Ball Mill Audit and Optimization

download Ball Mill Audit and Optimization

of 29

Transcript of Ball Mill Audit and Optimization

  • 8/20/2019 Ball Mill Audit and Optimization

    1/82

    Ball mill optimization

    Dhaka, Bangladesh

    21 March 2010

    1

  • 8/20/2019 Ball Mill Audit and Optimization

    2/82

    Introduction

    Mr.Peramas Wajananawat

    Experience: 13 Years (2 y in engineering,11 y in production) Engineering department Kiln and Burning system

    Siam Cement (Ta Luang) Kiln system, Raw material grinding and Coal grinding

    Siam Cement (Lampang) Cement grinding and Packing plant

    The Siam Cement (Thung Song) Co,Ltd

    Production Engineer

    Cement grinding 7 lines

    2 x Conventional mill 150 t/h (OPC)   KHD

    2 x Pre-grinding 100 t/h (OPC)   Fuller

    2 x Semi-finish grinding 270 t/h (OPC)   KHD

    1 x VRM 120 t/h   Loesche (LM46.2 +2C)

    Cement bag dispatching

    Contact e-mail: [email protected]

    2

  • 8/20/2019 Ball Mill Audit and Optimization

    3/82

    Contents

    1. Objective of Ball mill optimization

    2. Mill performance test

    3.  Air flow and diaphragm

    4. Separator performance test

    3

  • 8/20/2019 Ball Mill Audit and Optimization

    4/82

    Objective 

    1.  Audit performance of grinding system

    2. Show the key areas for optimization the ball

    mill system3. Provide the basic information for changes or

    modifications within grinding system

    4. Reduce power consumption, Qualityimprovement or Production improvement

    4

  • 8/20/2019 Ball Mill Audit and Optimization

    5/82

    Ball mill optimization

    5

    Ball mill optimization

    Mill charge Air flow & Diaphragm Separator

    1.Mill sampling test2. Charge distribution3.Regular top-ups

    1.Mill ventilation2. Water injection3.Diaphragms

    1.Tromp curve2.Separator air flow3.Separator sealing

  • 8/20/2019 Ball Mill Audit and Optimization

    6/82

    When: Do optimization

    1. In some period (1 month, 1 Quarter, 1 Year or ???)

    2. To assess the reason/cause of disturbance

    When abnormal operation

    Poor performance of grinding system Low mill output or poor quality product

    High operation or maintenance costs

    3. Keep operation in a good efficiency

    6

  • 8/20/2019 Ball Mill Audit and Optimization

    7/82

    Conventional grinding system

    To Cement Silo

    Cement Mill

    Clinker Gypsum Limestone

    Main Machine

    1. Feeding system2. Tube mill

    3. Dynamic separator4. Dedusting (BF/EP)

    5. Transport equip.

    7

  • 8/20/2019 Ball Mill Audit and Optimization

    8/82

    Mill charge optimization

    To Cement Silo

    Cement Mill

    Clinker Gypsum Limestone

    8

  • 8/20/2019 Ball Mill Audit and Optimization

    9/82

    What is function of mill?

    9

    M

    Size reduction along the mill-Coarse grinding   1st compartmentNormal feed size 5% residue 25 mm.

    Max feed size 0.5% residue 35 mm.-Fine grinding   2nd compartment

  • 8/20/2019 Ball Mill Audit and Optimization

    10/82

    Piece weight (or knocking weight)

     Average weight/piece of grinding

    media in each compartment

    (g/piece) Piece weight Impact force

    Specific surface

     Average surface area of (ball)

    grinding media in each compartment

    (m2/t) Specific surface Attrition force

    10

    Coarse material grindingCoarse material grinding Fine material grindingFine material grinding

    Need large ball size

    Need small ball size

  • 8/20/2019 Ball Mill Audit and Optimization

    11/82

    Calculation (for steel ball)

    Piece weight : i = [3.143/6] x d3

    x 7.8 ;g/pcs.Specific surface : o = 123 / i (1/3) ; m2 /ton

    Note : d = size of ball (cm)

    Ball charge composition

    11

  • 8/20/2019 Ball Mill Audit and Optimization

    12/82

    Ball charge composition

    Check piece weight and specific surface

    Compartment1

    Charge calculation

    Fraction Weight, W weight Piece weight, I no., nSpecific surface,

    oSurface, O

    (mm), d (t) % (g) pcs. (m2/t) (m2)90 5.0 9% 2,989 1,673 8.5 4380 11.0 21% 2,099 5,240 9.6 10670 13.6 26% 1,406 9,671 11.0 14960 15.3 29% 886 17,277 12.8 196

    50 5.6 11% 512 10,927 15.4 8640 2.5 5% 262 9,528 19.2 48

    Total #1 53.0 100% 976 54,317 11.8 628

    Compartment2

    Charge calculation

    Fraction Weight, W weight Piece weight, I no., nSpecific surface,

    oSurface, O

    (mm), d (t) % (g) pcs. (m2/t) (m2)50 0.0 0% 512 0 15.4 0

    40 0.0 0% 262 0 19.2 030 5.0 4% 111 45,170 25.6 12825 48.0 35% 64 749,309 30.7 1,476

    20 37.5 27% 331,143,35

    438.4 1,441

    17 46.5 34% 202,308,58

    545.2 2,102

    Total #1 137.0 100% 324,246,41

    737.6 5,147

    Piece weight: 976 g/pieceSpecific surface: 11.8 m2/t

    Piece weight: 32 g/piece

    Specific surface: 37.6 m2/t

    12

  • 8/20/2019 Ball Mill Audit and Optimization

    13/82

    Ball charge composition

    General we use (Product Blaine 4,500 cm2/g) for “Conventional”  Cpt.1 : Piece weight 1,500-1,600 g./piece

    Cpt 2 : Specific surface 30-35 m2/t

    For “Pre-grinding system” “R/P + Conventional” 

    Cpt.1: PW ~1,100-1200 g/pc

    Cpt.2: SS ~35-40 m2/t

    **depend on product fineness!! 

    13

  • 8/20/2019 Ball Mill Audit and Optimization

    14/82

    Maximum steel ball size (Bond equation)

    B=36 x (F80)1/2 x [(SgxWi)/(100xCsxDe1/2)]

    1/3

    Where

    B : Maximum ball size (mm.)

    F80 : Feed material size for 80% pass (µm)

    W i : Bond work index (kWh/t) Cs : N/Nc (normally ~ 0.7-0.75)

    Sg : Specific gravity of raw material (t/m3)

    De : Effective diameter of mill (m.)

    F80 = log [(0.20)size residue(mm.)

    ]/log(%residue)

    Example;

    Given

    • Feed size = 5% res. 25 mm.

    • Wi = 13.0 kWh/t

    • Cs = 0.7• Sg = 3.0 t/m

    3

    • De = 4.0 m.

    • F80 = log(0.20)25 /log(0.05)

    • F80

    = 13.4 mm.

    Find : Maximum ball size

    B = 36x(13.4)1/2

    x[(3x13)/(100x0.7x41/2

    )]1/3

    Maximum ball size = 86 mm.

    14

  • 8/20/2019 Ball Mill Audit and Optimization

    15/82

    Maximum steel ball size

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    2 5 10 15 20 25 30

       M  a  x   B  a   l   l   S   i  z  e   (  m  m

     .   )

    Feed Size (mm.), F80

    Maximum ball size (mm.) : Clinker Wi 13.0 kWh/t, Cs 0.7, Sg 3

    ** Typical fresh clinker : 5% residue 25 mm. or F80 = 13.4 mm.

    15

  • 8/20/2019 Ball Mill Audit and Optimization

    16/82

    Example

    Given• Feed size = 5% res. 20 mm.

    • Wi = 12.0 kWh/t

    • Cs = 0.7• Sg = 3.0 t/m

    3

    • De = 2.5 m.

    Find: required maximum ball size

    F80

    Maximum ball size (mm.)

    16

  • 8/20/2019 Ball Mill Audit and Optimization

    17/82

    Mill performance testSteps

    1. Recording of related operational data

    2.  Air flow measurement

    3. Crash stop and visual inspection in mill

    4. Sampling in mill

    5. Evaluation of test

    17

  • 8/20/2019 Ball Mill Audit and Optimization

    18/82

    1. Recording of related operational data

    Tube Mill Feed rate, Return, Grinding aids, Water injection, Mill drive

    power (kW)

    Static separator Vane position

    Mill ventilation fan

    Damper position, Air flow rate (if have instrument), Pressure Fan drive power

    18

  • 8/20/2019 Ball Mill Audit and Optimization

    19/82

    2. Air flow measurement

     Air flow measurement Air flow rate

    Temperature

    Static pressure

    To Cement Silo

    Cement Mil l

    Cl inker Gypsum Limestone

    19

    Mill ventilation air

  • 8/20/2019 Ball Mill Audit and Optimization

    20/82

    Mill ventilation air

    Purpose Forward movement of the material retention time

    Take out fine particles and so diminish the risk of coating

    Cooling of the material in mill Diminish coating / dehydrationof gypsum

    Usual ranges of ventilation: Air speed in mill

    Open circuit : 0.8 to 1.2 m/sec

    Closed circuit : 1.2 to 1.5 m/sec

    20

    Mm/sec

    **Min 0.5 m/s tend to result inefficient over grinding and excessiveheat generation with possible coating problem.**Max > 1.4 m/s drag particle out of mill before they have beensufficiency ground.

  • 8/20/2019 Ball Mill Audit and Optimization

    21/82

     Agglomeration and ball coating

    Cause:

    Temperature too high tendency of thematerial forming agglomerates/coating ongrinding media and liner plates

    Grinding efficiency will be reduceTemperature outlet mill range 110-120 C.

    21

  • 8/20/2019 Ball Mill Audit and Optimization

    22/82

    Test 2

    Mill dimension

    Inside diameter 3 m.

    Degree of filling 28% in both compartment Mill ventilation check 

    Flow 22,000 m3/h

    Check Air ventilation speed in mill ?

    22

    Mm/sec

  • 8/20/2019 Ball Mill Audit and Optimization

    23/82

    3. Crash stop and visual inspection

    Stable operation before crash stop

    Emergency stop or Crash stop Tube mill / A ll auxiliary equipment

    Mill Ventilation

    Disconnect main circuit breaker (Safety !)

    Preparation of sampling equipment (shovel, scoop, plastic bag, meter,

    lighting etc.)

    23

  • 8/20/2019 Ball Mill Audit and Optimization

    24/82

    Preparation of sampling equipment

    Lighting Shovel

    Scoop

    Meter

    Meter

    Plastic bagLock switch

    PPE

    Crash stop

    24

  • 8/20/2019 Ball Mill Audit and Optimization

    25/82

    3. Crash stop and visual inspection

     Visual inspection Liner and Diaphragm condition wear, block 

    Ball size distribution along the mill classify liner

    Water spray nozzle condition clogging

    Foreign material ? Ball charge condition agglomeration, coating

    Clogging

    Liner

    Ball charge

    Diaphragm

    Clean block slot

    25

  • 8/20/2019 Ball Mill Audit and Optimization

    26/82

    3. Crash stop and visual inspection

    Material level in compartment #1 and #2

    M

    26

  • 8/20/2019 Ball Mill Audit and Optimization

    27/82

    3. Crash stop and visual inspection

    Ball charge quantity (Filling degree)

    Measurement by free height Measure average internal diameter, Di

    Measure height, h, in three different points along axis for each grinding

    compartment

    M

    Inside diameter, Di

    Free height, h

    Effect ive length, L

    27

  • 8/20/2019 Ball Mill Audit and Optimization

    28/82

    Ball charge quantity (Filling degree)

    0.0

    10.0

    20.0

    30.0

    40.0

    50.0

    60.0

    0.000 0.100 0.200 0.300 0.400 0.500

       D

      e  g  r  e  e  o   f   f   i   l   l   i  n  g

       (   %   )

    h/De

    h

    HDe

    Meter

    Normal range 28-32%

    Ball level

    h = H- (De /2)

    28

  • 8/20/2019 Ball Mill Audit and Optimization

    29/82

    4. Sampling inside mill (mill test)

    Sampling of material

    Take ~1 kg sample every 1 m along mill axis

    Each sample collected from 3 point in the same cross section

    Removed some balls and taken sample

    First and last sample in each compartment should be takenfrom 0.5 m off the wall or diaphragms

    1m 0.5 0.50.5 1m 1m 1m 1m 1m 0.51m

    1.1

    1m 1m

    1.2 1.3 1.4   2.1   2.2   2.3   2.4 2.5   2.6   2.71.1 1.2 1.3 1.4

    Deep 20 cm.

    Take sampling Material sampling point in mill

    29

  • 8/20/2019 Ball Mill Audit and Optimization

    30/82

    1m 0.5 0.50.5 1m 1m 1m 1m 1m 0.51m

    1.1

    1m 1m

    1.2 1.3 1.4   2.1   2.2   2.3   2.4 2.5   2.6   2.71.1 1.2 1.3 1.4

    Top view

    1

    1

    1

    0.5 m.

    2

    2

    2

    3

    3

    3

    4

    4

    4

    5

    5

    5

    6

    6

    6

    7

    7

    7

    8

    8

    8

    9

    9

    9

    10

    10

    10

    11

    11

    11

    0.5 m.

    Take 1 sample

    •Get total 11 collectedsamples along the mill•1 kg per sample

    Side view Front view

    30

  • 8/20/2019 Ball Mill Audit and Optimization

    31/82

    4. Sampling inside mill (mill test) –cont.

     After work inside the mill Calculation quantity of ball charge and filling degree

    Sample sieve analysis

    1st compartment◊ Sieve : 16 , 10 , 6 , 2 , 1.25 , 0.5 , 0.2 mm

    2nd compartment◊ Sieve : 1.25 , 0.5 , 0.2 , 0.12 , 0.09 , 0.06 mm., Blaine Fineness

    Plot size reduction chart (graph)

    31

  • 8/20/2019 Ball Mill Audit and Optimization

    32/82

    Sieve test equipment

    32

  • 8/20/2019 Ball Mill Audit and Optimization

    33/82

    Results: Sieve and Fineness analysis from mill test

    Sample Location % residue on sieve (by weight)  Blaine 32 16 8 4 2 1 0.50 0.20 0.09

      Position m. cm2/g mm mm mm mm mm mm mm mm mm

    Compt 1 t.1 0.5 7.00 18.00 34.00 47.00 57.00 64.00 71.00 81.00 90.50

      1.0 9.00 21.00 36.00 45.00 52.00 60.00 69.00 79.00 89.00

      2.0 3.00 7.00 13.00 18.00 20.50 31.00 48.00 67.00 83.00

      3.0 0.50 1.00 3.00 5.50 8.00 19.50 29.50 52.00 71.00

      t.2 4.0 0.10 3.00 5.00 7.00 8.00 10.50 22.00 46.00 65.00

      t.3 4.5 0.05 4.00 7.50 9.00 10.50 12.50 28.00 48.50 68.00

      artition **

    Compt 2 t.1 0.5 940 1.00 8.00 32.00 56.00

      t.2 1.0 1080 2.00 9.00 33.00 59.00

      2.0 1260 0.50 7.00 24.00 50.00

      3.0 1300 0.01 4.00 18.00 42.00

      4.0 1500 0.00 1.50 12.00 39.00

      5.0 1600 0.00 1.00 9.00 32.00

      6.0 1700 0.00 0.50 5.00 27.00

      t.3 7.0 1880 0.00 0.22 4.00 21.00

      t.4 8.0 2000 0.00 0.01 3.00 19.50

      9.0 2120 0.00 0.01 1.50 18.50

      t.5 9.5 0.00 0.00 2.00 19.00

    33

  • 8/20/2019 Ball Mill Audit and Optimization

    34/82

    800

    1000

    1200

    1400

    1600

    1800

    2000

    2200

    2400

    2600

    2800

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0.5 1.0 2.0 3.0 4.0 4.5 ** 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 9.5

      B  l  a  i  n  e  (  c  m  ^  2

      /  g  )

      %   R

      e  s  i  d  u  e  o  n  s  i  e  v  e

    Length (m.)

    Size Reduction Progress32.000 mm

    16.000 mm

    8.000 mm

    4.000 mm

    2.000 mm

    1.000 mm

    0.500 mm

    0.200 mm

    0.090 mm

    Blaine cm2/g

    Comp. 1 Comp. 2

    0.5 4 4.

    5

    321 0.

    5

    4 5321 6 9.5987

    0.5 m 0.5 mTypical grinding diagram : OPC 3000 cm2 /g

    34

  • 8/20/2019 Ball Mill Audit and Optimization

    35/82

    5. Evaluation of performance test

    Grinding efficiency Data for evaluation

    Result from visual inspection inside tube mill

    Sample analysis from longitudinal sampling inside tube mill Size

    reduction graph

    Cement MillCement Mill

    35

  • 8/20/2019 Ball Mill Audit and Optimization

    36/82

    Evaluation of mill test standard reference

    Size reduction along mill axis

    Sieve residues and Blaine value in front of the diaphragms

    Compartme

    nt

    Particle size FLSmidth Holderbank Slegten

    First comp.

    +0.5 mm. 15-25% 12-25% -

    +0.6 mm. 10-20% - -

    +1.0 mm. 7-14% - -

    +2.0 mm. Max 4% Max 3% Max 5% (at 2.5mm.)

    Second comp.

    +0.2 mm. 20-30% 20-30% 15-25% (at 0.1mm.)

    +0.5 mm. Max 5% Max 5% -

    Blaine(cm2/g)

    - 2,100 -

    36

  • 8/20/2019 Ball Mill Audit and Optimization

    37/82

    Evaluation of mill test

    Compartment

    Particlesize

    FLSmidth Holderbank 

    Slegten Mill test Result OK?

    First comp.

    +0.5 mm. 15-25% 12-25% - 28% Little muchcoarse

    particle sizefrom

    compartmen

    t 1

    +0.6 mm. 10-20% - - -

    +1.0 mm. 7-14% - - 12.5%

    +2.0 mm. Max 4% Max 3%Max 5%

    (at 2.5

    mm.)

    10.5%

    Secondcomp.

    +0.2 mm. 20-30% 20-30% 15-25% (at 0.1mm.)

    2%

    Good!+0.5 mm. Max 5% Max 5% - 0%

    Blaine

    (cm2/g)

    - 2,100 - 2,120

    800

    1000

    1200

    1400

    1600

    1800

    2000

    2200

    2400

    2600

    2800

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0.5 1.0 2.0 3.0 4.0 4.5 ** 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 9.5

      B  l  a  i  n  e  (  c  m  ^  2  /  g  )

      %   R

      e  s  i  d  u  e  o  n  s  i  e  v  e

    Length (m.)

    Size Reduction Progress32.000 mm

    16.000 mm

    8.000 mm

    4.000 mm

    2.000 mm

    1.000 mm

    0.500 mm

    0.200 mm

    0.090 mm

    Blaine cm2/g

    Comp. 1 Comp. 2

    37

  • 8/20/2019 Ball Mill Audit and Optimization

    38/82

    Evaluation of mill test

    Test result : provide information to Improvement of ball charge composition

    Maximum ball size and composition

    Charge composition (PW and SS) Modification/Replace inside grinding compartment

    Liners

    Diaphragms

    OperationMill ventilation

    Clear diaphragm slot

    38

  • 8/20/2019 Ball Mill Audit and Optimization

    39/82

    39

    Bad condition step liner

    Broken liner

    Good condition liner

    Slot blockage

    Inspection

  • 8/20/2019 Ball Mill Audit and Optimization

    40/82

    Common problems!

    Compartment Result Ball charge Liner/Diaphragm Operation Mill vent.

    First comp.

    Over limit of particle size in

    front of diaphragm1st comp.

    -Increase impactforce in 1st comp.

    -Revise ballcharge and need

    larger ball size(piece weight)

    -Low lift ingefficiency (visual

    inspection)-Clean block at

    diaphragm (nib)

    -Feed too much(visual

    inspection)

    -Too high velocity(check air flow)

    Second comp.

    Over limit of particle size in

    front of diaphragm

    2nd comp.

    -Wait for revisecharge in 1st

    comp.

    -Wait for improveliner in 1st comp.

    1st comp. OK but2nd comp. over

    limit of particle sizein front of

    diaphragm

    -Revise ballcharge and may

    need to increasespecific surface

    or Piece weight

    -Check ballcharge

    distribut ion alongthe mill

    -Classifier linerefficiency-Clean block at

    diaphragm

    -Feed too much(visual

    inspection)

    -Too high velocity(check air flow)

    40

  • 8/20/2019 Ball Mill Audit and Optimization

    41/82

    Case mill test, CM6 STS (Aug,2008)

    1,4871,626

    1,739

    1,927

    1,807

    2,058

    2,333 2,314

    0

    500

    1000

    1500

    2000

    2500

    0.0

    10.0

    20.0

    30.0

    40.0

    50.0

    60.0

    70.0

    80.0

    0 2 4 6 8 10 12 14

    5.6 mm. 2 mm. 0.5 mm. 0.212 mm. 0.09 mm. 0.075 mm. 0.045 mm. blaine

       D   i  a  p   h  r  a  g  m

       D   i  a  p   h  r  a  g  m

       %   r

      e  s   i   d  u  e

       B   l  a   i  n  e   (  c  m   2   /  g   )

    abnormal

    41

  • 8/20/2019 Ball Mill Audit and Optimization

    42/82

    Evaluate and correction

    ompartment

    Particlesize

    FLSmidthHolderba

    nk Slegten

    Milltest

    Result OK?

    First comp.

    +0.5 mm. 15-25% 12-25% - 31% Abnormal size reduction(in front of diaphragm),

    should clear blockagediaphragm slot

    +0.6 mm. 10-20% - - -

    +1.0 mm. 7-14% - - -

    +2.0 mm. Max 4% Max 3%Max 5%

    (at 2.5 mm.)23%

    Secondcomp.

    +0.2 mm. 20-30% 20-30%15-25%

    (at 0.1 mm.) 52% Abnormal size reduction(in front of diaphragm),should clear blockage

    diaphragm slot+0.5 mm. Max 5% Max 5% - 51%

    Blaine(cm2/g)

    - 2,100 - 2,314

    Reference standard

    42

    C Mill f VDZ 2009

  • 8/20/2019 Ball Mill Audit and Optimization

    43/82

    Case Mill test from : VDZ congress 2009

    43

    Cement plant in Europe

    • Chamber 1 : good size reduction efficiency• Chamber 2 : 45 micron shown results that grinding hasstopped midway through the 2nd chamber

    E l t d ti

  • 8/20/2019 Ball Mill Audit and Optimization

    44/82

    Evaluate and correction

    44

    • Average ball size in chamber 2 is too small (average 16 mm, PW 17 g.)• Take charge distribution more coarse to increase PW and average ballsize diameter (to 42 g. and 22 mm.)

    S t f t t

  • 8/20/2019 Ball Mill Audit and Optimization

    45/82

    Separator performance test

    To Cement Silo

    Cement Mill

    Clinker Gypsum Limestone

    45

    Wh t i t ?

  • 8/20/2019 Ball Mill Audit and Optimization

    46/82

    What is separator?

    46

    •  Advantage of grinding systemwith separator

    • Reduce the number of fine particle to

    be ground in mill• Increase production capacity and

    Reduce mill power consumption• Increase % of Active particle in fine

    particle of Cement

    Advantage of grinding system with separator

  • 8/20/2019 Ball Mill Audit and Optimization

    47/82

     Advantage of grinding system with separator

    47

     “Maximized separator performance”  “Maximized power saving” 

    Separator performance test

  • 8/20/2019 Ball Mill Audit and Optimization

    48/82

    Separator performance testSteps

    1. Recording of related operational data

    2.  Air flow measurement

    3. Sampling within grinding system

    4. Evaluation of test

    48

    1 Recording of related operational data

  • 8/20/2019 Ball Mill Audit and Optimization

    49/82

    1. Recording of related operational data

    Tube Mill Feed rate, Return, Grinding aids, Water injection, Mill drive

    power (kW)

    Dynamic separator Rotor speed, Damper/vane position

    Separator drive power (kW)

    Separator circulating fan & Separator ventilation

    Flow rate (if have instrument), Damper position

    Separator fan power (kW)

    49

    2 Air flow measurement

  • 8/20/2019 Ball Mill Audit and Optimization

    50/82

    2. Air flow measurement

     Air flow measurement Air flow rate

    Temperature

    Static pressure

    To Cement Silo

    Cement Mil l

    Cl inker Gypsum Limestone

    Separator circulating air

    50

    Dynamic Separator circulating air

  • 8/20/2019 Ball Mill Audit and Optimization

    51/82

    Dynamic Separator circulating air

    Purpose Distribute and disperse cement dust

    Classify cement dust at rotor

    Take out fine particle from separator to be product

    Usual ranges of circulating airDepend on separator feed and production rate

    Separator load 1.8-2.5 kg feed / m3

    = Separator feed / Circulating air

    Dust load (fine) less than 0.75-0.8 kg fine / m3

    = Fine product / Circulating air

       

    51

    3 Sampling within grinding system

  • 8/20/2019 Ball Mill Audit and Optimization

    52/82

    3. Sampling within grinding system

    Operation period Determined suitable sampling point

    Stable operation

    6-12 hours duration of performance test Taking samples every ~1 hour

    52

    Sampling plan (stable operation period)

  • 8/20/2019 Ball Mill Audit and Optimization

    53/82

    Sampling plan (stable operation period)

    To Cement Silo

    Cement Mill

    Clinker Gypsum Limestone

    Sampling

    1

    2

    3

    53

    Sampling point in process

  • 8/20/2019 Ball Mill Audit and Optimization

    54/82

    Sampling point in process

    Separator feedor mill output

    Return (reject) Fine product

    Scoop

    54

    Sampling test

  • 8/20/2019 Ball Mill Audit and Optimization

    55/82

    Sampling test

    Point Sampling point Weight Required sieve analysis

    1 Separator feed  “m” 0.5 kg PSD Laser test, Blaine (cm2/g)

    2 Separator return  “g” 0.5 kg PSD Laser test, Blaine (cm2/g)

    3 Separator fine  “f” 0.5 kg PSD Laser test, Blaine (cm2/g)

    55

    PSD analysis equipment

  • 8/20/2019 Ball Mill Audit and Optimization

    56/82

    PSD analysis equipment

    Particle size distribution analysis

    56

  • 8/20/2019 Ball Mill Audit and Optimization

    57/82

    ThungSong PlantResult: from “Laser analysis” -Range 1.8-350 um

    -Test time

  • 8/20/2019 Ball Mill Audit and Optimization

    58/82

    ( )Rm Rf Rg

    Size (um) Feed

    %residue 

    Fines

    %residue 

    Rejects

    %residue 

    1 96.4 95.1 98.1

    2 93.9 91.7 96.5

    4 89.0 85.3 93.7

    8 81.5 74.6 89.9

    16 68.8 55.1 85.6

    24 60.3 41.2 83.9

    32 52.2 28.9 80.9

    48 39.4 13.0 71.9

    64 32.3 7.4 62.9

    96 18.2 0.0 40.5200 4.9 0.0 11.0

    TOTAL: 636.9 492.3 814.9

                         

    % % %

    58

  • 8/20/2019 Ball Mill Audit and Optimization

    59/82

    Meaning sieve size 32 um 52.2% of separator feed

    residue on sieve size 32 um

    80.9% of reject residue onsieve size 32 um

    Rm Rf Rg

    Size (um) Feed

    %residue 

    Fines

    %residue 

    Rejects

    %residue 

    1 96.4 95.1 98.1

    2 93.9 91.7 96.5

    4 89.0 85.3 93.7

    8 81.5 74.6 89.9

    16 68.8 55.1 85.6

    24 60.3 41.2 83.9

    32 52.2 28.9 80.9

    48 39.4 13.0 71.9

    64 32.3 7.4 62.9

    96 18.2 0.0 40.5200 4.9 0.0 11.0

    TOTAL: 636.9 492.3 814.9

    59

    4. Evaluation of performance test

  • 8/20/2019 Ball Mill Audit and Optimization

    60/82

    Separator efficiency Data for evaluation

    Particles size analysis of sample within grinding system◊ - Separator feed R m

    ◊- Separator fine R  f 

    ◊ - Separator tailing or Reject R g

    Tromp curve or Fractional recovery The tromp curve shows what fraction of particles of different sizes in the

    feed material is going in to the coarse fraction (often called Return or

    Tailing) Separator specific loads / Dust Load

    60

    Tromp curve

  • 8/20/2019 Ball Mill Audit and Optimization

    61/82

    p

    Calculation Circulation factor (CF)

    CF = (R f - R g)/(R m - R g)

    where

    R f = % residue on sieve of fine

    R g = % residue on sieve of coarse

    R m = % residue on sieve of feed

    In this case (size 48 um)

    Circulation Factor = 1.81

    61

    Tromp curve

  • 8/20/2019 Ball Mill Audit and Optimization

    62/82

    Calculation Tromp value

    Tromp (range d1,d2) = [(R g1-R g2)/(R m1-R m2)]x[1-(1/CF)]x100

    where

    Tromp (range d1,d2) : Fraction of particles size between d1 and d2

    R g = % residue on sieve of coarse (return/reject)

    R m = % residue on sieve of separator feed

    In this case

    Tromp value (32-48 um) = 31.5%

    62

    Example Find Circulation factor (CF) of

  • 8/20/2019 Ball Mill Audit and Optimization

    63/82

    Find Circulation factor (CF) of

    particle size 32 um and 48 um CF = (R f - R g)/(R m - R g)where

    R f = % residue on sieve of fine

    R g = % residue on sieve of coarse

    R m = % residue on sieve of feed

    Find Tromp value of size in range32-48 um Tr (d1,d2)=[(R g1-R g2)/(R m1-R m2)]x[1-

    (1/CF)]x100

    where Tromp (range d1,d2) : Fract ion of particles size

    between d1 and d2

    R g= % residue on sieve of coarse (return/reject)

    R m = % residue on sieve of separator feed

    Rm Rf Rg

    Size (um) Feed

    %residue 

    Fines

    %residue 

    Rejects

    %residue 

    1 96.4 95.1 98.1

    2 93.9 91.7 96.5

    4 89.0 85.3 93.7

    8 81.5 74.6 89.9

    16 68.8 55.1 85.6

    24 60.3 41.2 83.9

    32 52.2 28.9 80.9

    48 39.4 13.0 71.9

    64 32.3 7.4 62.9

    96 18.2 0.0 40.5200 4.9 0.0 11.0

    TOTAL: 636.9 492.3 814.9

    63

    Tromp value meaning “Tromp value (32-48 um) = 31.5%” 

  • 8/20/2019 Ball Mill Audit and Optimization

    64/82

    For separator feed size between 32-48 um = 100 % “Separator feed” 

    Separator

    31.5% to coarse fraction “Reject/Return” 

    68.5% to fine fraction “Fine product” 

    64

    Tromp value Plot “Tromp curve”

  • 8/20/2019 Ball Mill Audit and Optimization

    65/82

    65

    Rm Rf Rg

    Size (um) Feed

    %residue Fines

    %residue Rejects

    %residue CF 

    Size avg(um) 

    Trompvalue 

    1 96.4 95.1 98.1 1.76 0.5 22.9

    2 93.9 91.7 96.5 1.85 1.5 29.34 89.0 85.3 93.7 1.79 3 25.2

    8 81.5 74.6 89.9 1.82 6 22.8

    16 68.8 55.1 85.6 1.82 12 15.2

    24 60.3 41.2 83.9 1.81 20 8.932 52.2 28.9 80.9 1.81 28 16.6

    48 39.4 13.0 71.9 1.81 40 31.5

    64 32.3 7.4 62.9 1.81 56 56.9

    96 18.2 0.0 40.5 1.82 80 71.4

    200 4.9 0.0 11.0 1.80 148 98.8

    TOTAL: 636.9 492.3 814.9 1.81 TOTAL:  

    Plot “Tromp curve”

  • 8/20/2019 Ball Mill Audit and Optimization

    66/82

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    1 10 100 1000

       %   r  e  c  o  v  e  r  y   t  o  r  e   t  u  r  n   (  r  e   j  e  c   t   )

    Sieve size (um)

    Particle size in range 32-48 um-31.5% go to be “Return” -68.5% go to be “Fine product” 

    Particle size in range 8-16 um-15.2% go to be “Return” -84.8% go to be “Fine product” 

    Particle size in range 2-4 um-25.2% go to be “Return” -74.8% go to be “Fine product” 

    66

    Tromp curve of “Ideal and Actual separator”

  • 8/20/2019 Ball Mill Audit and Optimization

    67/82

    Ideal separatorNo coarse in product and No fine in

    return/reject

     Actual separator

    Have some coarse in product and Have

    some fine in return/reject

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    1

       %   r  e  c  o  v  e  r  y   t  o  r  e   t  u  r  n   (  r  e   j  e  c   t   )

    Sieve size (um)

    Ideal separator Actual separator

    67

    Tromp curve

  • 8/20/2019 Ball Mill Audit and Optimization

    68/82

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    1 10 100 1000

       %   r  e  c  o  v  e  r  y   t  o  r  e   t  u  r  n   (  r  e   j  e  c   t   )

    Sieve size (um)

    d50

    Cut size : d50 = 60 um•The cut size of the separationbeing made is the particle sizewhere the tromp value is 50%•Meaning : Size 60 um has anequal chance to go either toproduct or to rejects

    68

    Tromp value meaning Cut size (d50)

  • 8/20/2019 Ball Mill Audit and Optimization

    69/82

    For separator feed size between 48-64 um = 100 % “Separator feed” 

    Separator

    50% to coarse fraction “Reject/Return” 

    50% to fine fraction “Fine product” 

    Size ~ 60 um: equal chance to goeither to product or to rejects

    69

    Tromp curve

  • 8/20/2019 Ball Mill Audit and Optimization

    70/82

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    1 10 100 1000

       %   r  e  c  o  v  e  r  y   t  o  r  e   t  u  r  n   (  r  e   j  e  c   t   )

    Sieve size (um)

    d75

    Sharpness = d25/d75•Sharpness = 0.38•Steeper tromp curve, the betterthe separation

    •Ideal separator sharpness = 1

    d25

    70

    Tromp curve

  • 8/20/2019 Ball Mill Audit and Optimization

    71/82

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    1 10 100 1000

       %   r  e  c  o  v  e  r  y   t  o  r  e   t  u  r  n   (  r  e   j  e  c   t   )

    Sieve size (um)

    Minimum value

    Bypass = 8.9%•Meaning : Bypass is anindication of the amount ofmaterial that essentiallybypasses the separator.•The lower the bypass, the moreefficiency the separation.

    •3rd generation bypass < 15%

    71

    Evaluation of separator performance test

  • 8/20/2019 Ball Mill Audit and Optimization

    72/82

    Item Units Typical range Result Evaluate

    Circulation factor - 2-3 1.81 little less

    Cut size(d50) microndepend on rotor speed

    and fineness level 60 micron seems high

    Sharpness (d25/d75) - 0.5 0.38 little less

    Bypass % 5-15% 8.90% OK  

    Separator load kg/m3 1.8-2.5 1.7 OK  

    Product load kg/m3 0.75 0.6 OK  

     Action :1. Increase circulation factor (CF) Separator load has available2. Need to increase speed of rotor (due to higher CF coarser separator feed)

    3. Tromp curve move to finer side and d50 change to be less than 60 um.4. Bypass slightly increase5. Power consumption of mill went down.

    72

    Improvement Tromp curve

  • 8/20/2019 Ball Mill Audit and Optimization

    73/82

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    1 10 100 1000

       %   r  e  c  o  v  e  r  y   t  o  r  e   t  u  r  n   (  r  e   j  e  c   t   )

    Sieve size (um)

    1. Improve product: Reduce cut size

    -Increase circulation factor to 2-3-Increase rotor rotation speed-%Bypass may slightly increase OK 

    -Check separator load and dust load ?

    Result:-Better active particle size of product-Strength improve

    Ideal separator Actual separator

    1

    73

    Improvement Tromp curve

  • 8/20/2019 Ball Mill Audit and Optimization

    74/82

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    1 10 100 1000

       %   r

      e  c  o  v  e  r  y   t  o  r  e   t  u  r  n   (  r  e   j  e  c   t   )

    Sieve size (um)

    2. Improve production rate: Reduce

    %bypass-Improve separator feed distribution

    -Check separator load and dust load ?-Separator ventilation flow

    -Check mechanical seal or leak-Check guide vane and rotor blade ?

    Result:-Increase production rate-Reduce power consumption

    Ideal separator Actual separator

    2

    74

  • 8/20/2019 Ball Mill Audit and Optimization

    75/82

    General separator improvement

  • 8/20/2019 Ball Mill Audit and Optimization

    76/82

    •Separator feed chuteo 100% feed on dispersion plate(over the rotor) good distribution

    76

    Feed point and dispersion plate

    General separator improvement

  • 8/20/2019 Ball Mill Audit and Optimization

    77/82

    •Make sure symmetry feed on rotor good distribution

    77

    KHD “Sepmaster” and Fuller “O-Sepa” 

    General separator improvement

  • 8/20/2019 Ball Mill Audit and Optimization

    78/82

    • Adjust guide vane good air flowdistribution to rotor

    78

    Guide vane

    General separator improvement

  • 8/20/2019 Ball Mill Audit and Optimization

    79/82

    •Check rotor blade condition (wear anddeform) normal classification

    79

    Rotor blade condition

    General separator improvement

  • 8/20/2019 Ball Mill Audit and Optimization

    80/82

    •Upper and Lower seal condition goodclassification•Grinding aids goodclassification/reduce bypass

    80

    Summary

  • 8/20/2019 Ball Mill Audit and Optimization

    81/82

    81

    Ball mill optimization

    Mill charge Air flow & Diaphragm Separator

    1.Mill sampling test

    2. Charge distribution3.Regular top-ups

    1.Mill ventilation

    2. Water injection3.Diaphragms

    1.Tromp curve

    2.Separator air flow3.Separator sealing

    1. Every 6 months

    2. Every 1 Year3. 1,000 hours

    1. Check and maintain

    2. 1,000 hours check 3. 1,000 hours check 

    1. Every 3 months

    2. Optimized and maintain3. Every 3 months

    Q & A

  • 8/20/2019 Ball Mill Audit and Optimization

    82/82

    Performance test Mill test and Separator test

    Evaluation

     Visual inspection Size reduction graph and Tromp curve

    Improvement

    Charge composition, Operation, ect.

    Results Energy saving, Quality improvement

    82