o u g h b o t h w e r e a p p l i c a b l e a n d i n s p it e o f t h e a d d i t i o n a l i n s ig h t s

( r e c o g n i z e d i n 1 9 0 5 ) o f f e r e d b y t h e l a t te r .

8 . The Bore l -Berns te in Polemic

8 . 1 . I n t r o d u c t i o n

B O R EL 'S r e s u l t s c o n c e r n i n g d e c i m a l ( o r d y a d i c ) d ig i t s a n d c o n t i n u e d f r a c t i o n s

a t t r a c t e d c o n s i d e r a b l e s t i r i n t h e y e a r s i m m e d i a t e l y f o l lo w i n g 1 9 0 9 . I n 1 91 0 FA B E R

p r o v e d a g a i n t h e r e s u l t c o n c e r n i n g t h e d e c i m a l d i g it s, t h o u g h i n a s u b s t a n t i a l l y

d i f f e r e n t w a y ( c f §9 .2 ). In 191 1 F . BERNSTEIN a t t a ck ed BOREL's p ro o f o f the

C o n t i n u e d F r a c t i o n T h e o r e m , s u p p l y i n g a n a l t e r n a t i v e o f h i s o w n . B O R E L

r e s p o n d e d t o B E R N S TE IN 's p a p e r w i t h a m o d i f i c a t i o n o f h is Z e r o - O n e L a w ( 1 91 2),

a d d i n g t h a t t h i s m o d i f i c a t i o n , c o u p l e d w i t h i n e q u a l i t i e s a l r e a d y i n t h e p a p e r o f

1 90 9, s u ff i c ed t o v a l i d a t e h i s r e s u l t o n c o n t i n u e d f r a c t i o n s . T h e e x c h a n g e w i t h

BERNSTEIN of fe rs a n o p p o r t u n i t y t o e x a m i n e o n c e a g a i n B O R E L ' s o w n i n -

t e r p r e t a t i o n o f " p r o b a b i l it 6 s d 6 n o m b r a b l e s " . I n p a r t i c u l a r, i t d ec i si v e ly s u st a in s

o u r a s s e r t io n t h a t " c o m p o s i t e p r o b a b i l i t y " l a y a t t h e h e a r t o f h i s t h e o r y , a n d t h a t

c o u n t a b l e a d d i t i v i t y ( a n d i t s c o r o l l a ry , c o u n t a b l e s u b - a d d i t i v i t y fo r n o n - d i s j o i n t

u n i o n s ) w a s i n n o w a y c e n t r a l t o B O R EL 's c o n c e p t i o n o f p r o b a b i l i t y . B O R E L (1 91 2)

a l so i n d i c a te s h o w f a r BO R EL w a s f r o m a p p l y i n g " C A N T E L L I " r e a s o n i n g t o t h e c a s e

~ p , c o n v e r g e n t : i n d e e d , t o s h o w h i s (1 91 2) m o d i f i c a t i o n o f h is Z e r o - O n e L a w

v a l i d a t e s t h e C o n t i n u e d F r a c t i o n T h e o r e m ( b o t h c a s e s ) , h e c h o s e t h e c o n v e r g e n t

c a se f o r d e t a i l e d e x p o s i ti o n , a l t h o u g h t h e " C A N T E L L I " r e a s o n i n g (i.e. u s e o f s ub -

a d d i t i v i t y ) p r o v i d e s a s t r o n g e r a n d s i m p l e r m o d i f i c a t i o n fo r th i s c as e .

F i n a l l y , h e m a r r e d h i s o w n d e f e n s e b y i n s i s t in g t h a t a s p e c if ic in e q u a l i t y o f

BOREL (1909) w as e qu iva le n t to one o f BERNSTEIN 'S (1911) . In f ac t wh i l e the de s i re d

i n e q u a l i t y w a s p e r h a p s l a t e n t i n t h e r e a s o n i n g o f BO R E L 's p a p e r o f 1 9 0 9 , o n l y a

h o p e l e s s l y w e a k e n e d v e r s i o n w a s e x p l i c i t l y g i v e n i n t h e p a s s a g e c i t e d b y B O R E L .

Page 43: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 43/68

Axiom atic Prob ability 165

T h e p a p e r o f 1 91 2 p a r t i a l ly r e b u t s t h e p o s s i b l e c l a i m t h a t B O R EL c o u l d p e r f e c t l y

w e l l h a v e p a t c h e d u p h i s p a p e r o f 1 90 9 if t h e n e e d h a d b e e n p o i n t e d o u t t o h i m .

I n d e e d , h e h a d t h e o p p o r t u n i t y i n 1 9 12 , b u t t h e r e f a il e d to a l t e r h is o r i g i n a !

c a l c u l a t i o n s s u f f i c i e n t l y .

8 .2 . T h e C r i t ic i s m : T h e C o n t r i b u t i o n o f F . B e r n s t e i n ( 1 9 1 1 )

W r i t i n g i n 1 91 1, F . B E RN S TE IN c o n s i d e r e d a p r o b l e m i n C e l e s ti a l M e c h a n i c s

w h i c h r e p r e s e n t e d o n e o f t h e s e v e r a l e ar l y in s t an c e s o f t h e i n t r u s i o n o f " p o i n t s e t

t h e o r y " i n to d y n a m i c s a n d c la s si ca l m e c h a n i c s . T h e p r o b l e m c o n s i d e r e d i s: w h i c h

p o s s i b le c o n f ig u r a t i o n s o f a ce r t a in 3 - b o d y p r o b l e m a d m i t t e d a " m e a n m o t i o n " .

P u t e n t i r e l y i n m a t h e m a t i c a l t e r m s , a n d d e a l i n g f i r s t w i t h t h e n - b o d y p r o b l e m ,

B E RN ST EIN c o n s i d e r e d t h e r e a l a n d i m a g i n a r y p a r t s o f t h e f i ni te s u m

n

2 rme (g'~t+hm) ( rm>0) .1

T h e e x i st e n ce o f a m e a n m o t i o n m e a n s , f o r BERNSTEIN, t h a t t h e s u m m a y b e p u t in

t h e f o r m

r( t) e i~(O

w h e r e

c o (t ) = c t + f ( t )

a n d f ( t ) is b o u n d e d f o r a l l t. T h e c o n s t a n t c i s t h e n c a l l e d t h e m e a n m o t i o n , a n d c

= l i m c o (t ). ( T h e r e q u i r e m e n t t h a t f ( t ) b e b o u n d e d w h i c h w a s o f in t e re s t t o

BERNSTEIN, h a s s i n ce b e e n d r o p p e d f r o m t h e d e f in i ti o n o f m e a n m o t i o n , b u t w e u s e

t h e t e r m a s e m p l o y e d b y BERNSTEIN.)

I f n = 2 , a m e a n m o t i o n e x i st s , a n d i f n = 3 a n d o n e o f t h e r l , r2 , r3 e x c e e d s t h e s u m

o f t h e o t h e r t w o , a g a i n a m e a n m o t i o n e x is ts . T h i s w a s s h o w n b y L A G R A N G E . I f n

= 3 a n d L A G R A N G E ' s c o n d i t i o n f a il s, t h e q u e s t i o n r e d u c e s , f o l l o w i n g B O H L (1 90 9),

t o a d i s c u s s i o n o f t w o a s s o c i a t e d q u a n t i t i e s , p , ~, d e f i n e d b y

g 2 - - g l 1P = - - ~ = - ( ~ 3 + Pc o2 ).

g 3 - g l ' rc

H e r e t h e n o t a t i o n is d e f i n e d a f t e r o b s e r v i n g t h a t , s i n c e L A G R A N G E ' s c o n d i t i o n f ai ls ,

t he r e i s a ( un ique ) t r i an g l e w i th s i de s r l , r 2 , r 3 ; coa , ( o2 , co3 a r e de f ined a s t h e ang l e s

o p p o s i t e r l , r2 , r3 r e s p e c t i v e l y . T h e r e s u l t o f B O H L in 1 90 9 w a s t h a t l i m c o (t) e x i s ts

f o r e v e r y c h o i c e o f p , ~, a n d s o ' ~ ~ t

c o(t) = c r + f ( t )

w h e r e l i m f ( t ) = 0 . B u t o n t h e o t h e r h a n d , h e s h o w e d t h e r e is a d e n s e s e t o f p o i n t st ~ o 0 t

( p, ~) i n t h e u n i t s q u a r e f o r w h i c h t h e c o r r e s p o n d i n g f ( t ) is n o t b o u n d e d , a n d h e n c e

f o r w h i c h t h e r e i s n o m e a n m o t i o n i n t h e s e n s e e m p l o y e d b y B E R N S T E I N .

Page 44: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 44/68

16 6 J. BARONE 8,: A. NOVIKOFF

BERNSTEIN'S paper is devoted to inves t igat ing the m e a s u r e of the poi nts (p, {) in the

uni t sq uare for which a mea n mo t io n ex is ts . His r e su l t is tha t th i s se t i s o f me asu re

zero.

The s ign i f icance of th i s f o r Ce les ti a l M echa nics i s no t o f in te r es t he r e .

BERNSTEIN shows how t he r e s u lt r e duc e s t o de t e r m i n i ng t he m e a s u r e o f po i n t s i n

t he un i t in t e r va l wh i c h pe r m i t a p p r o x i m a t i o n t o h i gh de g re e by m e a n s o f r a t i ona l

app rox im ant s . Because of th is , BERNSTEIN i s l ed to d i scuss the m easu re of

( i rr a t iona l ) num be r s i n t he un i t i n t e r va l whos e c on t i nue d f r a c t ion e xpa ns i ons ha ve

inf in i te ly m an y e lem ents an which a r e l a rge . Spec i fica lly , he es tab l i shes and em plo ys

t he r e s u lt t ha t t he s e t o f x who s e c o r r e s pond i ng e l e m e n t s a , = a , ( x ) are un-

bou nde d a s n r a nge s ov e r the od d i n t e ge r s is o f m e a s u r e 1.

C onve n i e n t l y , a ll t he t he o r e m s a b ou t c on t i nue d f r a c ti ons t ha t he e s ta b l i she s a r e

g r ou pe d i n a s e l f -c on t a i ne d s e c ti on e n t i t le d " T he ge om e t r i c p r oba b i l i t y f o r t he

a p p r o x i m a t i o n o f r e al n u m b e r s b y r a t i o n a l n u m b e r s , t o s t ro n g e r o r d e r t h a n

c on t i nue d f r a c t ion a pp r o x i m a t i ons , a nd r e l a t e d t op i c s " . T he c h i e f r e s u lt e m p l o ye d

f o r a p p l i c a ti o n s o f m e a n m o t i o n s is hi s T h e o r e m 2 :

Those i rrat ional numbers x in (0, 1) which sat i s fy

a~ <k o r a n r ~ k , k > l

f o r r= 0 , 1, 2 , . . . along so me spec i f i ed subsequ ence n 1 < n 2 < n 3 < . . . < n ~ . .. are

poin t s o f measure zero . BERNSTEIN (1911: 428).

Ta kin g the un io n of these "N ul l -m en ge " for k - - 1, 2 , 3 . . . c lea r ly impl ies the r esu l t

ab ou t un bo un de d gro wt h of a , wi th od d ind ices c i t ed above . BERNSTEIN fur the r

e s t a b l is he s t he B OR EL C on t i nue d F r a c t i o n T h e o r e m i n a ne w manner (BERNSTEIN

( 1911: 256) T he o r e m 4). H i s p r o o f is une xc e p t i ona b l e , a l t houg h h is s um m i ng up o f

t he a r gu m e n t i n the f o r m o f a t he o r e m i s c l oudy . He i s a t pa i n s t o po i n t t o t he f l a wed

cha rac te r o f BOREL' s pr oo f in i ts use of inde pend ence be tw een " t r i a l s " a ,__>q~(n),

a nd ne ve r t o u s e s uc h r e a s on i ng h i m s e l f .

We n ow ske tch BERNSTEIN's sec t ion 2 . To the n o ta t io n a l r eady in t roduc ed , we

a d d t h e n o t a t i o n

P [ a ,> = k l a l = m i , a 2 = m 2 . . . . . a , _ l = m , _ l ]

t o de no t e t he condi t i ona l probab i l i ty t ha t a , ( x ) > k g i ve n t ha t ai (x ) = m~, i = 1, 2 .. .. ,n - 1. This i s, by de f in i t ion , a r a t io of l engths : the nu m era to r i s

l [ al = m i , . .. , a , - l = m , - 1 , a , = m , ] ,m n ~ k

t h e " l e n g t h " (i.e. m e a s u r e ) o f t he po i n t - s e t

[a I =m 1, . . . , an_ 1 = mn_ 1, a , = m n ]m n ~ k

a n d t h e d e n o m i n a t o r i s

l [ a i = m l . . . . . a , l = m , - i ] ,

the l ength of a sing le in te rva l co r r esp ond ing to the se t in which a i ( x ) = m i ,

i = 1 , 2 , . . . , n - 1.

Page 45: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 45/68

Axi om a t i c P roba b i li t y 167

B E R N S T E IN c al l s t h i s r a t io t h e " g e o m e t r i c p r o b a b i l i t y " t h a t a , > k. H i s r e s u l ts

a r e a l l d e p e n d e n t o n t h e p r e l i m i n a r y i n e q u a l i t i e s :

2 /~ < P [ a , > k l a x = m s , . .. , a . _ s = - m ~_ l ] < ~ ,

( 8 . 1 )

1 - k - - ~ < P [ a , < k l a s = r n s , . ,a n_ l = m , _ / l < l - l k . I

E q u a t i o n s ( 8 . 1 ) a r e B E P ,NSTEI N ' s ( 1 9 1 1 : 4 2 6 : ( 4 2 ) a n d ( 4 3 ) ) r e - wr i t t e n i n t h e

t e r m i n o l o g y o f c o n d i t i o n a l p r o b a b i l i t y . ( T h e c o r r e s p o n d i n g " g l o b a l " i n e q u a l i t ie s

~ < P [ a ~ > - k ] <~ [ -+ l '

1 - k ~ - f . < P [ a " < k ] < l - ~ ' 1 (8.2)

f o l lo w i m m e d i a t e l y a s w e i g h t e d a v e r a g e s o f t h es e .)

T h e i n e q u a l i t i e s ( 8 . 2 ) o n g l o b a l p r o b a b i l i t i e s ( c f . BERNSTEI N ( 1 9 1 1 : 4 2 7 :

e q u a t i o n 4 7)) m a y b e c o m p a r e d t o t h e s o m e w h a t a n a l o g o u s i n e q u al it ie s o f B O R EL :

2 33 (k + 1~ < P [a , > k ] < k + 2 ' (8 .3 )

k - 1 3 k + 1

k + 2 < P [ a "< = k ] < 3 k + 3 (8.4)

( c f ( 8 . 1 ) a n d i t s c o m p l e m e n t e d f o r m ) .

T h e d i s t i n c t i o n b e t w e e n t h e s e a n d B E R N S T E IN 's i n e q u a l i t i e s (8 .1 ) i s c r u c i a l :

B O R E L h a d n o t c a l c u l a t e d b o u n d s f o r c o n d i t i o n a l p r o b a b i l i ti e s , b u t o n l y f o r

" g l o b a l " p r o b a b i l i ti e s . ( E v e n w h e r e B O R EL c a lc u l a t e s b o u n d s f o r r a t i o s o f g l o b a l

p r o b a b i l i t i e s , e . g .

P [ a , > k + l ] P [ a l = m s . . . . a ~ _ l = m , _ s , a , > k + l ]o r

P [ a , > k ] P [ a l = m s . .. . , a , _ l = m , _ s , a n > k] '

c f. (6 .1 ) a n d ( 6.2 ), t h e s e a r e n o t p r o b a b i l i t i e s o n a n c o n d i t i o n e d o n t h e b e h a v i o r o f

e a r l i e r a s , . . . , a , _ s , i . e . a r e n o t B E R N ST E IN 'S " g e o m e t r i c p r o b a b i l i t i e s " .)

B E R N S T E I N t h e n e m p l o y s a n i n g e n i o us a r g u m e n t t o s h o w t h a t th e p r o b a b i l i ty

o f c y l i n d e r s e ts d e s c r i b e d b y th e s i m u l t a n e o u s c o n d i t i o n s

an~ > k~ ,, a~2 > kn~ ... , a~r > kn~

s a t i s fy i n e q u a l i t i e s

1 1 1k nl kn2 kn r " < P [ a n l > k n l 'a n 2 > k . . . . . . a ~ r > k J

2 2

< ( k . l + 1 ) ( k . r + 1 )

( 8 . 5 )

Page 46: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 46/68

168 J. BARONE • A. NOVIKOFF

a n d s i m i l a r l y

(1 k 2 + l ) . . . ( 1 - k - - ~ ) < P [ a , l < k . . . . . , a , r < k . r ]r

(8.6)

T h e s e b o u n d s a r e f o r " g l o b a l ' , n o t c o n d i t i o n a l p r o b a b il i t ie s . M o r e i m p o r t a n t , t h e y

a r e f o r t h e p r o b a b i l i t i e s o f a p a r t i c u l a r k i n d o f c y l i n d e r s et , n a m e l y i n t e r s e c t i o n s o f

t h e i n d i v i d u a l s e ts (o r " t ri a l s " ) d e f i n e d b y i n d i v i d u a l i n e q u a l i ti e s o f t h e f o r m a , > k ,

( o r a , < k , , r e s p e c t i v e l y ) , fo r v a r i o u s f i n it e c h o i c e s o f n . M o s t i m p o r t a n t o f a ll , t h e s e

i n e q u a l i t i e s c o i n c i d e w i t h w h a t o n e c o u l d h a v e o b t a i n e d f r o m t h e i n d i v i d u a l

" g l o b a l " i n e q u a l i t i e s

1 2~ < P [ a , > = k , J < k , + l

a n d

2 11 - < P [ a , < k , ] < l - - -

k , + 1 k ,

( e s se n t ia l ly e q u i v a l e n t t o t h e " g l o b a l " i n e q u a l i ti e s o f B O R E L ; c f (8 .3) , an d (8 .4)) h a d

o n e b e e n a l l o w e d t o a s s u m e i n d e p e n d e n c e a s w e l l .

B E R N ST E IN 'S i n g e n i o u s a r g u m e n t f o l lo w s f r o m t h e p u r e l y a l g e b r a i c i d e n t i t y

P [ a i = m a , a2 ~m2 , . . . , an =toni

= P [ a , = m , l a i= m i , l _ < i < n - 1 ] P [ a , _ i = m , _ i j a i = m i , l _ < i < n - 2 ] (8.7)

• . P [ a 3 = m 3 1 a l = m i , a z = m 2 ] P [ a2 = m z l a i = m l ] P [ a l = m l J .

T h i s i s t h e f o r m o f " p r o b a b i l i t 6 s c o m p o s 6 e s " w h i c h is a d e q u a t e l y g e n e r a l f o r t h e

c a s e a t h a n d . T h i s m i g h t w e l l b e c a l l e d t h e ( f i n i t e ) C h a i n L a w o f P r o b a b i l i t y .

T o p r o v e B E R N S T E I N 'S i n e q u a l i t i e s ( 8 .5 ) a n d (8 .6 ) f r o m t h e C h a i n L a w , d e n o t e

t h e p r o d u c t o n t h e ri g h t o f t h e C h a i n L a w b y I ~ ( m i , m 2 . . . . . m , ). F i xtl

m l , m 2 , . . . , m , _ 1 a n d s u m b o t h s id e s fo r al l v a l u e s o f r e, r a n g i n g f r o m a f i x ed l o w e r

l i m i t t o i n f in i ty . I f t h e l o w e r l i m i t i s 1, b o t h s i d e s s im p l i f y , a n d t h e r e s u l t i s t h eo r i g in a l a s s e r t io n w i t h a l l r e f e re n c e s t o a , d e l e te d , i n v o l v in g I ~ o n t h e ri g h t - h a n d

n-1

s id e . I f t h e l o w e r l i m i t i s s o m e i n t e g e r k , > 1, t h e l e f t - h a n d s i d e b e c o m e s

P [ a l = m l , . .. , a , _ i = m , _ l , a , > k , ]

w h i l e th e r i g h t - h a n d s i d e o f (8 . 7 ) c a n b e e s t i m a t e d f r o m a b o v e a n d f r o m b e l o w a s t h e

p r o d u c t

I-[ = P [ a , _ i = m , _ i I a i = m i , 1 < - - i< _ n - 2 ] . .. P [ a 2 = m z l a i = m i ] P [ a i = m a ]n- - i

t i m e s t h e u p p e r a n d l o w e r e s t im a t e s , re s p e c t iv e l y , w h i c h h o l d f o r th e l e a d i n g f a c t o r

(el. (8.1))

P [ a , = m , [ a i = m i , 1 < - i< _ n - l J .

Page 47: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 47/68

Axiom atic Probability 169

I n o t h e r w o r d s

1 2k , , -1 [ I < P [ a i= m i , l<- i<-n- l,a ,>k ,]<--= k , + l , - 1 1 ~ '

I n a s i m i l a r f a s h i o n w e e s t i m a t e [ I f r o m a b o v e a n d b e lo w , o r r e d u c e i t t o ~ I ,n - - 1 n - - 2

a s fo l l o w s : W e s u m o v e r m , _ 1 f r o m s o m e l o w e r l i m i t t o in f in i ty , d e l e t in g r e f e r e n c e

t o a , 1 i f t h i s l o w e r l i m i t is 1, o r e l s e o b t a i n i n g

1 2k° f I < I I < f I- - n - - 2 n - - 1 k n 1 + 1- n - - 2

i f t h e l o w e r l i m i t i s k , _ 1 > 1. P r o c e e d i n g i n t h is f a s h i o n , u s i n g a p r e c r i b e d f in i te

c o l l e c t i o n o f i n d i c e s n 1 . . . . n r w i t h p r e s c r i b e d l o w e r l i m i t s k ,~ , k ,2 . . . . , k , r , w e a r r i v ea t t h e d e s i r e d i n e q u a l i t y (8 .5 ). T h e m i s s in g i n t e r m e d i a t e i n d ic e s c o r r e s p o n d t o

s u m m a t i o n s w i t h l o w e r l i m i t 1. T h e i n e q u a l i t y (8 .6 ) f o r P [ a , ~ < k . . . . . . a , r < k j i s

o b t a i n e d s i m i l a r l y or , a l t e r n a t i v e l y , c a n b e v i e w e d a s a n i m m e d i a t e c o r o l l a ry .

B E R N S T E IN n e x t e x p l i c it ly e m p l o y s t h e c o n c ep t o f m e a s u r e a n d t h e va r i ou s f o r m s

o f c o u n t a b l e a d d i t i v i t y ( r e f e rr i n g t o L E B E S G U E ( 19 0 6) ) i n o r d e r t o e x t e n d p r e v i o u s

c o n s i d e r a t i o n s t o s e t s d e f i n e d b y i n fi n it e ly m a n y i n e q u a l it ie s . H e t h u s c a l c u l a te s

t h e p r o b a b i l i t y o f t h e s e t

[ a ,~ > k , 1 , a , 2 > k , ~ , . . . , a , > k , ~ , . . . ]

a n d o f t h e s e t

[ a,~ < k n~ , a , ~ < k , ~ , . . ., a , < k . . . . . . ] .

T h e s e s e ts i n v o l v e in f i n it e s e q u e n c e s o f i n e q u a l i t i e s a n d t h u s a r e n o l o n g e r c y l i n d e r

s e ts . F o r i n s t a n c e , h i s T h e o r e m (2 ), r e f e r r e d t o a b o v e , r e s u l ts b y a p p l y i n g

B E R N S T E I N ' s i n e q u a l i t i e s ( 8. 5) a n d ( 8 .6 ) t o a g i v e n s e q u e n c e { n, } o f i n d i c e s , a n d

c h o o s i n g k ,~ = k f o r r = 1 , 2 , 3 , . . . . S i n c e

r . r

l i m ( l _ k ~ ) = l l m ( 1 _ ~ ) ~ = l i m ( ~ )r = l i m 1

i n e q u a l i t i e s ( 8.5 ) a n d ( 8.6 ) a n d c o u n t a b l e a d d i t i v i t y i m p l y t h e t w o r e s u l t s :

P [ a , i > k , a , 2 > k . . . . . a , r > k , . .. ]

= l i m P [ a , 1 > k , a ,2 > =k , . . . , a , > k ] = 0r~oo

a n d

P [ a , 1 < k , a ,2 < k , . . ., a , . < k, . . . ] = l i m P [ a , 1 < k , . . . , a , . < k ] = 0 .r ~ c o

T h e s e t s [ a , . > k , r = 1 , 2 , 3 . . . ] a n d [ a , r < k , r = 1 , 2 , 3 , . . . ] a r e b o t h o f m e a s u r e z e r o

f o r e a c h v a l u e o f k . H e n c e u n i o n s o f s e ts s u c h a s k = 2 , 3 , . . . a r e s t il l o f m e a s u r e z e r o ;

t h u s t h e p r o b a b i l i t y t h a t { a ,r } is b o u n d e d f r o m a b o v e ( o r b e l o w ) i s z e r o .

T o o b t a i n B O R E L'S t h e o r e m o n C o n t i n u e d F r a c t i o n s , i t s u ff ic e s t o a p p l y ( 8.5 )

a n d ( 8 .6 ) t o t h e i n d i c e s n , n + 1 . . . , n + r , a n d c h a n g e k , , k , + 1 . . . , k , + r t o t h e B O R E L

Page 48: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 48/68

170 J. BARONE & A. NovIKOFF

n o ta ti o n qS(n), qS(n+ 1 ), . . . , qS(n + r). Th en fro m ine qu ali t y (8.6) i t follows t ha t

1 ¢ (v ) -+ l < P [ a v < ( ~ ( v ) ' v = n ' n + l . . . . . r ] < I ] - •v = n v ~ n

c~

If ~ 11 0 (~ d i ve rge s ,

P [ a ~ < O ( v ) , v = n , n + 1, . . . ] = l im Pl-a~ < qS(v), v = n , n + 1 . . . . r] = 0r ~ 3

1(the diver gent case of BOREL's theor em) . I f ~ ~ conve rges , (8.5) assures that

P[a~ < O(v) , v= n , n + 1, . . . , r]

i s pos i t ive (and less than 1) and in fact l ies between

( ) a n d f i 1 - ~fi 1 q~(v)+l-

~ n v = n

To achie ve BOREL's resul t in this case , i t i s nece ssary to co m pu te the p rob ab i l i ty

tha t a~ < ~b(v) hold " f r om some n on" , tha t i s the pro babi l i ty of the unio n of the se ts

[av< ~b(v ) ,v> n] over a l l in teger va lues of n . Thi s pro babi l i ty i s thus 1, aga in

va l ida t ing BOREL's resu l t. I f the phrase " f r om some n on" is in te rp re ted to me an" f r o m s o m e f i x e d v a l u e of n on " then the answer i s s t r ic t ly l es s than one . Thi s

amb igui ty o f l anguage resu l t ed in needles s , and for our purpose , i r re l evant conf l i c t

be twe en w ha t BOREL sa id he pr ov ed a nd wha t BERNSTEIN ac tua l ly succeede d in

proving. Their resul ts coincide, but BERNSTEIN actual ly suppl ied a val id,

i nde pe nde n t l y c onc e i ve d p roo f , e xp li c it ly u ti li z ing t he l a ngua ge a nd t he o re ms o f

mea sure theory . BOREL, by cont ras t , f ir s t a s se r t ed the th eor em in 1909 but the re

s upp l i e d a non -p roo f , v i t i a te d by de pe nde nc e be t w e e n " t r i a l s " a nd e mpl oy i ng on l y

t he Z e ro -O ne L a w . A s w e ha ve s e e n , t he Z e ro -O ne L a w p rove d by B O R E L ha s

noth ing to d o wi th the l angu age of LEBESGUE measure , and , in B O R E L ' S expos i t ion ,

has no c lea r ly recog nized l ink to co unta ble addi t iv i ty or sub-addi t iv i ty .Af te r achieving h i s pr oo f of BOREL'S resu l t on Con t inu ed Frac t ions , BERN-

STEIN emphas izes tha t the indiv idua l event s a n = m . a re no t i nde pe nde n t . H e

c ompu t e s t he fou r p roba b i l i t i e s P [ a 1 = 1], P [ a 1 = 2 ] , P [ a I = 1, a 2 = 1], P [ a 1 = 2 ,

a 2 = 1] as lengths of intervals , and obser ves tha t the tw o ra t ios

P [ a 1 = 1, a 2 = 1 ] a n d P [ a l = 1]

P [ a l = 2 , a 2 = 1 ] P [ a 1 = 2 ]

a r e une qua l , a s t r ue i nde pe nde nc e w ou l d r e qu i r e . H e po i n t s ou t t ha t t he a de qua t e

law of "probabi l i t6s com pos6 es" (or a s BERNSTEIN ca ll s it "da s Th eo rem der

z us a mm e nge s e t z t e n W a hr s c he i n l i c hke i t e n" ) invo l ves p rodu c t s o f compos i t e p r o b a -

b i li ti e s to co mp ute p robabi l i t i e s o f the s imul tan eous occu r rence of severa l events .

Thi s i s wha t we have ca l l ed the Cha in Law. The example he g ives , in modern

Page 49: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 49/68

Axiomatic Probability 171

nota t io n , cons ide rs two event s , A and B , where A - - • Ai deco mp oses event A in to

i ts poss ible a l ternat ives . Then

P(A c~ B) = P (@ (A i c~ B)) = ~ P(A i) P( B ]Ai).

I f q < P (B I Ai) < ~1for all i , then

q P(A ) ~ P(A ~ B) __<qP(A) .

Thus , bo und s on c ondi t io na l prob abi l i t i e s for B , va l id for a ll a l t e rna t ive condi t ions ,

g ive r i se to the same inequ a l i ty concern ing P(A ~ B) as wou ld hav e been ob ta ined i f

the g loba l probabi l i ty P (B) were known only to sa t i s fy

q< P(B)<~I

and the event s A and B were independent .

Thi s obse rva t ion could have been appl i ed d i rec t ly to BOREL's Zero-One Law

i n t he de g re e o f ge ne ral i ty o f " de nu me r a b l e p roba b i l i t y " . S inc e, how e ve r ,

BERNSTEIN'S w hol e v i e w po i n t is no t t o c r e a t e a ne w t he o ry o f de num e ra b l e

p roba b i l i t y bu t t o e m pl oy t he e x i st ing t he o ry o f me a s u re , he doe s no t m a ke t he

observa t ion tha t we can make on h i s beha l f : BERNSTEIN in t roduced the key

e lement in genera l i z ing the BOREL Zero-One Law in the case not cons ide red by

CANTELLI, i.e. the d ive rgent case . CANTELLI dem oted the h ypothes i s of inde-

pendence in BOREL's Zero-One Law in the convergent case ( the "ze ro" ha l f ) by

showing i t could be omit ted. BERNSTEIN general ized the case of divergence ( the" o ne " ha l l) by s how i ng t he hypo t he s i s o f i nde pe nde nc e c ou l d be w e a ke ne d t o

requi r ing adequa te (upper ) bounds on ce r t a in condi t iona l probabi l i t i e s , these

bounds themselves forming a divergent ser ies . In fact , had he been suff ic ient ly

thoro ugh -go ing in h is use of measu re the ory , and had he no t ins i st ed , like BOREL,

on t rea t ing the conv ergen t and d ive rgent cases in like man ner , he cou ld have show n

tha t in the conv ergen t case sub-addi t iv i ty es t imates a lone w ould h ave es tab l i shed

the theo rem in te rms of the g loba l probabi l i t i e s P[an > ~b(n)]. He wou ld thus hav e

ant ic ipated CANTELLI. Indeed, in his sect ion (1) , he expl ic i t ly calcula tes the

mea sure of the l imi t in fe r ior of a co l l ec t ion of set s, a t t r ibu t ing th is ca lcu la t ion to

LEBESGUE (1906). This is , in fact , a m od er n "CANTE LLI-l ike" calcula t ion . Ho we ve rthat may be, the fact i s that BERNSTEIN gave the first valid proof of BOREL'S

result on Continued Fractions, and gave the first generalization of BOREL'S Zero-

One La w to cover the possibility of dependence.

8.3. Borel's Response: Borel (1912)

After BERNSTEIN'spaper , the s t a tus of BOREL'S Con t inue d Fra c t io n T he ore m

was, for a short per iod, in doubt . Both BERNSTEIN and BOREL agreed that the

prob abi l i ty tha t a , < qS(n) should hold f rom some n on was ze ro i f ~ d ive rged .

BOREL asser ted this in the form that the p rob abi l i ty t hat a , > qS(n) hold s inf ini te ly

1often, the Aoo of his pa pe r of 1909, is 1. In the case ~ ~ con ve rge nt, BOREL

Page 50: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 50/68

172 J. BARONE8z; A . NOVIKOFF

a s s e r t e d t h a t t h e p r o b a b i l i t y t h a t a n > ~ b ( n ) h o l d s i n f i n i t e l y o f t e n i s z e r o ; t h u s

a n < ~b(n) h o l d s f r o m s o m e n o n w i t h p r o b a b i l i t y o n e . B E R N S T E I N a s s e r t e d i n t h e

c o n v e r g e n t c a se t h e p r o b a b i l i t y t h a t a n < g ) ( n ) h o l d s f r o m s o m e n o n ( m e a n i n g

a n < ~ b(n ), a n + 1 < ~ b( n + 1 ), . . . f o r a g iv e n n ) i s p o s i t i v e b u t l e s s t h a n o n e . BE R N S T E I Nt h u s c r i ti c i z ed b o t h B O R E L'S a r g u m e n t a n d h i s r e su l t. S t u n g b y t h is , B O R E L

r e s p o n d e d w i t h a n o t e (B O RN E ( 19 1 2) ). T h e r e h e i n s i s te d t h a t h i s r e s u l t w a s c o r r e c t

a s s t at e d , n a m e l y A ~ is z e r o o r o n e i n t h e c o n t i n u e d f r a c t i o n c a s e a c c o r d i n g a s

1~ c o n v e r g e s o r d i v e rg e s , b u t c o m p l e t e l y r e w o r k e d th e p r o o f i n s u c h a f a s h i o n

t h a t d e p e n d e n c i e s w e r e pe r m i t te d . H a v i n g g e n e r al i z ed h i s o r i g in a l Z e r o - O n e L a w

i n t h is w a y , B O R E L a t t e m p t e d t o a p p l y i t t o p r o v e h i s c o n t i n u e d f r a c t i o n r es u lt . A s

w e s h a ll s ee , t h e a p p l i c a t i o n r e q u i r e d a m o d i f i c a t i o n o f h i s o ri g i n a l c a l c u l a t i o n s o f

1 90 9. T h i s B O R E L f a il e d to u n d e r t a k e , p e r h a p s u n w i l l i n g t o c o n c e d e s u c h a n

i n a d e q u a c y i n h i s c a l c u l a t io n s o f 1 90 9.

B O R E L ' s n e w p o o f o f t h e g e n e r a l i z e d Z e r o - O n e L a w e s s e n t i a ll y c o i n c i d e s w i t h

t h e a r g u m e n t o f B E RN S TE IN . T h a t is, th e g e n e r a l l a w o f " p r o b a b i l i t ~ s c o m p o s 6 e s "

( in t e r m s o f c o n d i t i o n a l p r o b a b i li t ie s ) , r e p l a c e s c o u n t a b l e i n d e p e n d e n c e a s t h e

e s s e n ti a l to o l . B O R E L t h e n s h o w s t h a t a p p r o p i a t e i n e q u a l it i e s o n c o n d i t i o n a l

p r o b a b i l i t i e s g i v e r is e t o " i n d e p e n d e n c e - l i k e " e s t i m a t e s i n th e f o r m o f p r o d u c t s (cf.

(8 .5 ), (8 .6 ), a b o v e ) . B u t B O R E L , i n 1 9 1 2 , p l a c e s t h e s e a r g u m e n t s i n t h e g e n e r a l i t y o f

h i s o r i g i n a l Z e r o - O n e L a w , i.e., t h e s p a c e o f a ll d e n u m e r a b l e s e q u e n c e s o f t ri a ls ,

w i t h p o s s i b l e s u c c e s s o r f a i l u r e a t e a c h t ri a l, w h e r e a s B E R N S T E I N h a d b e e n

c o n c e r n e d o n l y w i t h t h e a p p l i c a t i o n t o c o n t i n u e d f r a ct i o ns .

B O R E L ' s o r i g i n a l n o t a t i o n Pn f o r s u c c e s s a n d qn f o r f a i l u r e a t t h e n th t r i a l i s

i n a d e q u a t e f o r h is n e w p r o o f. W e a l s o n e e d t h e c o r r e s p o n d i n g c o n d i t i o n a l

p r o b a b i l i ti e s , s i nc e w e e x p l i ci t ly a l lo w d e p e n d e n c e . L e t u s i n t r o d u c e t h e n o t a t i o n

s , f o r a " s u c c e s s " p a r a m e t e r : s , = 1 m e a n s t h e n th t r i a l w a s a s u c c e s s, s n = 0 m e a n s

i t w a s a f a i lu r e . L e t x b e a n i n f in i t e s e q u e n c e o f t r i a l s ; t h e n s n ( x ) i s 1 i f x ha s

s u c c e s s a t t h e n th t r i a l a n d 0 i f x h a s f a i l u r e a t t h e n th t r i a l. T h e p r o b a b i l i t y t h a t a

s e q u e n c e h a s p r e s c r i b e d i n i t i a l v a l u e s s i = m l , i = 1 , 2 . . . . . n w h e r e e a c h m i = 0 o r 1 i s

g i v e n r e c u r s i v e l y b y

P E s 1 = m 1 . . . . s n = m , ] = P [ s , = m n Is 1 - - - - m I . . . . . S n - 1 = r a n _ i ]

. P [ S l = m l , . . . , s n _ l = m , _ l ]

s o t h a t"_L

P [ s 1 = m 1 . . . . , s , = r n , ] = I I P [ s k = r n k I s1 = / T / l , " ' , S k - 1 : l T l k - - 1 ] "

k = l

T h i s i s p r e c is e l y th e C h a i n L a w . S i m i l a r l y t h e p r o b a b i l i t y t h a t a s e q u e n c e f in i sh

w i t h t h e r e s u l t s S n + l = m n + p S n + 2 = m n + 2 . . . . g i v e n t h e i n i t i a l v a l u e s s l = m l , . . . ,

s , = m , is t h e i n f i n i t e p r o d u c t

f i P [ S , + k = m , + k l S l = r n l . . . . . s , + k - 1 = m , + k - 1 ]. (8 .8)k = l

T h i s i s t h e c o u n t a b l e e x t e n s i o n o f t h e C h a i n L a w t h a t B O R E L a s s er t s i n 1 91 2.

( B O R E L o f f er s n o j u s t i f i c a t i o n f o r t h e e x t e n s i o n f r o m t h e f in i t e t o t h e c o u n t a b l e c a s e ,

Page 51: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 51/68

Axiom atic Probab ility 173

o n e m o r e i n s t a n c e o f a t a c it a n d e x t r e m e l y w e ll d i sg u i s ed d e p e n d e n c e o n c o u n t a b l e

a d d i t i v i t y . ) I t i s e m p l o y e d i n h i s r e s p o n s e t o B E R N S T E I N t o p r o v e t h e f o l l o w i n g

t h e o r e m : L e t A o , A s . . . . . A k . . . . b e , a s in 1 90 9, t h e p r o b a b i l i t y t h a t t h e r e a r e e x a c t l y

k s u c c e ss e s , a n d l e t A o~ = 1 - ( A o + A s + . . . + A k + . . . ) . L e t { p',} a n d {p', '} b e t w os e q u e n c e s s u c h t h a t

p ' , < P [ s n = l l s s = m l . . . . . S , _ l = m ~ _ s] < p~ '

f o r m l , m 2 , . . ., m , _ s r u n n i n g t h r o u g h a l l c h o i c e s o f 0 ' s a n d l 's .

I f ~ p " c o n v e rg e s , t h e n A , = 0 .

I f ~ p ' , d i v e rg e s , t h e n A , = 1.

E q u i v a l e n t l y ,

I f V p " c o n v e r g e s, t h e n A o + A 1 + . . . + A k + . . . . 1., n

I f ~P'n d i v e r g e s , t h e n A o + A I + . . . + A k + . . . . O.

B O RE L p r e s e n t s a p r o o f o n l y f o r t h e c o n v e r g e n t c a s e, s in c e t h a t is th e c a s e f o r

w h i c h B E R N S T EI N th i n k s ( e r r o n e o u s l y ) h i s r e s u l t i s i n c o n t r a d i c t i o n w i t h B O R E L 'S .

O f c o u r se "CANTELLI" r e a s o n i n g r e n d e r s BOREL's n e w p r o o f o f t h i s c a s e o b s o l e t e ,

b u t B O R E L 's p r o o f i n d i c a te s h o w t o h a n d l e t h e d i v e r g e n t c a s e a s w el l, a n d t h e r e f o r e

m e r i t s a t t e n t i o n .

I f ~ p ~ ' c o n v e r g e s , c o n s i d e r A o + A s + " " + A k . B O R EL s h o w s t h a t g i v e n e > 0 , k

c a n b e c h o s e n s o l a r g e t h a t

A o + . . . + A k > 1 - ~ .

T h e p r o o f is a s tr a i g h t f o r w a r d a p p l i c a t i o n o f t h e g e n e r a li z e d l a w o f c o m p o s i t e

p r o b a b i l i t i e s (8 .7 ): A 0 + . .. + A k is t h e p r o b a b i l i t y o f h a v i n g a t m o s t k s u c ce s s es ,

t h e r e f o r e g r e a t e r t h a n t h e p r o b a b i l i t y o f h a v i n g n o s u cc e ss e s f ro m t h e ( k + 1) st on . In

s y m b o l i c f o r m

A 0 + ' " + A k > P [ S k + 1 = 0 , Sk+ 2 = 0 . . . . ] .

B u t t h e l a t t e r is t h e w e i g h t e d a v e r a g e o f t h e p r o b a b i l i t i e s

P[Sk+ 1 = 0 , Sk+2 = 0 , . .. I S1 = m s . . . . , S k = m k ]

( cf. (8 .8 )) f o r a l l 2 k c h o i c e s o f ( m l . . . . , m k ). B y u s e o f t h e c o u n t a b l e e x t e n s i o n o f t h e

C h a i n L a w e a c h o f t h e s e p r o b a b i l i t i e s ( a n d h e n c e t h e i r w e i g h t e d a v e r a g e P [ sk + 1

- - 0 , S k ÷ 2 = 0 . . . . ] ) is e s t i m a t e d f r o m b e l o w b y t h e i n fi ni te p r o d u c t

( 1 - - p 'k '+ l ) ( 1 - - p 'k '+ 2 ) . . . I ~ ( 1 - - p ) ' ) .j = k + l

I f ~ p y < o% t h e n k c a n b e c h o s e n l a r g e e n o u g h t o m a k e t h is p r o d u c t g r e a t e r t h a n

1 - e, a s d e s ir e d , s h o w i n g

A o + A I + . . . + A k + . . . . 1.

Page 52: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 52/68

174 J. BARONE8¢ A. NOVIKOFF

S i m i l a r l y , i f ~ p j d i v e r g e s , A o + A I + . . . + A k c a n b e s h o w n t o v a n i s h , t h o u g h

B O R EL o m i t s t h is . A p r o o f c a n b e b a s e d o n t h e i n e q u a l i t y

P I s ,+ 1 = 0 , s , + 2= 0 , . . . , S N = 0 I S 1 = m l , . . . , S n = t o n i < ( 1 - p ~ ,+ 1 ). .. (1 - p } ) ,

s u p p l e m e n t e d b y c o n t i n u i t y (i.e. c o u n t a b l e a d d i t i v i t y ) ; cf. BARONE (1974) .

I n s u m m a r y , B O R EL i n 1 9 12 p r e s e n t s a n e w , m o r e g e n e r a l Z e r o - O n e L a w , b a s e d

o n a n e w , m o r e g e n e r a l m e t h o d o f p r o o f ( b a s e d o n t h e c o u n t a b l e c h a in L a w u t il iz e d

p r e v i o u s l y a n d e x p l i c it ly b y B E RN S TE IN ). C o u n t a b l e a d d i t i v i ty a n d s u b - a d d i t i v i ty

a r e s ti ll n e g l e c te d p r i n c i p l e s ; c o u n t a b l e c o m p o s i t e p r o b a b i l i t y is e m p l o y e d i n th e

f o r m s

oo

r~ o q r n l ~o

. . . . .L ' I ' J L ' I ' J ~ = 5

W e r e p e a t , th e e x t e n s i o n o f t h e C h a i n L a w f r o m t h e f i n it e t o t h e c o u n t a b l y i n f i n it e

c a s e i s o f f e r ed w i t h o u t e x p l a n a t i o n . B y c o n t r a s t , B E R N ST EIN u se s c o u n t a b l e

a d d i t i v i ty e x p l ic i tl y t o c a l c u l a t e t h e p r o b a b i l it i e s o f n o n - c y l i n d e r s et s o f th e f o r moo

( ~ E k , u t i li z i n g t h e a d d i t i o n a l i n s i g h t t h a t t h e s e p r o b a b i l i t i e s a r e ( in e v e r y c a s e1

u n d e r c o n s i d e r a t i o n ) m e a s u r e s o f m e a s u r a b l e s e ts .BOREL f ai ls to r e m a r k t h a t BERNSTEIN'sp r o o f is m u c h t h e s a m e a s t h e o n e h e

n o w p r e s en t s t o p r o v e t h e g e n e r a l iz e d Z e r o - O n e L a w , b u t a s se rt s t h a t " t h e n e w

p r o o f i s e s s e n t i a l l y t h e o n e t h a t w o u l d h a v e b e e n g i v e n i n 1 90 9 if a l l t h e c a l c u l a t i o n s

h a d b e e n w r i t t e n i n f u l l . "

I t o n l y r e m a i n e d f o r B O R E L t o r e a s s u r e t h e r e a d e r ( a n d h i m s e l f ) t h a t t h e

m o d i f i e d Z e r o - O n e L a w a p p li e s to t h e c o n t i n u e d f r a c ti o n ca se .

T h e n e e d e d i n e qu a l it ie s a r e t h e u p p e r a n d l o w e r b o u n d s f o r

P [ a ,> = ¢ ( n) l a l , . . . , a , _ l ]

i n d e p e n d e n t o f w h a t c o n s t r a i n t s a r e p l a c e d o n a l , . . ., a , _ 1 . B E RN S TE IN h a d f o u n d

e x a c t l y s u c h b o u n d s . B O R E L n o w i n 1 9 1 2 a s s e r ts t h a t t h e i n e q u a l i t ie s ( w h i c h h e

r e f er s t o a s " ( 2 3 ) a n d t h e r e a f t e r o n p a g e 2 6 8 " ) o f h i s p a p e r o f 1 90 9 p r o v i d e t h e s a m e

i n f o r m a t i o n . I n f a c t , t h e e s s e n t i a l i n e q u a l i t i e s o f B O R E L i n 1 9 09 a r e , i n t h e o r d e r o f

t h e i r d e r i v a t i o n ,

k P [ a . = k + l ] k + l- - <k + 2 P [ a . = k ] < ~ 3 '

2 P [ a . = k ] 6

k ( k + 1 ) < P [ a . = 1 ] < ( k + 1)(k + 2 ) '

~ P [ a . = k ] = 1,k = l

Page 53: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 53/68

Axiom atic Probab ility | 75

2 3

3 k ( k + 1) < P l a n = k ] < ( k + 1 )(k + 2 ) '

2 3< P [ a n > k + l ]3 ( k + 1) = < k + 2 "

N o n e o f t h e s e in v o l v e c o n d i t i o n a l p r o b a b i l it i e s o f t h e s o r t r e q u ir e d . F o r e x a m p l e ,

t he l a s t i s no t

2 33 ( k + 1 ~ < P [ a n > = k + l [ a x = m l . . . . , a n _ l = m , _ l ] < k + 2

a s w o u l d b e r e q u i r e d f o r a p p l i c a t i o n o f t h e g e n e r a l iz e d Z e r o - O n e L a w b u t i s o n l y a

m u c h w e a k e n e d v e r si o n o f it.

B O R E L r e m a i n e d a w a r e t h a t h i s o r i g i n a l e x p o s i t i o n w a s f la w e d , f o r i n 1 9 2 6 h e

p u b l i s h e d a c o n s i d e r a b l y m o r e d e t a i l e d a n d e x p a n d e d v e r s i o n o f h is p a p e r o f 19 09

u n d e r t h e t it le " A p p l i c a t i o n s ~t L ' A r i t h m 0 t i q u e e t/ ~ la T h 6 o r i e d e s F u n c t i o n s " , a s

f a s c ic u l e I o f T o m e I I o f h i s e x t e n s iv e " T r a i t 0 d u C a l c u l d e s P r o b a b i l i t6 s e t d e s es

A p p l i c a t i o n s " . N o w h e p r e s e n t e d t h e m a t e r i a l o f h is r e s p o n s e i n 1 9 1 2 t o

BERNSTEIN (i.e., h i s m o r e g e n e r a l Z e r o - O n e L a w ) b e f o r e t u r n i n g t o C o n t i n u e d

F r a c t i o n s . T h i s t i m e h e p r e s e n t s t h e a b o v e f iv e i n e q u a l i ti e s , n u m b e r e d (1 ), (2 ), (3 ),

(4), (5) , as s t a ted (i .e . , not c o n d i t io n e d ) a n d t h e n r e m a r k s :

T he i neq ua l i t i e s ( 1) , ( 2) , ( 3) , ( 4) , ( 5) r em a i n t r ue i f on e m ak es va r i ou s hy po t he s e s

c o n c e r n i n g t h e e l e m e n t s a l , a 2 . . . . a n 1. T h e s u m o f t h e l e n g th s lk, lk+ 1 o f t h ei n t e rv a l s c o n s i d e r e d , i n s t e a d o f ra n g i n g o v e r a l l p o s s ib l e v a l u e s o f th e e l e m e n t s

a l , . . . , a n _ 1 w i ll o n l y r a n g e o v e r t h o s e v a l u e s s a t i sf y i n g c e r t a i n g i v e n c o n d i t i o n s .

Th e g l ob a l p r o bab i l i t i e s P J an = k ] , P [ a n = k + 1 ] , P [ a , _> k + 1 ] w i l l be r e p l a ced

b y t h e p r o b a b il it ie s o b t a i n e d b y t a k in g a c c o u n t o f t h e h y p o t h e s e s m a d e o n t h e

i n it ia l n - 1 e l em e n t s , a n d w h a t e v e r t h o s e m a y b e , b y f o ll o w i n g t h e s a m e

r e a s o n i n g w h e r e b y t h e y w e r e e s ta b l i sh e d a b o v e t h e p r e c e d i n g i n e q u a l i ti e s w i ll

c o n t i n u e t o b e s a t i s f i e d b y t h e n e w p r o b a b i l i t i e s . B O R E L ( 1 9 2 6 : 6 6 ) .

Th i s s t a t em en t , i n 1926 , i s co r r ec t . BOREL 's a s s e r t i on , i n 1912 , t ha t h i s pape r o f

1909 a l r ea dy co n t a i n ed t he de s i r e d i ne qua l i t i e s i nv o l v i n g P'n an d p~' i s f a l s e o r , a t

l e a s t , d i s i n g e n u o u s .

8 .4 . E a r l y o b s e r v a t io n s o f L e b e s g u e a n d L ~ v y

O n e f in a l h i s to r i c a l c o m m e n t is in o r d e r c o n c e r n i n g B O R E L'S c o n t r i b u t i o n t o

t h e e x c h a n g e w i t h B E R N S TE IN . T h e s e c o n d e d i t i o n o f B O R E L 'S L e f o n s s u r l a T h d o r i e

d e s F u n c t i o n s (B O R E L ( 19 1 4 )) c o n t a i n s m a n y " n o t e s " a d d e d e s p e c i a l l y f o r t h i s

e d i t i o n . N o t e V c o n s i s t s o f a r e p r o d u c t i o n o f B O R E L ( 19 0 9 ) a n d B O R E L (1 91 2), in

to to . A f o o t n o t e w a s a d d e d t o t h is r e p r i n t e d p a p e r o f 1 9 12 w h i c h d o e s n o t a p p e a r i n

t h e o r i g i n a l . I t f o ll o w s t h e s e n t e n c e

W h a t i s v a l i d i n B e r n s t e i n ' s o b j e c t i o n i s t h a t t h e r e a s o n i n g t h a t I h a v e

g i v e n . . . a s s u m e s t h e p r o b a b i l i t i e s a r e i n d e p e n d e n t a n d s h o u l d b e m o d i f i e d

when t hey a r e no t . BOREL ( 1914 : 208 ) .

Page 54: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 54/68

176 J. BARONE& A. NOVIKOFF

T h e f o o t n o t e s t a te s

I s h o u l d s a y t h a t t h i s o b j e c t i o n w a s m a d e t o m e i n a p e r s o n a l l e tt e r, b y

L e b e s g u e , a t t h e t i m e o f t h e p u b l i c a t i o n o f t h e Rendiconti. I a s s u r e d m y s e l f t h a t

t h e r es u l ts w e r e v a li d a n d a t t a c h e d n o i m p o r t a n c e t o t h e o b j e c t i o n ; I h a d e v e n

f o r g o t t e n i t w h e n , a f e w y e a r s l a t e r, I r e p l i e d t o B e r n s t e i n : o n l y a f t e r th e

p u b l i c a t i o n o f t h is r e s p o n s e , r e p r o d u c e d h e r e , d i d I c o m e a c r o s s th e o l d l e t t e r o f

L e b e s g u e . B O R E L ( 1 9 1 4 : 2 0 8 : F o o t n o t e ( 4 ) ) .

LEBESGUE and BERNSTEINw e r e n o t a l o n e i n o b s e r v i n g t h a t B O RE L 'S p a p e r o f

1 9 09 s u f fe r e d f r o m d e f e ct s o f e x p o s it i o n . I n a l e t t e r t o u s P . L g v Y w r o t e c o n c e r n i n g

i t:

Y e t , o n r e a d i n g i t, p e r h a p s w i t h o u t a t o n c e f u ll y u n d e r s t a n d i n g i ts

i m p o r t a n c e , m y i m p r e s s i o n w a s a b o v e a l l o n e o f s u r p ri s e.

I h a d n o i d e a t h a t s u c h s i m p l e p r i n c i p l e s , w h i c h h a d b e e n f a m i l i a r t o m e

s i n c e 1 90 7, w e r e n e w ( I a m s p e a k i n g o f t h e f ir s t t w o c h a p t e r s ; c h a p t e r 3 w h e r e

c o n t i n u e d f r a c t i o n s w e r e d i s c u s s e d w a s n e w t o m e ) .

I w a s s u r p r i s e d t h a t a s c h o l a r w h o s e w o r k o n d i v e r g e n t s e r i e s , e n t i r e

f u n c t io n s , P i c a r d ' s t h e o r e m , a n d t h e t h e o r y o f m e a s u r e I a d m i r e d , h a d g i v e n

s u c h c o m p l i c a t e d p r o o f s o f s u c h s i m p l e t h e o r e m s ( th i s t i m e I a m s p e a k i n g o f t h e

t h r e e c h a p t e r s ) . ( L e t t e r f r o m P . L E V Y , d a t e d D e c e m b e r 2 2, 1 9 69 .)

9. Early R e-workings o f Borel's Stro ng Law9.1. Introduction

T h i s c h a p t e r i s d e v o t e d t o o t h e r c o n t r ib u t i o n s f r o m t h e p e r i o d i m m e d i a t e ly

f o l lo w i n g B O R E L 's l a n d m a r k p a p e r o f 19 09 . T h e m a t h e m a t i c i a n s o f t h is t im e , w h o

w e r e a t t r a c t e d b y B O R E L ' s r e s u l t s , h e l p e d t o i l l u m i n a t e t h e r e l a t i o n b e t w e e n

m e a s u r e t h e o r y a n d p r o b a b i l i t y b y t h e i r e ff o rt s, t h o u g h t h e i r i n t e r e s t w a s p r i m a r i l y

i n t h e d i r e c t i o n o f t h e f o r m e r a n d n o t i n th e d i r e c t i o n o f p r o b a b i l i t y . T h r e e m e n

- -F A B E R , H A U S D O R FF a n d R A D E M A C H ER - - r e p r o v e d t h e B O R E L S t r o n g L a w

w i t h o u t a n y r e f e r e n c e t o t h e C e n t r a l L i m i t T h e o r e m ; i n d ee d , t h e ir m e r it ,

p a r a d o x i c a l l y , w a s t h a t t h e y d i d no t c o n c e r n t h e m s e l v e s w i t h t h e p r o b a b i t i s t i ci n t e r p r e t a t i o n o f t h e t h e o r e m . B y e x a m i n i n g t h e i r o r i g i n a l w o r k s , o n e c a n o b s e r v e

t h e s h i ft in v i e w p o i n t f r o m t h a t o f BO R EL (1 9 09 ) t o a v i e w p o i n t i n w h i c h p r o b a b i l i t y

( s p e c if i c a ll y g e o m e t r i c p r o b a b i l i t y o n [ 0 , 1 ] ) meant m e a s u r e . 1

F u r t h e r , H A U S D O RF F a l s o p r o v e d a r e s u l t o n c o n t i n u e d f r a c t io n s c l o s el y a k i n

t o t h e B E R N S T E I N - B O R E L r e s u l t , t h i s a g a i n b y i n t e r p r e t i n g t h e t h e o r e m i n t h e

s e t ti n g o f m e a s u r e t h e o r y .

T h e f ir st in o r d e r o f o c c u r r e n c e , FABER, r e g a r d e d t h e c o e x t e n s i o n o f BOREL's

d e n u m e r a b l e p r o b a b i l i ty a n d L EB ES GU E m e a s u r e a s a n o p e n q u e s t i o n w h i c h h e

w a s a t p a i n s t o r a i s e ; H A U S D O R F F w a s m u c h m o r e a s s e r t i v e a n d w e n t s o f a r a s t o

o f fe r e x p li c it l y a n " a r b i t r a r y " d e f i n i t io n o f p r o b a b i l i t y a s ( L EB E SG U E ) m e a s u r e .R A D E M A C H E R r e g a r d e d t h e d u a l v i e w p o i n t s a s s u f f i c ie n t l y w e l l a c c e p t e d a s to b e

a l m o s t w i t h o u t n e e d o f c o m m e n t . T h e w o r k o f F A BE R a n d R A D EM A C H ER (t h e

1 As w as the view point adopted by BOREL n 1905.

Page 55: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 55/68

Axiomatic ProbabiIity 177

l a t t e r u n i n t e n t i o n a l l y d u p l i c a t i n g t h e f o r m e r ) w i l l b e d e a l t w i t h f i r s t . T o p r e s e r v e

c h r o n o l o g i c a l o r d e r w e i n t e r s p e r s e b e t w e e n t h e m H A U S D O R F F 'S b r i e f b u t h i s t o r i -

c a l l y s i g n i f i c a n t c o m m e n t s o n m e a s u r e a s a p o s s i b l e de f in i t i on o f p r o b a b i l i ty .

T h e s u b s e q u e n t s e c ti o n is a n e x p o s i t i o n o f m o r e t e c h n i c a l a s p e c t s o f

H A U S D O R F F 's w o r k , o n b o t h b i n a r y a n d c o n t i n u e d f r a c ti o n e x p a n s io n s .

9 .2 . T h e C o n t r i b u t i o n o f G . F a b e r : H i s Q u e r y o n t h e R e l a t i o n

o f P r o b a b i l it y t o M e a s u r e

G . F A B E R (1 9 1 0) a n d H . R A D EM A C H E R ( 19 1 8 ) e a c h c o n s t r u c t a c o n t i n u o u s

m o n o t o n e f u n c t i o n i n [ 0 , 1 ] w h o s e d i f fe r e n c e q u o t i e n t s a t a p o i n t x d e p e n d o n t h e

d i s t r i b u t i o n o f d i g it s in t h e e x p a n s i o n o f x . T h e i r c o n s t r u c t i o n s a r e v i r t u a l l y

i d e n ti c a l. I n e a c h c a s e a m o n o t o n e f u n c t i o n f i s c o n s t r u c t e d ( as th e l i m i t o f a n

a u x i l i a r y s e q u e n c e { fn }) s u c h t h a t t h e v a l u e o f t h e d i f f e re n c e q u o t i e n t

f i - ~ - f \ 1 0" /

110 n

d e p e n d s o n l y o n~ k ( n )- - , k = 0 , 1 , 2 . . . . . 9

n

w h e r e 7 k ( n ) c o u n t s t h e n u m b e r o f k ' s a m o n g t h e f ir s t n d ig i ts i n t h e d e c i m a l

e x p a n s i o n o f x , a n d w h e r e t h e i n t e g e r x n is s u c h t h a t

X n - - 1 Xn- - - < x < - -

10~ 10""

T h e m a i n r e s u l t w h i c h f o l l o w s f r o m f u r t h e r s p e c i fi c s o f t h e c o n s t r u c t i o n i s t h a t t h e

s e t o f p o i n t s x f o r w h i c h

l i r a 7k (n ) # 1. ~ n 10

a r e p o i n t s o f n o n - d i f f e r e n t ia b i l i ty . W e n o t e t h a t a s i m i l a r c o n s t r u c t i o n c a n b e

a p p l i e d t o b i n a r y e x p a n s i o n s , o r t o e x p a n s i o n s i n a n y g i v e n b a s e , a n d i n e v e r y c a s e

t h e r e s u l t i s t h a t t h e n u m b e r s w h i c h a r e n o t " n o r m a l " w i t h r e s p e c t t o t h e g i v e n

b a s i s , in t h e s e n s e o f B OR E L, a r e p o i n t s o f n o n - d i f f e r e n t i a b i l i t y .

B o t h F A B E R a n d R A D E M A C H E R t h e n a p p e a l e d t o t h e p o w e r f u l r e s u l t o f

L E BE S G UE w h i c h a s s e r t s t h a t f o r e v e r y m o n o t o n e f u n c t io n t h e s et o f p o i n t s o f n o n -

d i f f e r e n ti a b i l it y i s o f m e a s u r e z e r o .

T h u s , t h e f u n c t i o n s c o n s t r u c t e d b y F AB ER a n d RADEMACHER, t o g e t h e r w i t h

t h is t h e o r e m o f L EB E SG U E, i m p l y t h a t t h e s e t o f p o i n t s w h e r e f o r a t l e a s t o n e c h o i c e

o f k = 0 , 1 . . . . 9l im 7k(n) 1

n ~ o o n : : t = l O '

( t h a t is, th e s e t o f n u m b e r s n o n - n o r m a l t o t h e b a s e 1 0) i s o f m e a s u r e z e r o .

Page 56: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 56/68

178 J. BARONE& A. NOVIKOFF

A c o m p a r i s o n b e t w e e n t h e t w o p a p e r s , F A B E R ' S d a t e d 1 9 1 0 a n d

RADEMACHER'S 1 9 1 8 , s h o w s t h e e x t e n t t o w h i c h t h e e q u i v a l e n c e b e t w e e n

L E B E S G U E m e a s u r e o n [ 0 , 1 ] a n d g e o m e t r i c p r o b a b i l i t y o n [ 0 , 1 ] h a d s h i f t e d i t s

s t a tu s f r o m c o n j e c t u r a l to a v i rt u a l ly u n a n i m o u s c o n v e n t i o n .

W h e n F AB ER , w h o s e m a i n a i m w a s in a s o m e w h a t d i f f er e n t d i r ec t io n , a c h i e v e d

a l m o s t i n a d v e r t e n t l y t h e re s u l t t h a t a l m o s t a ll n u m b e r s a r e n o r m a l ( th e " S t r o n g

L a w o f L a r g e N u m b e r s " ) , h e p a u s e d t o i n te r p o l a te s o m e c o m m e n t s ; t h e se s e rv e as a

p r i m a r y s o u r c e f o r e x a m i n i n g t h e e x t e n t t o w h i c h B O R E L ' s p a p e r l e ft i ts r e a d e r s

u n s u r e a s t o th e r e l a t io n b e t w e e n p r o b a b i l i t y t h e o r y a n d m e a s u r e t h e o r y 1:

T h e s e t o f p o i n t s f o r w h i c h l i m 7 "4 = 1 o r l i m ~ " = ~ 1, i s o f m e a s u r e z e r o .n~oo # . . . . # ,

T h i s t h e o r e m a p p e a r s i n t e re s t in g t o m e f r o m m a n y p o i n t s o f v ie w .

F i r s t i t g i v e s a s i m p l e e x a m p l e o f a s e t whi ch i s no t on l y eve rywhe re dense bu ta l so has t he card i na l i t y o f t he con t i nuum i n eve ry i n t e rva l , however sm a l l , and

none t he l e s s has m easure z e ro .

B o r e l r e c e n t l y p r o v e d , a f t e r f o r m u l a t i n g s u i t a b l e d e f in i t io n s c o n c e r n i n g

d e n u m e r a b l e p r o b a b i l it i e s , t h a t t h e p r o b a b i l i t y t h a t a p o i n t b e l o n g t o th e a b o v e

s e t is ze r o. T h e c o m p a r i s o n o f t h e a b o v e t h e o r e m w i t h B o r e l 's r e s u lt s u g g e st s t h e

q u e s t i o n :

I s t h e p r o b a b i l i t y - a c c o r d i n g t o t h e B o r e l s e t -u p w h i c h p o s s i b l y m i g h t n e e d

t o b e e x te n d e d t o a n s w e r th i s q u e s ti o n - t h a t a n u m b e r b e l o n g s t o a p r e s c r i b e d

s e t o f z e r o m e a s u r e , a l w a y s e q u a l t o z e r o ? A n d c o n v e r s e l y : is a se t a l w a y s o f

m e a s u r e z e r o , if t h e p r o b a b i l i t y t h a t a p o i n t b e l o n g s t o i t is e q u a l t o z e r o ? ( I ta l ic s

i n t he o r i g ina l . ) FABER (1910 : 400 ) .

T h e p a s s a g e j u s t c i t e d is e v i d e n c e t h a t , f o r F AB E R, t h e c l e a r - c u t i d e n t i f i c a ti o n o f

g e o m e t r i c p r o b a b i l i t y o n [ 0, 1 ] w i t h L EB ES GU E m e a s u r e h a d n o t q u i t e t a k e n p l a c e

b y 1 91 0. B O R E L 's o w n s u g g e s t i o n o f 19 05 t h a t s u c h g e o m e t r i c p r o b a b i l i t y b e

i d e n t if i e d w i t h L EB ES GU E m e a s u r e s e e m s t o h a v e b e e n u n k n o w n t o F A BE R. (R e c a l l

t h a t i n 1 9 09 t h i s s u g g e s ti o n , r e d u c e d t o a m e r e a s i d e , w a s d i s m i s s e d b y B O RE L

h i m s e l f . ) I t i s c l e a r t h a t F A B ER , o n t h e h e e l ' s o f B OR E L 'S p a p e r o f 1 90 9, w a s

g r a p p l i n g w i t h th e s a m e n a s c e n t i d e n t if i ca t io n , m o t i v a t e d b y th e " a c c i d e n t a l "

a l t e r n a t iv e a p p r o a c h h e f o u n d t o B O R E L 's S t r o n g L a w .A s q u o t a t i o n s f r o m B O RE L h a v e s h o w n , a l l t h a t w a s n e e d e d t o a n s w e r F A BE R 'S

q u e s t i o n a f f i r m a t i v e l y , a n d t o m a k e t h i s i d e n t i f i c a t i o n a b s o l u t e l y e x p l ic i t, w a s a

c a r e fu l r e - e x a m i n a t i o n o f B O R E L 's o w n p a p e r w i t h e m p h a s i s o n t h e d u a l i t y

b e t w e e n t h e " p o i n t d e v u e l o g i q u e " a n d t h e " p o i n t d e r u e g 6 o m 6 t r i q u e " .

Neit her FABER n o r BOREL c a n b e r e a l is t i c a ll y c h a r g e d w i t h o b t u s e n e s s ; BOREL

a c h i e v e d h is r e s u lt a s a n a p p l i c a t i o n o f a n a b s t r a c t t h e o r e m o n i n d e p e n d e n t t ri al s,

F AB ER b y c o n s i d e r i n g f u n c t i o n s o f a r e a l v a r i a b l e d e f i n e d o n [ 0 , 1] . T h e s i t u a t i o n

m a y b e d e s c r i b e d b y s a y i n g t h a t B OR EL , p e r f e r ri n g t h e " p o i n t d e v u e l o g iq u e ," w a s

e x p l o r i n g t h e p r o d u c t m e a s u r e a v a i l a b l e o n a c e r t a i n p r o d u c t s p a c e , a n d F A B E R

w a s e x p l o r i n g t h e c o n s i d e r a b l y m o r e f a m i l i ar t e rr i t o r y o f m e a s u r a b l e f u n c t io n sd e f i n e d o n [ 0 , 1 ] .

1 I n FABER'Snotation 7,(/~) is the num ber of l's (0%) n the first n terms of he binary exp ansion of hegiven real number.

Page 57: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 57/68

Axiom atic Probab ility 179

T h e q u e s t i o n o f t h e m a p p i n g b e t w e e n t h e p r o d u c t s p a c e i m p l i c it in B OR EL a n d

t h e f a m i l i a r m e a s u r e s t r u c t u r e o f [0 , 1 ] w a s n o d o u b t o f l e s se r i n t e r e s t t o BO R EL a n d

F A B E R t h a n t h e i r p r i m a r y b u t d i s t i n c t a i m s . A l t h o u g h i t i s d i f f i c u l t f o r a

c o n t e m p o r a r y r e a d e r t o r e a d B O R EL 'S p a p e r o f 19 09 w i t h o u t e m p l o y i n g t h e

a d v a n t a g e s s u p p l i e d b y h i n d s i g h t , w e t a k e F A B E R ' s a b o v e r e m a r k a s f u r t h e r

e v i d e n c e c o n f i r m i n g o u r a s s e r t i o n t h a t B O RE L fa i le d t o s ee , a n d c e r t a i n l y t o s t a t e,

t h e i d e n t i fi c a t i o n i n 1 90 9. I n d e e d , w e t h i n k W I N T N E R w a s b e i n g s o m e w h a t o v e r -

g e n e r o u s i n h is a s s e s s m e n t o f B O RE L w h e n h e w r o t e :

H i s t o r ic a l ly , t h e w h o l e d e v e l o p m e n t w a s i n i ti a te d b y B o r e l' s f o r m u l a t i o n

a n d p r o o f o f h i s " e i t h e r 0 o r 1 " t h e o r e m ( R e n d . P a l e r m o , v o l . 2 9 (1 90 9), p p . 2 4 7

2 71 ). T o d a y i t i s e a s y , b u t a t t h a t t i m e it w a s a t r u e m a t h e m a t i c a l a c h i e v e m e n t ,

t o t h i n k o f t h e o r d i n a r y m e a s u r e o n t h e i n t e r v a l 0 < x < 1 a s a p r o d u c t m e a s u r e

i n a n i n f i n i t e p r o d u c t s p a c e , t h e f a c t o r s b e i n g t h e b i n a r y s p a c e s c o r r e s p o n d i n gt o t h e d y a d i c e x p a n s i o n o f x . W I N T N E R (1 9 4 1 : 1 8 2).

9 .3 . Radem acher and Ha usdo r f f The Evidence for t he Evo lu tion

o f a Po in t o f V iew

E i g h t y e a r s a f t e r t h e p u b l i c a t i o n o f F A B ER (1 91 0), R A D E M A CH E R , in i g n o r a n c e

o f F A B E R ' s r e s u lt , p r o v e d i t a n e w b y a v i r t u a l l y i d e n t ic a l c o m s t r u c t i o n o f a

m o n o t o n e f u n c t i o n w h o s e n o n - d i f f e r e n t i a b i l i t y w a s a s s u r e d a t t h e n o n - n o r m a l

n u m b e r s . I n t h e i n t e r im , H A U S D O R F F 'S Grundzi ige der M enge nlehre h a d a p p e a r ed .

T h i s v o l u m e h e lp e d d i s s e m i n a t e m a n y c o n c e p t s w h i c h w e r e b e c o m i n g p a r t o f t h em a t h e m a t i c a l " c u l t u r e " o f t h e t im e , f o r e x a m p l e s u c h c o n c e p t s a s fi el d s o f s e ts ,

B O R EL s e t s , l im i n f a n d l i ra s u p o f s e ts .

I n p a r t i c u l a r , H A U S D O R F F g a v e a b r i e f i n t r o d u c t i o n t o t h e L E B ES G UE t h e o r y o f

m e a s u r e a n d o f t h e L E B ES GU E i n t eg r a l . A s examples o f m e a s u r e t h e o r y H A U S -

D O R F F p r e s e n t e d b o t h t h e B O R EL r e su l t o n d e c i m a l s a n d a c l o se l y r e l a t e d

c o n t i n u e d f r a c t i o n r e s u l t , b u t w i t h p r o o f s i n n o w a y r e s t i n g o n B O R E L ' S

i n v e s t i g a t i o n o f 1 90 9 o f t h e p r o b a b i l i t y o f i n f in i te l y m a n y s u c c e s se s i n a

d e n u m e r a b l e s e q u e n c e o f t r ia l s o r i ts e x t e n s i o n i n 1 9 12 .

I n c o n t r a s t w i th t h e o r i g i n a l t r e a t m e n t o f B OR EL , b o t h t h e S t r o n g L a w a n d t h e

r e s u l t o n c o n t i n u e d f r a c t i o n s a r e t r e a t e d s o l e ly as e x a m p l e s o f t h e t h e o r y o fL E BE S GU E m e a s u r e . HAUSDORFF ' s t r e a t m e n t o f t h e s e t h e o r e m s w i ll b e g i v e n in t h e

n e x t s e c t i o n . W h a t i s n e e d e d h e r e , a s t h e n e c e s s a r y h i s t o r i c a l s e t t i n g o f

R A D E M A CH E R 'S p a p e r 1 9 18 , i s t h e p r e c i s e l a n g u a g e o f H A U S D O R F F o n t h e r e l a t i o n

b e t w e e n m e a s u r e t h e o r y a n d p r o b a b i l i s t i c t e r m i n o l o g y , a n d h i s r e s t a t e m e n t o f

B O R E L 's S t r o n g L a w . 1

W e r e m a r k t h a t m a n y t h e o r e m s c o n c e rn i n g th e m e a s u r e o f p o i n t- s et s

a p p e a r p e r h a p s m o r e i n tu i ti v el y , if o n e e x p r es s es t h e m i n t h e l a n g u a g e o f

p r o b a b i l i t y . I f t w o s e t s P a n d M a r e m e a s u r a b l e , a n d M i n p a r t i c u l a r i s o f

p o s i t iv e m e a s u r e , t h e n o n e c a n d e fi ne , b y m e a n s o f t h e q u o t i e n t f ( P ) / f ( M ) i f P

___ M , o r m or e ge ne ra l l y by f ( P c~ M ) / f ( M ) , t h e p r o b a b i l i t y t h a t a p o i n t o f Mb e l o n g s t o P . I f w e c o n s i d e r o n l y s u b s e t s o f a fi x ed s e t M , o f m e a s u r e 1, t h e n f ( P )

W e h av e taken the libe rty of altering HAUSDORFF'S original notation for u ni on and in-tersection, ~(P 1, P2) and ~(P 1, P2) respectively.

Page 58: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 58/68

180 J. BARONE 8z; A. NOVIKOFF

= p i s t h e p r o b a b i l i t y t h a t a p o i n t b e l o n g s t o t h e s e t P . I f P = / ' 1 w P 2, P ' = / ° 1 c~ P 2,

t h e n p + p ' = p 1 + P 2 ; P i s t h e p r o b a b i l i t y t h a t a p o i n t b e l o n g s t o P 1 o r P2, P' i s th e

p r o b a b i l i t y t h a t a p o i n t b e l o n g s t o P1 a s w e l l as t o P 2. I f P1 a n d P2 h a v e n o p o i n t s

i n c o m m o n , t h e n p = p ~ + p 2 . F u r t h e r m o r e p ' - - p 1 ~ - ( if p i > 0 ) ; t h e p r o b a b i l i -

t y t h a t a p o i n t b e l o n g s s i m u l t a n e o u s l y t o P t a n d P2 i s t h e p r o b a b i l i t y t h a t i t

b e l o n g s t o P I m u l t i p l i e d b y t h e p r o b a b i l i t y t h a t a p o i n t o f Pa s h o u l d b e l o n g t o

P 2- T h e f o r m u l a f o r s o - c a ll e d " i n d e p e n d e n t " e v e n t s p' =p ~ P2 is o f c o u r s e n o t

v a l i d i n g e n e r a l. I t i s a l s o p e r f e c t l y c l e a r t h a t f r o m t h is ( b y a n d l a r g e a r b i t r a r y )

d e f i n it i o n , p r o b a b i l i t y 0 is n o t t h e e x p r e s s i o n o f i m p o s s i b i l i t y , a n d p r o b a b i l i t y 1

n o t t h a t o f c e r t a i n t y ; f o r 0 is t h e p r o b a b i l i t y t h a t a p o i n t b e l o n g s t o a s e t o f z e r o

m e a s u r e ( w h i c h m i g h t s ti ll b e o f t h e c a r d i n a l i t y o f t h e c o n t i n u u m ) . H A U S D O R FF

( 1 9 1 4 : 4 1 6 - 4 1 7 )

T h i s c i t a t i o n s h o u l d l e a v e n o d o u b t a s to h o w e a r l y FA B ER 'S q u e s t i o n o f 1 91 0

w a s a n s w e r e d , a n d h o w e a r l y a s c r u p u l o u s l y c l e ar e x p r e ss i o n o f p r o b a b i l i t y w a s

p u b l i s h e d - i n c lu d i n g i n d e p e n d e n c e , c o u n t a b l e a d d i ti v i ty , c o n d i t i o n a l p r o b a b i l i ty ,

a n d e v e n t h e n o t i o n o f s a m p l e s p a c e . H A U S D O R F F'S r e m a r k s , p r e f a t o r y f o r h i s

e x p l i c i t r e - w o r k i n g o f B O R E L'S r e s u l t s , a r e i n t h e s a m e v e i n a s B O R EL 'S p a p e r o f

1 9 0 5 , b u t t h e y r e a c h c o n s i d e r a b l y f u r t h e r .

T w o p a g e s l a t e r , H A U S D O R F F s t a t e s BOREL's S t r o n g L a w a s f o l l o w s :

I I . Se t s o f Dyad ic Dec imals . W e c o n s i d e r a n i r r a t i o n a l n u m b e r x b e t w e e n 0

a n d 1 a n d e x p a n d i t i n a d y a d i c d e c i m a l [ f o o t n o t e o m i t t e d ] :

x 1 x2 x 3x = ~ - + ~ + 3 X + . . . . (Xx , Xz , X3 . . . . ) ( x , = 0 , 1 ) .

A m o n g t h e f i r st n d i g it s w il l a p p e a r p z e r o s a n d q = n - p o n e s. T h e n o n e h a s t h e

T h e o r e m ( E. B o r e l) :

T h e s e t o f x f o r w h i c h l i m P = l_ h a s m e a s u r e 1.

4

q 2

O r : t h e c o m p l e m e n t , i .e ., t h e s e t o f t h o s e x , f o r w h i c h p- i s e i t h e r n o n -n

c o n v e r g e n t , o r d o e s n o t c o n v e r g e t o ½, h a s m e a s u r e 0 . T h e r e i s t h u s ap r o b a b i l i t y 1 t h a t t h e d y a d i c e x p a n s i o n o f x h a s a s y m p t o t i c a l l y as m a n y

z e r o s a s o n e s .

T h i s t h e o r e m is r e m a r k a b l e . O n t h e o n e h a n d i t s e e m s a p l a u s i b l e e x te n s i o n

o f t h e " L a w o f L a r g e N u m b e r s " t o t h e i n fi n it e ; o n t he o t h e r i t as s e rt s th e

e x i s t e n c e o f a l im i t o f a s e q u e n c e , a n d i n d e e d e v e n a p r e s c r i b e d v a l u e o f t h e l i m i t,

a v e r y sp e c i al c i rc u m s t a n c e , w h i c h o n e w o u l d h a v e h e l d a pr ior i t o b e

e x c e e d i n g l y u n l i k e l y . H A U S D O R F F ( 1 9 1 4 : 4 1 9 - 4 2 0 ) .

W e m a y t h u s s t a te t h a t f o r H A U SD O R F F t h e n o t i o n o f p r o b a b i l i t y is

e m p h a t i c a l l y s e e n a s a d e r i v e d o n e , r e s t i n g o n t h e m o r e f u n d a m e n t a l o n e o f

m e a s u r e . T h e s u b s e q u e n t p r o o f d o e s n o t r e f e r t o p r o b a b i l it i e s f o r n o t a t i o n ,

i n t u i ti o n o r m e t h o d , b u t e m p l o y e d s o le l y t h e l e n g t h s o f i n t e rv a l s o f c o v e r i n g s e ts

( se e b e lo w ) . T h e t h e o r e m s e r v e d H A U SD O R F F o n l y a s a n e x a m p l e , a l t h o u g h a v e r y

i n t e r e s t in g o n e , o f th e u s e o f c o u n t a b l e a d d i t i v i t y o f L EB ES G UE m e a s u r e .

Page 59: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 59/68

Axiomatic Probability 181

T h i s is t h e b a c k g r o u n d o f RA D E M AC H ER 's p a p e r . T h e S t r o n g L a w c a n b e

v i e w e d a s a n a s s e r t i o n t h a t a c e r t a i n s e t h a s m e a s u r e 0 ; w h a t RADEMACHER

p r e s e n t e d i s a l s o i n th i s s e tt in g , b u t i n s t e a d o f a d i r e c t c a l c u l a t i o n o f s m a l l c o v e r i n g

s e t s , i n t h e m a n n e r o f HAUSDORFF, t h e p o w e r f u l L E B ES G UE t h e o r e m ( t h a t e v e r y

m o n o t o n e f u n c t i o n is a lm o s t e v e r y w h e r e d if f er e n ti a b le ) is e m p l o y e d . T h i s c o m p l e t e

a c c e p t a n c e o f t h e t w o - f o l d c h a r a c t e r o f t h e t h e o r e m , p r o b a b i l i st i c i n th e h a n d s o f

BOREL, m e a s u r e - t h e o r e t i c i n t h e h a n d s o f HAUSDORFF 1 is e v i d e n t in t h e w o r d i n g

o f R A D E M A C H E R ' s i n t r o d u c t i o n , w h i c h f o l l o w s .

O n e o w e s t h e f o l lo w i n g r e m a r k a b l e t h e o r e m t o M r . E . B o r e l [ f o o t n o t e

o m i t t e d ] :

D e n o t i n g b y n~ ( ? = 0 , 1 , 2 . . . . 9 ) t h e n u m b e r o f d ig i ts ? a m o n g t h e f i rs t n

p l a ce s in t h e d e c i m a l e x p a n s i o n o f a n u m b e r f r o m t h e i n t e r v a l b e t w e e n 0 a n d 1,

t h e n l i m n ~ _ 1n ~ n 10

e x c e p t f o r a n u l l- s e t Z , w h i c h h o w e v e r h a s t h e c a r d i n a l i t y o f t h e c o n t i n u u m

[ f o o t n o t e o m i t te d ] .

B o r e l e x p r e s s e s t h e t h e o r e m t h u s : t h e p r o b a b i l i t y t h a t , i n a d e c i m a l

e x p a n s i o n , t h e t e n d i g i t s d o n o t a s y m p t o t i c a l l y e q u a l l y o c c u r , i s z e r o , a n d

c a r r ie s o u t t h e p r o o f b y a n e x t e n s i o n o f B e r n o u l l i 's t h e o r e m o n p r o b a b i l i ty . A

d i r e c t p r o o f o f t h e t h e o r e m i n o u r f o r m u l a t i o n w a s g i v e n b y H a u s d o r f f , i n w h i c h

h e g a v e a n u p p e r e s t i m a t e o f t h e s e t Z b y m e a n s o f c o v e r i n g s w i t h i n t e rv a l s. T h e

f o l l o w i n g p r o o f i s p e r h a p s n o t s u p e r f l u o u s . . . R A D E M A C H E R ( 1 9 1 8 : 3 06 ).

T o u s , RADEMACHER's a s s e r t io n t h a t B O RE L c a r r i e d o u t t h e p r o o f b y " a n

e x t e n s i o n o f B E RN O U LL I's t h e o r e m " s e e m s r a t h e r m i s le a d i n g . I n d e e d , t h e t h e o r e m

is n o t a c o n s e q u e n c e o f t h e Z e r o - O n e L a w o f 19 09 , a n d t h e g a p is n o t r e a d i l y f il le d

( e v e n b y t h e e x t e n s i o n o f i t i n 1 9 12 ), w i t h o u t r e c o u r s e t o c o u n t a b l e s u b - a d d i t i v i t y i n

the "CANTELLI" m a n n e r a s w a s d o n e b y HAUSDORFF.

A s w e h a v e s e e n , e v e n b y 1 91 2, t h e d a t e o f h i s r e p l y t o B E R N ST E IN , B O R E L d o e s

n o t s e e m t o h a v e b e e n a d v i s e d b y LEBESGUE, B E R N ST E IN , o r a n y o n e e l se t h a t h i s

S t r o n g L a w o f L a r g e N u m b e r s d o e s n o t f o l lo w f r o m h is Z e r o - O n e L a w o f 19 09 .

W r i t in g i n 1 91 2, w h e n h e e v o l v e d a m o r e g e n e r a l Z e r o - O n e L a w t o c o v e r th e r e s u l t

o n c o n t i n u e d f r a c ti o n s , B O R EL m a d e n o a t t e m p t t o l e g i t im a t e h i s S t r o n g L a w

s i m i la r l y . F A BE R 's p r o o f i n 1 9 10 , in c o n t e s t a b l e a s it w a s, m u s t h a v e s e e m e d a n

" a c c i d e n t " , s i n c e i t b o r e n o e v i d e n t r e l a t i o n t o p r o b a b i l i t y ( c f FA BER's ow n

p u z z l e m e n t r e m a r k e d a b o v e ) .

T h i s b r i n g s t h e n a r r a t i v e u p t o HAUSDORFF, w h o i n 1 9 1 4 s i m u l t a n e o u s l y

a c c o m p l i s h e d s e v e r al r e m a r k a b l e t h i n g s : h e c o n s id e r s b o t h t h e d e c i m a l a n d

c o n t i n u e d f r a c t i o n c a se in t u rn , r e c a s t in g t h e m b o t h a s t h e o r e m s i n m e a s u r e t h e o r y .

H e p r o v e s t h e d e c i m a l c a s e b y s u b - a d d i t i v i t y ( i . e . , i n t h e " C A N T E L L I " m a n n e r ) ,

i n t r o d u c i n g a p r o w e r f u l d e v i c e t o e v a d e a n a p p e a l t o t h e C e n t r a l L i m i t T h e o r e m .

H e a l s o p r o v e s a c o n t i n u e d f r a c t i o n r es u l t a k i n t o t h e BERNSTEIN-BOREL one , a s

c l e a r l y a s d i d BERNSTEIN, a l t h o u g h w i t h o u t i n t r o d u c i n g t h e m o d e r n l a n g u a g e o f

c o n d i t i o n a l p r o b a b i l it i es .

1 And also FABER, although unknown at the time to RADEMACHERand cited by HAUSDORFF.

Page 60: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 60/68

182 J. BARONE& A. NOVIKOFF

His p roo fs are a l l in the langu age of (LEBESGUE) mea sure , w i th m od er n

not at ion s , such as l im sup E, for a sequ ence {En} of se ts . As to the r e la t io n o f his

(measure - theore t i c ) a s se r t ions to those of BOREL, which were couched in the

language of probabi l i ty , HAUSDORFF expl i c i tly d isposes of th is in the pre f a toryr e ma ks c i te d a bove .

10. Hausdorff's "Grundziige der Mengenlehre":

A Notable Advance in Technique

10.1. General Background

This sect ion wi l l c i te vi r tual ly a l l the probabi l is t ic references to be found in

HAUSDORFF's Grundzfige der Mengenlehre. The f i r s t p robabi l i s t i c re fe rence ,

a l r e a dy c i te d , c onc e r ns t he r e l a t i on be t w e e n t he voc a bu l a r y o f p r oba b i l i t y a nd t ha t

of me asur e the ory. In this sect ion we discuss HAUSDORFF's t re atm en t of dy adic

e xpa ns i ons a nd c on t i nue d f r a c t i ons v i a me a s u r e t he o r y .

C ha p t e r X o f t he Grundziige (1914) is the locu s o f a l l of the abo ve i tems. T his

chap te r i s t i t led "C on ten t o f Poin t -Se t s ." I ts f i rs t pa r agr aph begins wi th genera l i t ie s

concerning length, measure and area in EUCLIDEAN space, and a his tor ical sketch.

Th e olde r the or y of con ten t asso cia ted wi th CANTOR, HANKEL, PEANO, and

JORDAN, conc ern ed i t se l f wi th f ini te add i t ivi ty fo r dis joint se ts ; the newe r theo ry,

due to BOREL and LEBESGUE, specif ical ly ad ded co un tab le ad di t ivi ty. HAUS-

DORFF ci ted LEBESGUE'S pr ob lem and for m ula ted i t thus :

. .. L e be s gue f o r m u l a t e d t he p r ob l e m o f a s s oci a ti ng t o e ve r y bou nde d s et A in n -d i me ns i ona l s pa c e E , , a s " c on t e n t , " a num be r f (A)> 0 sat is fying the fol lowing

c ond i t i ons :

(a ) Congruent s e t s have the same measure .

( f i ) The uni t cube has conten t 1 .

(7) f( A + B) = f( A) + f(B).(6) f (A + B + C +...) = f(A) + f(B ) + f( C) +... f o r a boun de d s um o f c oun -

tably many sets . HAUSDORFF (1914: 401).

HAUSDORFF imm edia te ly gave an exam ple show ing the im poss ib i l i ty of th i s

problem in fu l l genera l i ty . The example , s t i l l t he mos t popula r one (cf ROYDEN

(1965: 52-55) , map s the l ine on to th e c i rc le ; on the c i rc le i t exhibi ts a se t which is

d i s jo in t f rom a l l i t s images under ra t iona l ro ta t ions . Fur the r , th i s s e t and i t s

(necessa r i ly congruent ) images under a l l ra t iona l ro ta t ions i s a d i s jo in t decom-

pos i t ion of the en t i re c i rc le .

I t is of interes t to n ote th at this ex am ple is no t a t t r ibu ted by HAUSDORFF to a ny

a u t ho r . H ow e ve r , i n t he r e f e r enc e s ne a r t he e nd o f t he boo k t w o s ou r c es o f exa mpl e s

of non -m easu rabl e se ts a re g iven: G . VITALI 's Sul ProbIema della Misura dei Gruppi

di Punti di una Retta, a nd A . SCHOENFLIES'Mengenlehre. T he l a t t e r c on t a i n s

severa l examples of non -me asur able set s, inc luding the o ne g iven by HAUSDORFF.

Th e text of SCHOENFLIES (SCHOENFLIES (1913: 377, especia l ly fo otn ote 2))

indicates interes t ingly that this s imple example was in fact due to HAUSDORFF

himse l f , and communica ted d i rec t ly .

HAUSDORFF fur the r com me nte d on the im poss ib i l i ty o f the " easy LEBESGUE

problem" (employing the t e rminology of NATANSON (1961: 80) ) in which

Page 61: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 61/68

Axiom atic Probab ility 183

r e q u i r e m e n t 6 is d r o p p e d i n sp a c e s o f t h r e e o r m o r e d i m e n s i o n s . T h e e x a m p l e

w h i c h e s t a b l i s h e s t h i s is g i v e n i n a n a p p e n d i x ; i t a l s o i s d u e t o H A U S D O R F F, w h o

a g a i n o m i t s a n y c l a i m o f a u t h o r s h i p o r p r io r i t y .

T h e s e c o n d p a r a g r a p h o f H A U SD O R FF ( 19 14 ), C h a p t e r X , is c o n c e r n e d w i t h t h e

t h e o r y o f P EA N O -JO R D AN c o n t e n t (c f H A W K I N S ( 1 9 7 0 : 8 6 - 9 6 ) f o r a h i s t o r y o f

t h e s e d e v e l o p m e n t s ).

P a r a g r a p h t h r e e , a b o u t n i n e p a g e s i n l e n g t h , i s a c o n c i s e a n d c o m p l e t e

t r e a t m e n t o f th e t h e o r y o f L EB E SG U E m e a s u r e i n t h e p l an e . C o u n t a b l e a d d i t i v i ty i n

a l l o f i ts f o r m s i s e s t a b l is h e d . C o u n t a b l e s u b - a d d i t i v i t y i s r i g o r o u s l y d e d u c e d

( HAUSDORFF ( 1914 : 414 : f o r m ul a ( 6 ) ) .

T h e n e x t, o r f o u r t h p a r a g r a p h o f H A U SD O R FF 's C h a p t e r X , is d e v o t e d t o

a p p l i c a t i o n s a n d e x a m p l e s . F o u r t o p i c s a r e d i s c u s s e d . T h e f i r s t c o n c e r n s n o n -

m e a s u r a b l e s et s, th e f o u r t h c o n c e r n s s e q u e n c e s o f m e a s u r a b l e f u n c t i o n s a n d t h e i r

c o n v e r g e n c e p r o p e r t i e s , su c h a s a l m o s t u n i f o r m c o n v e r g e n c e . It is to p i c s t w o a n d

t h r e e t h a t r e p r e s e n t HAUSDORFF's d i r e c t c o n t r i b u t i o n t o t h e d e v e l o p m e n t o f t h e

i d e a s c o n t a i n e d i n B O R E L's p a p e r o f 1 9 09 . I t is n o t e w o r t h y t h a t i n a b o o k o f 4 7 3

p a g e s , o n l y n i n e o f w h i c h a r e d e v o t e d t o t h e t h e o r y o f m e a s u r e , t w o o f t h e f o u r

t o p i c s c h o s e n t o i l l u s t ra t e m e a s u r e t h e o r y s t e m f r o m B O R E L'S p a p e r o f 1 9 09 . I t is

e s p e c i al l y t o b e n o t e d t h a t H A U SD O R FF p r e s e n t e d t h e s e t w o t o p ic s , t h e S t r o n g L a w

a n d c o n t i n u e d f r ac t io n s , in a c o m p l e t e l y o r ig i n a l f r a m e w o r k , i n w h i c h h e o f f e r e d

i n c o n t e s t a b l e p r o o f s . H A U SD O R FF t h e r e b y e m p h a s i z e d , t h e c l a r it y a n d s c o p e o f t h e

m e t h o d s o f m e a s u r e t h e o r y o n c e t h e f u n d a m e n t a l p r o p e r t ie s o f m e a s u r e h a v e b e e n

c l e a r l y l a i d d o w n .

10.2 . Haus dorf f s P roo f o f the S trong Law :

Ihe Use of M om en ts and BienaymO-Tchebycheff Type Inequalities

HAUSDORFF's f o r m u l a t i o n o f th e BOREL S t r o n g L a w h a s b e e n c i te d a b o v e . W e

n o w s k e t c h H A U SD O R FF 'S p r o o f , d i ff e ri n g o n l y i n m i n o r n o t a t i o n a l m o d i f i c a t io n s

f r o m t h e o r i g i n a l .

T o b e g i n w i t h , th e s e t o f a ll ir r a t i o n a l x w h o s e d y a d i c e x p a n s i o n s b e g i n w i th t h e

b i n a r y d i g i ts b l , b 2 . . . , b n, c o n s is t s o f t h e i r r a t i o n a l n u m b e r s i n t h e i n t e r v a l

bl b2 bn b l b 2 b n + l~ + ~ + - . . + ~ < x < ~ + ~ + . . . + 2 ~

a n d is t h e r e f o r e o f m e a s u r e 1 /2 n. ( T h e o m i s s i o n o f r a t i o n a l n u m b e r s , a s e t o f m e a s u r e

z e r o , p e r m i t s t h i s i d e n t i f i c a t i o n o f m e a s u r e w i t h l e n g th . ) T h e s e t o f t h o s e ( i r r a ti o n a l )

x w h i c h h a v e p r e c i s e l y k z e r o s a n d n - k o n e s in th e f i rs t n t e r m s c o n s i s ts o f ( ~ )

p a i r w i s e d i s j o i n t " i n t e r v a l s , " a l l o f m e a s u r e 1 / 2 n, a n d s o i s o f t o t a l m e a s u r e

F u r t h e r , l et e b e a p o s i t iv e n u m b e r a n d l e t E , ( e) b e t h e s e t o f t h o s e x f o r w h i c h

k 1 > ~~-~= .

Page 62: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 62/68

184 J. BARONE& A. NOVIKOFF

T h e m e a s u r e o f th i s s e t, d e n o t e d p ,( e) , is t h e n g i v e n b y

1p , ( e ) ( ~ ) 2

w h e r e t h e s u m ~ is t a k e n o v e r t h o s e v a l u e s o f k fo r w h i c h

~_ 1 ~ e .

A t t h i s p o i n t I- IA U S D OR F F i n t r o d u c e s a t e c h n i c a l d e v i c e d e s t i n e d t o i n f l u e n c e

succes so rs ( such as STEINHAUS) w h i c h i n v o l v es e s t i m a t i n g e v e n - o rd e r m o m e n t s o f

v 1

t h e r a n d o m v a r ia b l e n - 2 " B y m e a n s o f t h is d e v ic e ( c f § 10 .3 be low) HAUSDORFF

s u c c e e d e d in s h o w i n g t h a t

( k 1 ] 4 ( ~ ) 1 3 1

k= 0 \ n - 2 1 ~ < 1 6 n 2" (1 0.1 )

I n t e r m s o f t h e n o t a t i o n v n( x f o r t h e n u m b e r o f z e r o s b l , . . . , b , i n t h em o n g

d y a d i c e x p a n s i o n o f x, th e s u m a p p e a r i n g o n t h e l e f t- h a n d s id e o f t h e a b o v e

i n e q u a l i t y w o u l d n o w b e c a l l e d t h e 4 th m o m e n t o f t h e r a n d o m v a r i a b le

I t f o l l o w s t h a t

* ( ~ ) 1 * [ k 1 ] 4 ( ~ ) 1 3 1

e 4 Z ~ < ~ \ n 2 ] ~ < 1 6 n 2

i.e.,

1 t

3 1 1

P"(e) < 16 e4 n 2,

so th a t ~ p ,(e) conv e rges fo r eve ry ~ > 0 .1

T h e s t r o n g L a w n o w f o l lo w s w i t h r e m a r k a b l e r a p i d i t y 1. I t m u s t b e e m p h a s i z e d

t h a t t h e i n e q u a l i t y ( 10 .1 ) p l a y s t h e r o l e f o r H A U S D O RF F w h i c h e s t i m a t e s f r o m t h e

C e n t r a l L i m i t T h e o r e m h a d p l a y e d fo r B OR EL .

Le t E(~) = l im sup E,(e) = ~ U E,(~) .T h e n E (e ) is e x a c t l y t h e s e t o f i r r a t i o n a l xn= 1 n= N

i n t h e u n i t i n t e r v a l f o r w h i c h

v,(x) 1m 21 Thi s inequa lit y is of the sort probabil is ts call TCHEBYCHEFF (or BIENAYMI~-TCHEBYCHEFF) ype,

th dalthou gh based on 4 power s rather tha n 2 n powers. It lies at the heart ofth e brilliantly briefpro ofgiv en

by KAC (1959: 16-17).

Fo ur th power est imates were also used by F. CANTELLI n his proof(CANTELLI (1917 a) and (1917b)).

Page 63: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 63/68

Axiomatic Probability 185

L e t A ~ ( e ) = P(E(e)) = m e a s u r e o f E (~ ). T h e s e ts ~ ) E , ( e) d e c r e a s e w i t h i n c r e a s i n gn = N

N . O b v i o u s l y

E(e) c ~) E,(e) for N = 1 , 2 , 3 , . . . .n ~ N

F o r e a c h f i x e d i n t e g e r N w e h a v e , b y m o n o t o n i c i t y a n d c o u n t a b l e s u b - a d d i t i v i t y ,

t h a t

P(E,(e)) = p,(~).~(e)<=p E,(e) <=

H a v i n g sh o w n th a t ~ pn(e ) co n v er g es fo r ev e r y e > 0 , t h e m e as u re E (e ) = A oo(e) i s 0

f o r e v e r y e > 0 ) , =N

I n p a r t i c u l a r ~ = ~ ) E ( ~ ) i s a c o u n t a b l e u n i o n o f s e ts o f m e a s u r e 0 , a n d b y

co u n ta b le ad d i t iv i ty , i s i t s e l f o f m e as u r e 0 . B u t l=~)1E (~) i s t h e se t o f x fo r w h ich

l i m n 2 > 0 . T h u s i f ~ p , ( e ) c o n v e r g e s f o r a l l e > 0 , th e r e i s p r o b a b i l i t y (i.e.,n~oo

m e a s u r e ) 1 t h a t :

= 0limbo n 2

o r e q u i v a l e n t l y

v,(x) _1_J i m n 2 = 0 .

A t t h e v e r y l e a s t , H A U S D O R F F g a v e t h e f i r s t (c f p r e c e d i n g f o o t n o t e )

" C A N T E L L I " - t y p e p r o o f t h a t ~ p , < o o i m p l i e s A o o = 0 . I t s e e m s c l e a r t h a t

H A U S D O R F F , n o t C A NT E LL I, s h o u l d b e g i v e n c r e d i t f o r t h i s l i n e o f r e a s o n i n g . N o t

o n l y d i d H A U S D O R F F a n t i c i p a t e C A N T E LL I b y t h r e e y e a r s , h e a l s o g i v e s a t r e a t m e n t

1 This same argument shows (suppressing the e), that if ~p ,< o o , where p,=P(E,), thenP(lim sup E,) = A ~ = 0 thanks to sub additivity and with no appea l to independence. In other words, this

is CANTELLI'S argument, but resting on the firm base of measure theory. CANTELLIhad rested thecorresponding argument on the ad hoe assumption that sub-additivity("BooLn'S inequality") could be

extended from the finite to the countably infinite case.As early as 1906, in his thesis, FRECHET prov ed a theorem to which th e "CANTELLI" esult is an

imm ediate corollary, but couched in the language of measure (cf FRgCHET 1906: 16)). If for each integern, E, is a measurable subset of the unit interval whose measure re(El)equals 1 -m l , then FR£CHET

°bserved that m(~]lE't>l-(m~+m2+'")"~ / n It is immediate (although it seems to have

/

passed

unrem arked in the literature) that i f ~ m, converges (the only case of interest) then m E, > 1 - e forn=

N sufficiently large, depending on e. This yields m(lim inf E,) = 1 at once w ithout the intervention of any"independence" assumption. Since m,=m(E~,), his can be rephrased as follows: ~m(U,) convergesimplies re(lira inf U, )= 0, precisely th e "CANTELLI"result.

Page 64: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 64/68

186 J. BARONE& A. NOVIKOFF

w h i c h i s i n o n e r e s p e c t s u p e r i o r : t h e s u b - a d d i t i v i t y

kn=N / n=N

i s s een a s a consequence o f t h e g e n e r a l p r o p e r t i e s o f m e a s u r e , n a m e l y , n o n -

n e g a t i v i t y a n d c o u n t a b l e a d d i t iv i ty , a n d a d o m a i n o f d e f in i ti o n c o n s is t in g o f a a -

a l g e b r a o f se ts . B y c o n t r a s t , C A N T E L L I a s s e r t e d

/I n=N

w i t h u n s p e c i fi e d g e n e r a li ty , r e a s o n i n g b y p u r e a n a l o g y w i t h t h e c o r r e s p o n d i n g

i n e q u a l i t y w h e n n h a s a f in i te r a n g e . T h u s C A N T E L L I a s s u m e s t h a t t h e d e g r e e o f

g e n e r a l i t y i s n o t l i m i t e d t o g e o m e t r i c p r o b a b i l i t y ( t h e o n l y c a s e t h e n k n o w n f o r

w h i c h m e a s u r e t h e o r y w a s a p p l ic a b le ) . O n t h e o t h e r h a n d , h e i g n o r e s th e f a c t t h a t

c o u n t a b l e s u b - a d d i t i v i ty r e s ts o n t h e p r i o r a p p a r a t u s o f c o u n t a b l e a d d i t i v i t y a n d o--

a l g e b r a s . H A U S D O R F F ' S pro of seems to be the f irs t fu l ly accurate re-working of

BOREL'S "p r o o f " o f t h e BOREL Law o f Large Numbers .

H A U S D O R FF o b s e r v e d a l s o t h a t t h a n k s t o h is m e t h o d o f m o m e n t s , u s i n g (e v en )

m o m e n t s h i g h e r t h a n t h e f o u r t h , t h e re s u l t o f B O RE L c a n i n fa c t b e c o n s i d e r a b l y

s t r e n g t h e n e d : w h e r e B O RE L s h o w e d t h a t t h e s e t o f x f o r w h i c h

l : ol i m \ n 2 ]n ~ o o

i s 1 , H A U S D O R F F 'S m e t h o d e s t a b l i s h e d t h a t t h e s e t o f x f o r w h i c h

. m

n~oo

i s 1, f o r a n y 0 l e s s t h a n ½ . H e t h u s i n i t i a t e d a s e q u e n c e o f r e f i n e m e n t s o f B O R E L ' s

S t r o n g L a w e s t a b l is h i n g m o r e a n d m o r e p r e c i se i n f o r m a t i o n a s t o th e rate a t w h i c h

v , ( x ) a p p r o a c h e s ½ w i t h p r o b a b i l i t y 1.n

10.3 . H ausdo rf f ' s Meth od for Calculat ing M om ents

S u m m a r i z i n g t h e m a i n r e s u l t : H A U S D O R F F s u c c e e d e d i n e s t a b l i s h i n g t h e

B OR EL L a w o f L a r g e N u m b e r s w i t h o u t a p p e a l t o t h e C e n t r a l L i m i t T h e o r e m . T h e

c o r r e s p o n d i n g t o o l f o r H A U S D O R F F w a s t h e i n e q u a l i t y : 1

3 (10 ,k =0 \ n 2 1 ~ < ~ n 2"

1 The left-hand side of (10.2) wou ld now be denoted

where Xj are independent random variables eac h with probability } of havin g the value 0 andprobab ility ½of having the v alue 1.

Page 65: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 65/68

Ax ioma tic Probab ility 187

H A U S D OR F F s h o w e d g e n e r a ll y h o w t o e x p re s s " m o m e n t s " s u c h a s

k = o ( 2 k - - n ) l 2

a s p o l y n o m i a l s i n n w i t h i n t e g e r c o e f f i c i e n t s . T h e e v e n v a l u e s o f l a r e t h e m o s t

s i g n if i ca n t , as in t h e c a s e l = 4 c it e d a b o v e . T h e s e p o l y n o m i a l s a r e e a s i l y b o u n d e d

a b o v e b y p u r e p o w e r s o f n w i t h a s l ig h t ly l a r g e r l e a d i n g c o e ff ic i en t . T h u s

H A U S D O R F F s h o w s h o w t o o b t a i n e s t i m a t e s s u c h a s

a n d h e n c e

A2mk=O

¢ 1k~0

k l >I f 2 ., m e a n s s u m o v e r t h o s e v a l u e s o f k s a t i s f y i n g = e t h e r e r e s u l t s f i n a l ly

2

e 2 , , ~ 1 < A 2 ~ 12 n n m 22m •

I n s h o w i ng h o w t he s e m o m e n t s c o u l d b e e s ti m a t e d a n d h o w a d v a n t a g e o u s t h ey

w e r e, H A U SD O R F F a c h ie v e d a n o t a b l e a d v a n c e i n m e t h o d . T h e a b i li ty t o m a k e s u c he s t im a t e s w a s d e s t i n e d t o p l a y a r o le i n l a t e r d e v e l o p m e n t s b o t h w h e n l = 4 a n d

w h e n l = 2 m f o r l a r g e m . I n d e e d , C A N T E L L I w a s t o m a k e u s e , t h r e e y e a r s l a t e r , o f

s i m i l a r t e c h n i q u e s i n v o l v i n g t h e 4 t h m o m e n t , i . e . , l = 4 , a n d S TE IN H A US c o n s i d -

e r e d l = 2 m f o r l a r g e v a l u e s o f m i n 1 92 3.

T o c o n c l u d e t h e s e r e m a r k s , w e s k e tc h H A U S D O R FF 'S m e t h o d o f o b t a i n i n g e x a c t

p o l y n o m i a l e x p r e s s i o n s f o r

HAUSDORFF f i r s t c o n s i d e r e d

k=0

a n d i n t r o d u c e d t h e c h a n g e o f v a r i a b l e s u = x + y , v = x - y . T h e n t h e d i f f e r e n t i a l

0o p e ra to r D = x ~xx - y ffyy sa t i s f ies

D ( f + g ) = D f + D g ,

D ( f g ) = ( O f ) g + f ( D g ),

D ( f ' ) = n f ~ - 1 (D f ) ,

D ( x k y . - k) = (2 k - n ) x k y" - k .

I n p a r t i c u l a r , D ( u ) = v , D ( v ) = u .

Page 66: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 66/68

1 8 8 J . B A R O N E 8 ,: A . N O V I K O F F

T h e c a l c u l a t io n o f D2m(un) t h e n p r e s e n t s n o d i f fi cu l ty , a n d t h e n u m e r i c a l c h o i c e

x = y = ½ , w h i c h c o r r e s p o n d s t o u = 1 , v = 0 , r e s u l t s i n

i (2k-nl. . . . . 1 = \ k ] 2 " 'v = 0 k = O

an m th d e g r e e p o l y n o m i a l i n n.

1 0 . 4 . H a u s d o r f f ' s C o n t i n u e d F r a c t i o n T h e o r e m

L e t u s i n t r o d u c e o n c e m o r e t h e n o t a t i o n [ a 1 = m l , a 2 = m 2 . . . . . a , = m , ] t o s t a n d

f o r t h e s e t o f c o n t i n u e d f r a c t i o n s w h o s e f ir s t n e l e m e n t s a l , . . . , a , a r e t h e p r e s c r i b e d

i n t e g e r s m l . . . . , m , . T h e s e f o r m a n i n t e rv a l , t h e l e n g t h o f w h i c h w e d e n o t e b y

P [ a l = m l , . . . , a n = m , ] .

T h e s e t d e f i n e d b y

[ a l = m l , . . . , a , _ l = m , _ l , k < = a , < m ]

i s a l so a n i n t e r v a l ( b e i n g a u n i o n o f a d j a c e n t i n t e r v a ls o f t h e a b o v e t y p e ) , th e l e n g t h

is d e n o t e d b y

P [ a 1 = m 1 . . . , a , _ 1 = m , _ 1 , k < a , < m ] .

T h e r a t i o o f t h e a b o v e t o t h e l e n g t h P [ a l = m l , . . . , a , _ 1 = l ~ n - - 1] c a n b e d e n o t e d b y

P [ k < a , < m [ a l = m l , . . . , a ~ _ l = m ~ _ l ]

u s i n g t h e m o d e r n n o t a t i o n f o r c o n d i t i o n a l p r o b a b i l i t y a l t h o u g h t h i s n o t a t i o n i s n o ts t r i c t ly n e c e s s a r y ( a n d i n d e e d is n o t u s e d b y HAUSDORFF). H A U S D O R F F 'S p o i n t o f

d e p a r t u r e is a n i n e q u a l i t y

p ( k , m ) < P [ k < a , < m l a I = m I . . . . , a , _ 1 = m , _ 1] < ~ r ( k , m )

w h e r e p a n d a c a n b e c a l c u l a t e d e x p l ic i tl y , a n d d o n o t d e p e n d o n n , n o r o n

m l , . . . , m , _ 1 . H A U S D O R F F c a l c u l a t e s " b e s t p o s s i b l e " e x p r e s s i o n s f o r p a n d a ,

i n c l u d i n g t h e i r s o m e w h a t a l t e r e d f o r m i f k = 1 o r m = o e ( b u t n o t b o t h ) . I t f o l l o w s

r e a d i l y t h a t

p ( k , , m , ,) < P [ k , < = a , , < m , , [ k 1 < =a 1 < = m I . . . . , k n - 1 < = a n - l < = m , - 1] ~ O'(kn, rn,)

b y p u r e l y a l g e b ra i c m a n i p u l a t i o n s . W e h a v e d e s c r i b e d t h i s m a n i p u l a t i o n i n

d i s c u s s i n g B E R N S T E I N 's w o r k ; i t i s e s s e n t i a l l y i d e n t i c a l i n H A U S D O R F F 'S .

B y m u l t i p l i c a t i o n o f t h e s e i n e q u a l i t i e s f o r c o n s e c u t i v e v a l u e s o f n ( w h i c h c a n b e

i n t e r p r e t e d a s t h e C h a i n L a w o f P r o b a b i l i t y ) i t f o l lo w s t h a t

P l . .. P , < P [ k l < a l < m a , . . . , k n < a , < m , ] < 1 1 . . . ~r,

w h e r e w e h a v e i n t r o d u c e d

p j = p ( k ~ , m j ) , a j = a ( k ~ , m j )

f o r b r e v i t y .

B y c o u n t a b l e a d d i t i v i t y ( e x p l ic i t l y s o s ta t e d )

co

] ~ p j < = P [ k j < =aj < = m j , j = l , 2 , 3 . . . . ] ~ ~ I a j .1 1

Page 67: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 67/68

Axiom atic Probability 189

H A U S D O R F F is i n t e r e s te d o n l y in c o n d i t i o n s o n t h e t w o n u m e r i c a l s e q u e n c e s { k ,}

a n d { m , } t h a t a s s u r e p o s i t i v e m e a s u r e t o t h e s e t [ k j < a j < m j , j = 1 , 2 , 3 , . . . ] . F o r t h i soo oo

i t i s c l e a r l y n e c e s s a r y t h a t I ~ a j > 0 a n d s u f f ic i e n t t h a t H p j > 0 . I n v i e w o f t h e s p e c i f i c1 1

f o r m o f p ( k , m ) , a ( k , m ) i t r e s u l t s t h a t p o s i t i v e m e a s u r e i s o b t a i n e d i f a n d o n l y i f k j = 1

e x c e p t f o r f i n i t e l y m a n y v a l u e s o f j a n d

1 c o n v e r g e s .j = l m r

H A U S D O R F F d i d n o t p u r s u e h i s c a l c u l a t i o n s f u r th e r , a s h a d B E R N S T E IN a n d

B O R E L , to o b s e r v e t h a t t h e s e t d e f i n e d b y [ k n < a n < m n f o r a ll b u t f i n it e l y m a n y

v a l u e s o f n = 1, 2 , 3 , . . . ] i s n e c e s s a r i l y o f m e a s u r e 1 w h e n i t i s p o s i t i v e ( a l t h o u g h t h e

r e s u l t is i m m e d i a t e u s i n g h i s t e c h n i q u e s ) . R e c a l l , i t w a s th i s r e s u l t w h i c h s oa p p e a l e d t o B O R E L t h a t h e h a d p o i n t e d i t o u t a s th e m o s t i n t e r e s t i n g i n h is e n t i re

p a p e r o f 1 90 9.

I n s u m m a r y , H A U S D O R F F u s e d c o n t i n u e d f r a c t i on s a s a n e x a m p l e o f t h e p o w e r

o f L E B ES G U E m e a s u r e , e s p e c i a l l y i ts c o u n t a b l e a d d i t i v i ty a n d w i d e d o m a i n o f

d e f i n i t io n . H e o b t a i n e d a r e s u l t a l o n g t h e l i n e s o f t h e B E R N S T E I N -B O R E L o n e . L i k e

B E R N S T EIN h e d id n o t m i s t a k e n l y a s s u m e o r e m p l o y i n d e p e n d e n c e , b u t r a t h e r

m a n i p u l a t e d t h e p r o b a b i l i t ie s o f m u t u a l l y d e p e n d e n t e v e n t s in a f u ll y a c c u r a t e

m a n n e r . L i k e B E R N ST E IN , H A U S D O R F F o b t a i n e d t h e p r o b a b i l i t i e s o f n o n - c y l i n d e r

s et s b y v a l id l im i t o p e r a t i o n s o n t h e p r o b a b i l i t y o f a p p r o x i m a t i n g c y l i n d e r s et s.

N o n e o f B O R E L ' s e a r l y s u c c e s s o r s f o l l o w e d h i s l e a d t o w a r d s t h e r i g o r o u sf u n d a t i o n o f a t h e o r y o f p r o b a b i l i t y c o n c e r n e d w i t h r e p e a t e d t r ia l s ( i n d e p e n d e n t o r

n o t) . N o t u n t i l s o m e o n e w h o p o s s e s s e d f ac i li ty w i t h a x i o m a t i c a l l y b a s e d m e a s u r e

t h e o r y a n d w h o s h a r e d h i s p r i m a r y c o n c e r n w i th p r o b a b i l i t y ( in p a r t i c u l a r w i t h

r e p e a t e d t r i a ls ) w a s B O R E L t o h a v e a s u c c e s s o r a s i m p o r t a n t a s h i m s e lf , a s u c c e s s o r

w h o w o u l d f u l ly d e s e r v e t h e a c c o l a d e w h i c h W I N T N E R b e s t o w e d o n B O R EL . T h a t

w a s t o w a i t u n t i l 1 9 23 ; t h e s u c c e s s o r w a s t o b e H U G O S T E IN H A U S .

Bibliography

B A R O N E , J .,1974.

An H istorical Analysis of the Development o f Axiom atic Probabil ity Theory.D o c t o r a lDisser tat ion . Ne wY ork Universi ty .

BERNSTEIN,F., 1911. '°lJber eine Anw endung der M engenlehre a uf ein aus der Theo rie der s iikularenSt6rungen berrtihrendes Problem," Mathematische Annalen, 71,417-439.

BOHL, P., 1909. "~ b e r ein in der Theo rie der s~ikularen St6rungen vork om m end es Problem," Crelle's

Journal, 135, 189-283.BOREL, E., 1895. "S ur quelques points de la th6orie des fonctions," Annales de l 'E¢ole Norma le, 3 (12), 9

55 .BOREL, E., 189 8. Le¢ons sur la Thdorie des Fonctions, Paris.B O R E L , E . , 1903. "C on tribu tion fi l 'analyse a rithm 6tique du continu," Journal de Math~matiques Pures et

Appliqudes, 9, 329-375.BOREL, E., 1905. "R em arq ue s sur certaines questions de probabilit6," Bulletin de la Socidtd

Math~m atique de France, 33, 123-128.BOREL, E., 1909. "L es probabilit6s dbnom brables et leurs applications arithm&iques," Rendiconti del

Circolo Matematico di Palermo, 27, 247-271.BOREL, E., 1909 a. Eldments de la Thdorie des Probabilitds, Paris.BOREL, E., 1912. "Su r u n probl6me de probab ilit6s relatif aux fractions continues," Mathematische

Annalen, 72, 578-584.

Page 68: Barone - Hist of Axiomatic Prob

7/27/2019 Barone - Hist of Axiomatic Prob

http://slidepdf.com/reader/full/barone-hist-of-axiomatic-prob 68/68

19 0 J. BARONE 8¢; A . NOVIKOFF

BOP,EL, E., 1914. Legons sur la ThOorie des Fonc t ions . (2na ed.), Paris.

BOREL, E., 1926. Appl icat ion s d l 'Ar i thm~t ique e t d la Th~orie des Fonc t ions , Par is .

B RO DEN, T ., 1900 . " W a hr sc h e in l i c h ke i t sb e s t im m u nge n be i de r ge w 6 hn l i c he n K e t t e n b r uc h e n tw ic k -

lung r e e l l e r Za h le n , " Ofvers ig t a f Kongl . Svenska Ve tenskaps-Akadem iens F6rhandl ingar, 2 , 239 -266.

CANTELLI, F , 1917a . "Su l la probab i l i t~ t com e l im i te de l la f requenza , " Accademia de i L ince i Roma.

Classe d i Sc ienze Fis iche , Mathemat iche e Natural i . Rendicont i , 26 ( 5 ) , 39 45 .

C A N TELLI , F . , 1917b . " S u due a pp l i c a z ion i d i un t e o r e m a d i G . B oo le a l l a s t a t i s t i c a m a te m a t i c a , "

Accademia de i L ince i Roma. C lasse d i Sc ienze Fis iche , Matemat iche e Natural i , Rendicont i , 26 (5) ,

295 - 302 .

C AR ATH~O DO RY , C ., 1914 . " O be r da s l i ne a r e M a B yon P u nk tm e n ge n - e i ne V e r a l lge m e ine r ung de s

L~ingenbegriffs, "Na chric hten der Aka dem ie der Wissenschaf ten zu Ggt tingen. I I . M athem at isch-

Phys ikal ische Klasse , 4, 404-426.

D IEUD ON N ~, J ., 1975 . " I n t r od uc to r y r e m a r ks on a lge b r a , t opo logy a nd a na ly s i s ," H is to r ia M a the m a t i e a ,

2, 537 548.

FRECHET, M. , 1906. "S ur q ue lqu es po in ts d u ca lcul fonc t io nne l . " Re nd ic on t i de l C i rc o lo M a te m a t i c o d i

Palermo, 22, 1 74.

FRI~CHET, M. , 1915 . "DO f in i t ion de l ' In t6gra le su r u n ensem ble a bs t ra i t , " C om pte s Re ndus H e bdo-

madaires des S~ances de l'Acad~mie des Sciences, Jun e 28 h , 839-840.

FR~CNET, M. , 1930. "S ur la conv ergen ce en pro babi l i t6 , " M e t r o n , 8, 1-48.

HARTMAN, S ., 1948. "S ur deux no t ion s de fo nc t io ns indOp endantes , " C ol loqu ium M athe m a t i c um , 1, 19

22 .

HAUSDORFF, F., 191 4. Grundziige der Mengen lehre , Leipz ig .

HAWK INS, T., 1 970. Lebesgue ' s Theo ry o f In tegrat io n: I t s Orig ins and Deve lopment , M a d i s o n , W i s c o n s in .

HILBERT, D. , 19 00. "S ur les problOm es fu tur s des m ath6 ma t iqu es , " C om pte s Re ndus du D e ux idm e

Congrds In ternat ional des Math~mat ic iens , Paris, 58 114.

KAc, M. , 1959. Stat is t ica l Independence in Probabi l i ty , Analys is and Number Theory , N e w Y o r k .

LAKATOS, I ., 1963--64. "P ro of s a nd refu tatio ns," Bri t i sh Journal for Phi losop hy o f Sc ience , 14, 1-25 , 12 0-

139, 221-243, 296-342.

LEBESGUE, H., 1906 . Lemons sur les Sdries Trigonom~triques, Par is .

NATANSON, I. , 19 61. Theory o f Func t ions o f a Real Variable , V o lum e I ( r ev i se d e d. ), N e w Y o r k .

NOVIKOFF, A. , &; J . BARONE, 1977. "T he Bore l L aw of No rm al Nu mb ers , T he B ore l Ze ro-O ne L aw, a nd

t h e W o r k o f V a n V l e c k, " H is to r ia M a the m a t i c a , 4, 43-65.

POINCARg, H., 19 12. Calcu l des Probabili tOs (2nd ed .) , Ne wY ork .R A DO N , J ., 1913 . " Th e o r i e und A nw e nd ung e n de r a bso lu t a dd i t i ve n M e n ge n f u nk t ion e n , " Si tzungsbe-

r ichte der Kaiser l ichen Aka dem ie der Wissenschaften , Ma thema t isch-Natu rwissen schaf i l iche Klasse ,

122 (2), 1295-1438.

ROYDEN, H., 1965. Re a l Ana ly s is , N e w Y o r k .

SCHOENFLIES, A., 1913. Entwick lung der Mengenlehre und ihrer Anwendungen, Leipz ig .

SIERPIi~SKI, W ., 1918 . " S u r u ne d6 f in i t ion a x iom a t ique de s e nse m ble s m e su r a b l e s ( L) ," Bul le t in de

l 'AcadOmie des Sciences de Cracovie , July, 173 178.SLUTSKY, E., 1925 . ' ° U be r s toc ha s t i s c h A sym pto t e n und G r e nz w e r t e , " M e tron , 5 , 3- 89 .

STEINHAUS,H ., 1923 . " Le s p r oba b i l i t 6 s d6nom br a b le s a t l e u r r a ppo r t /~ l a t h6o r i e de l a m e su r e ," Pol sk a

Ak ade m ia N auk . Fundam e n ta M a the m a t i c ae , 4, 286-310.

V AN V LEC K , E ., 1908 . " O n non - m e a su r a b l e s e t s o f po in t s , w i th a n e xa m ple s , " Transactions of the

Am e r i c an M a the m a t i c a l Soc i e t y , 9, 237-244.

VITALI, O., 1905 . Sul Problema de l la Misura de i Gruppi de Punt i d i una Re t ta , B ologna .

W I M A N, A ., 1900 . " U e b e r e ine W a hr sc he in l i c hke i t s a u f ga be be i K e t t e n b r uc h e n tw ic k lung e n , " Ofvers ig t