Back2Basic-v2

14
1

description

note

Transcript of Back2Basic-v2

Page 1: Back2Basic-v2

1

Page 2: Back2Basic-v2

2

PHYSICAL TERMINOLOGY

TF025 : Engineering Physics Semester II

Chapter 1 : Geometrical Optics

1. Laws of reflection : Hukum-hukum pantulan.

• Angle of incidence = angle of reflection. Sudut tuju = sudut pantulan.

• The incident ray, reflected ray and the

normal are all lie in the same plane. Sinar tuju, sinar pantulan dan garis normal,

semuanya terletak pada satah yang sama.

2. Laws of refraction : Hukum-hukum pembiasan.

• The incident and refracted rays are on

the opposite sides of the normal at the

point of incidence, and all three lie in

the same plane. Sinar tuju dan sinar terbias berada pada

bahagian yang bertentangangaris normal dan

ketiga-tiganya terletak pada satah yang sama.

• ni sin(θi) = nr sin(θr) or known as Snell’s

law.

Chapter 2 : Physical Optics

1. Coherence : Koheren.

Coherent waves are waves that have the

same frequency and fixed phase difference. Gelombang-gelombang koheren adalah gelombang-

gelombang yang mempunyai frekuensi yang sama

dan perbezaan fasa yang tetap.

2. Conditions of interference : Syarat2 interferen.

• The sources must be coherent. Sumber-sumber mestilah koheren.

• The superposition principle must be

applied. Prinsip superposisi perlu dipatuhi.

3. Condition of constructive interference :

• The overlapped waves must be in phase. Gelombang-gelombang yang bertindih mestilah

sefasa.

4. Condition of destructive interference :

• The overlapped waves must be anti

phase. Gelombang-gelombang yang bertindih mestilah

beranti-fasa.

5. Diffraction : Pembiasan.

Diffraction refers to the spreading or

bending of waves over geometrical region

as they pass through an obstacle or an

aperture whose size of which are

comparable to its wavelength. ‘Pembelauan’ merujuk kepada sebaran atau belokan

gelombang melampaui kawasan geometri ketika

ianya melepasi satu halangan atau satu celah

dengan saiz yang sebanding dengan jarak

gelombang.

Chapter 3 : Electrostatics

1. Coulomb’s law : Hukum Coulomb.

“Two point charges repel or attract one

another with a force which is directly

proportional to the product of the

magnitude of the charges and inversely

proportional to the square of the distance

between them”. “Dua cas titik akan menolak atau menarik satu sama

lain dengan satu magnitude daya yang berkadar

terus dengan hasil darab magnitude cas-cas tersebut

dan berkadar songsang dengan kuasa dua jarak

antara mereka”.

2. Electric field : Medan elektrik.

Electric field refers to the region around a

stationary charged body where the

electrostatic force can be experienced. ‘Medan electrik’ merujuk kepada kawasan di sekitar

satu cas pegun di mana daya elektrostatik boleh

dialami.

3. Electric field strength : Kekuatan medan eletrik

Electric field strength refers to the strength

of electrostatic force per unit test charge. ‘Kekuatan medan elektrik’ merujuk kepada kekuatan

daya elektrostatik bagi setiap unit cas uji.

4. Electric potential : Keupayaan elektrik.

Electric potential refers to the work

performed to bring a unit electric charge

from infinity to a point in an electric field. “Keupayaan elektrik’ merujuk kepada kerja yang

dilakukan untuk membawa satu unit cas dari infiniti

ke satu titik di dalam medan elektrik.

Page 3: Back2Basic-v2

3

5. Equipotential surface : Prmukaan sekeupayaan.

An equipotential surface is a set of points

which have the same magnitude of electric

potential. ‘Permukaan sekeupayaan’ adalah satu set titik-titik

yang mempunyai magnitude keupayaan elektrik

yang sama.

Chapter 4 : Capacitor & dielectric

1. Capacitance : Kapasitans.

Capacitance measures the magnitude of

charge which has accumulated on each

capacitor’s plate per unit voltage across it. ‘Kapasitans’ mengukur magnitude cas yang

dikumpulkan pada setiap plat kapasitor per unit

voltan merentasinya.

2. Dielectric constant : Pemalar dielektrik.

Dielectric constant refers to the ratio of

capacitance of a capacitor within dielectric

material to the capacitance of the capacitor

without dielectric material. ‘Pemalar dielektrik’ merujuk kepada nisbah

kapasitans satu kapasitor dengan bahan dielektrik

terhadap kapasitans tanpa bahan dielektrik.

3. Time constant : Pemalar masa.

Time constant refers to the time taken for

the charge to reach 63% of the maximum

value when charging, or 37% of the

maximum value when discharging. ‘Pemalar masa’ merujuk kepada masa yang diambil

untuk cas mencapai 63% nilai maksimumnya ketika

pengecasan, atau 37% dari nilai maksimumnya

ketika penyahcasan.

Chapter 5 : Electric Current & DC

1. Ohm’s law : Hukum Ohm.

“At a given temperature, the current

flowing through a conductor is directly

proportional to the potential difference

between across the ends of the

conductor.” ‘’Pada suhu ditetapkan, arus yang mengalir melalui

satu konduktor adalah berkadar terus dengan beza

keupayaan merentasi kedua-dua hujung konduktor

tersebut”.

2. Resistivity : Kerintangan.

A measure of a material’s ability to oppose

the flow of an electric current. Satu ukuran kebolehan satu bahan untuk menentang

aliran arus elektrik.

3. Temperature coefficient of resistivity :

The change of resistivity per unit original

resistivity per unit change of temperature. Perubahan kerintangan per unit kerintangan asal per

unit perubahan suhu.

4. Electromotive force : Daya gerak elektrik.

The amount of energy in the cell per unit

charge passing through the circuit. Satu amaun tenaga di dalam sel per unit cas yang

melalui litar.

5. Kirchhoff’s laws : Hukum2 Kirchhoff.

• “The algebraic sum of the currents at a

junction of a circuit is zero, since electric

charges do not stay at the junction”. ‘’Hasil tambah algebra arus pada satu simpang

satu litar adalah sifarkerana cas tidak boleh

tinggal pada simpang tersebut”.

• “The algebraic sum of e.m.f.s within any

closed circuit is equal to the sum of the

voltage drops”. ‘‘Hasil tambah algebra d.g.e di dalam sebarang

litar tertutup adalah sama dengan hasil tambah

algebra kejatuhan voltannya”.

Chapter 6 : Magnetic field

1. Magnetic field : Medan magnet.

A three dimensional region around a

magnetic body or a current-currying

conductor where a force can be

experienced. Satu ruang tida dimensi di sekitar satu jasad

bermagnet atau satu konduktor-pembawa-arus di

mana satu daya dapat dialami”.

Page 4: Back2Basic-v2

4

2. 1 Ampere :

The direct electric current which when

flowing through two parallel infinitely long

straight conductors of negligible circular

cross-section, placed one meter apart in

free space, will produce a force of

magnitude 2 x 10-7

N on every meter of

their lengths. Nilai satu arus terus apabila mengalir menerusi dua

konduktor lurus selari dengan panjang tak terhingga

dan luas keratin rentas diabaikan terletak sejauh 1

meter dan menghasilkan satu daya bernilai 2 x 10-7

N

bagi setiap meter panjang konduktor tersebut.

Chapter 7 : Electromagnetic Induction

1. Magnetic flux : Flux magnet.

The magnetic flux through a surface is the

component of magnetic field passing

through that surface. Flux magnet melalui satu permukaan adalah

komponen medan medan magnet yang memasuki

permukaan tersebut.

2. Faraday’s law : Hukum Faraday.

“The magnitude of the e.m.f. induced in a

circuit is directly proportional to the rate of

change of magnetic flux linkage through

the circuit”. “Magnitud d.g.e. aruhan di dalam satu litar adalah

berkadar terus dengan kadar perubahan flux magnet

satu litar.

3. Lenz’s law : Hukum Lenz.

“The induced current flow in such a

direction that is opposes the change that

produces it”. “Arus aruhan akan mengalir pada satu arah yang

dapat menentang perubahan yang

menghasilkannya”.

4. Self-induction : Swa-inductans.

The property of a circuit or component

which can induce an e.m.f. in the circuit or

component itself”. Sifat satu litar atau komponen di mana ia mampu

mengaruhkan d.g.e. di dalam litar atau komponen itu

sendiri.

5. Mutual-inductance : Induktans saling.

The property of an electric circuit or

component that causes an e.m.f. to be

generated it as a result of a change in the

current flowing through a neighboring

circuit with it is magnetically linked”. Sifat satu litar elektrik atau komponen yang

menyebabkan d.g.e. disebabkan perubahan arus

yang mengalir pada litar berhampiran yang

berhubung secara magnetik.

Chapter 8 : Alternating Current

1. Alternating current : Arus ulang alik.

A type of current whose magnitude and

direction change periodically. Sejenis arus dengan magnitude dan arahnya berubah

secara berkala.

2. R.M.S. Voltage : Voltan p.m.k.d.

The magnitude of the steady DC voltage

which produced the same power in a

resistor as the mean power produced by

the alternating current. Magnitud voltan DC mantap yang menghasilkan nilai

kuasa yang sama di dalam beban sepertimana kuasa

purata yang dihasilkan oleh AC.

3. R.M.S. Current : Arus p.m.k.d.

The magnitude of the steady direct current

which produced the same power in a

resistor as the mean power produced by

the alternating current. Magnitud arus DC mantap yang menghasilkan nilai

kuasa yang sama di dalam beban sepertimana kuasa

purata yang dihasilkan oleh AC.

4. Capacitive reactance : Reaktans kapasitif.

The property of a circuit containing

capacitance makes up its impedance. Sifat satu litar yang mengandungi kapasitans yang

menghasilkan impedance.

5. Inductive reactance : Reaktans induktif.

The property of a circuit containing

inductance makes up its impedance. Sifat satu litar yang mengandungi inductans yang

menghasilkan impedance.

Page 5: Back2Basic-v2

5

6. Impedance : Impedance.

The quantity that measures the opposition

to the passage of a current in an AC circuit. Satu kuantiti yang mengukur rintangan kepada aliran

arus dalam litar AC.

Chapter 9 : Quantization of light

1. Planck quantum theory : Teori kuantum Plank.

“Energy is emitted in quanta, each of which

has an energy equals to hf”. “Tenaga dipancarkan dalam bentuk kuanta, setiap

satunya mempunyai nilai tenaga bersamaan hf”.

2. Photon : Foton.

A particle with zero rest mass consisting a

quantum of electromagnetic radiation. Satu zarah tanpa jisim yang mengandungi satu

kuantum sinaran elektromagnetik.

3. Threshold frequency : Frekuensi ambang.

The minimum frequency of an incident light

which would remove electron from a metal

surface. Nilai frekuensi minimum sinar tuju yang mampu

untuk mengeluarkan elektron dari satu permukaan

logam.

4. Work function : Fungsi kerja.

Minimum energy needed to release an

electron from the atom of a metal. Tenaga minimum yang diperlukan untuk melepaskan

satu elektron daripada satu atom logam.

5. Stopping potential : Leupayaan penghenti.

The minimum reverse potential difference

needed to stop the motion of electrons. Nilai beza keupayaan songsang minimumyang

diperlukan untuk menghentikan pergerakan elektron-

elektron.

Chapter 10 : Wave-Particle Duality

1. Wave-particle duality : Kedualan zarah-gelomb.

The phenomenon where under certain

circumstances a particle exhibits wave

properties, and under other conditions a

wave exhibits properties of particle. Satu fenomena di mana dalam satu keadaan satu

zarah mempamerkan sifat-sifat gelombang, dan

dalam satu keadaan lain satu gelombang

mempamerkan sifat-sifat zarah.

Chapter 11 : Bohr’s Model of Hydrogen Atom

1. Bohr’s postulates : Postulat2 Bohr.

• In hydrogen atom, the electron revolves

in circular non-radiating orbits around

the nucleus. Dalam atom hidrogen, elektron bergerak di

dalam orbit bulat tanpa menyinar mengelilingi

nucleus.

• In hydrogen, the electron is able to orbit

around the nucleus in certain allowed

discrete orbits. Dalam atom hidrogen,elektron mampu

mengorbit mengelilingi nucleus dalam orbit

diskrit tertentu yang dibenarkan.

• The emission or absorption of radiation

occurs only when an electron jumps

from one orbit to another. Penyinaran dan penyerapan sinaran berlaku

hanya apabila elektron melompat dari satu orbit

ke orbit yang lain.

2. Bohr’s radius : Jejari Bohr.

The orbit with the smallest radius. Orbit dengan jejari terkecil.

3. Bohr’s energy level : Aras tenaga Bohr.

A definite fixed energy that s system can

have. Satu nilai tenaga tetap yang boleh dipunyai oleh satu

sistem.

4. Ground state energy : tenaga keadaan asas.

The minimum energy possessed by the

electron. Tenaga minimum yang dipunyai oleh satu elektron.

Page 6: Back2Basic-v2

6

5. Excitation energy : Tenaga pengujaan.

The energy required by the electron to

move up from the ground level to any

excitation level. Tenaga yang diperlukan oleh elektron untuk

melompat dari aras tenaga asas kepada aras

tenaga pengujaan (aras tenaga lebih tinggi).

6. Ionization energy : Tenaga pengionan.

The energy required by the electron to

escape completely from the attraction of

the nucleus. Tenaga yang diperlukan oleh elektron untuk

bebas sepenuhnya daripada tarikan nucleus.

7. Line series (spectrum) : Garis siri.

The distribution of energy over a range

frequencies of a particular source. Satu agihan tenaga melampauan julat frekuensi

satu sumber tertentu.

Chapter 12 : X-Ray

1. Moseley’s law : Hukum Moseley.

“The frequencies of the lines in X-ray

spectra of the elements are related to

the atomic numbers of the elements”. “Frekuensi-frekuensi dalam sinar-X garis unsur-

unsur adalah berkait dengan nombor atom

unsur-unsur tersebut”.

Chapter 13 : Nucleus

1. Proton number : Nombor proton.

The number of protons in a nucleus. Bilangan proton di dalam nucleus.

2. Nucleon number : Nombor nukleon.

The sum of proton and neutron. Jumlah proton dan neutron.

3. Isotopes : Isotop.

Atoms of the same element whose nuclei

contain the same number of protons but

mass number differ. Atom-atom satu unsur yang sama dengan

nukluesnya mempunyai nombor proton yang

sama tetapi nombor jisim berbeza.

4. Mass defect : Kecacatan jisim.

The difference between the sum of masses

of the components and the mass of a

nucleus. Perbezaan di antara jumlah jisim-jisim komponen

dengan jisim nucleus.

5. Binding energy : Tenaga pengikatan.

The energy required to separate

completely all the nucleons in the nucleus. Tenaga yang diperlukan untuk memisahkan

sepenuhnya semua nukleon di dalam satu nucleus.

Chapter 14 : Nuclear Reactions

1. Conservation of charge : Keabadian cas.

The total amount of charge of the system is

conserved. Jumlah cas satu sistem adalah terabadi.

2. Conservation of nucleon number :

The total amount of nucleon number of the

system is conserved. Jumlah bilangan nukleon satu sistem adalah

terabadi.

Chapter 15 : Radioactivity

1. Decay law : Hukum pereputan.

“The decay rate is directly proportional to

the number of atoms present at that

instant”. “Kadar reputan adalah berkadar terus dengan

bilangan atom yang ada pada sesuatu ketika”.

2. Activity : Keaktifan.

The disintegrations per second by

radioactive nucleus. Pereputan per saat oleh nucleus radioaktif.

3. Decay constant : Pemalar reputan.

The probability that a nucleus decay in a

unit of time (the speed of radioactive

decay). Kebarangkalian satu nucleus utk mereput per unit

masa (kelajuan reputan radioaktif).

Page 7: Back2Basic-v2

7

4. Half-life : Separa hayat.

The time taken for half of the initial

number of radioactive elements to undergo

decay. Masa yang diambil untuk setengah bilangan asal

unsure radioaktif untuk mereput.

Page 8: Back2Basic-v2

8

PHYSICAL FORMULAE

TF025 : Engineering Physics Semester II

Chapter 1 : Geometrical Optics

1. Mirror equation :

f = focal length of mirror.

u = object distance.

v = image distance.

r = radius of curvature of mirror.

2. Magnification of image :

hi = image size (height).

ho = object size (height).

3. Snell’s equation :

ni = refractive index of incident area.

θi = incident angle.

nr = refractive index of refracted area.

θr = refracted angle.

4. Refraction of single glass surface :

r = radius of curvature of glass.

5. Lens maker’s equation :

f = focal length of lens.

n2 = refractive index of lens.

n1 = refractive index of surrounding.

r1 = radius of curvature of 1st

surface.

r2 = radius of curvature of 2nd

surface.

6. Lens formula :

Chapter 2 : Physical Optics

1. Young’s double slits :

m = order (m = 0 for central bright, 1st

dark).

λ = wavelength of light.

D = distance slits-screen.

d = slits separation.

2. Thin film (bubble) :

n = refractive index of thin film.

t = thickness of thin film.

m = order.

3. Thin film (coating) :

4. Air wedge :

t = thickness of air.

m = order (m = 0 for 1st

bright, 1st

dark).

5. Single slit :

a = slit width.

θ = angle of individual dark fringe

from centre.

m = order (m = 1 for 1st

dark).

y = distance of individual dark fringe

from centre.

...bright fringes

...dark fringes

...reflective

...non-reflective

...reflective

...non-reflective

...bright fringes

...dark fringes

Page 9: Back2Basic-v2

9

6. Difftaction grating :

d = slit separation.

θ = angle of individual bright fringe

from centre.

m = order (m = 1 for 1st

bright).

N = number of slits per unit length.

Chapter 3 : Electrostatics

1. Electrostatic force :

Q = magnitude of point charge.

q = magnitude of test charge.

r = distance between Q-q.

2. Electric field strength :

r = distance between Q to specified

point.

3. Electric potential :

r = distance between Q to specified

point.

4. Electric potential energy :

r = distance between Q-q.

5. Relationship F-E :

6. Relationship E-V :

7. Relationship U-V :

8. Potential difference between point a

and b :

Va = electric potential at point a.

Vb = electric potential at point b.

Chapter 4 : Capacitor & Dielectrics

1. Capacitance (in the making) :

A = plates area.

d = plates separation.

2. Capacitance (in use) :

Q = fully charge can be stored in

capacitor.

V = potential difference across

capacitor.

3. Energy stored in charged capacitor :

4. Time constant :

R = resistance of resistor.

...single force

...resultant force

...single field

...resultant field

...single potential

...total potential

...single energy

...total energy

Page 10: Back2Basic-v2

10

5. Charging process :

I = Current flows through capacitor

(associates t).

Io = Maximum (initial) current flows

through capacitor.

t = time interval.

Q = Charge stored in capacitor

(associates t).

Qo = Maximum (fully) charge stored in

capacitor.

6. Discharging process :

Q = Charge remaining in capacitor

(associates t).

7. Capacitors in series :

8. Capacitors in parallel :

Chapter 5 : Electric Current & DC

1. DC Current :

Q = charge flows in circuit.

t = time interval.

2. Resistance (in the making) :

ρ = resistivity (material).

l = length of resistor.

A = cross sectional area of resistor.

3. Ohm’s law (temperature constant):

V = potential difference across

resistor.

I = current flows through resistor.

R = resistance of resistor.

4. Resistance (temperature changes) :

R = final resistance (associates T)

Ro = initial resistance (associates To)

α = temperature coefficient of

resistivity.

T = final temperature.

To = initial temperature.

5. Electrical energy :

V = voltage supplied.

I = current flows.

t = time consume.

6. Electrical power :

7. Electromotive force :

I = current flows in circuit and cell.

R = resistance of circuit.

r = internal resistance of cell.

8. Resistors in series :

Page 11: Back2Basic-v2

11

9. Resistors in parallel :

10. Kirchhoff’s laws :

Chapter 6 : Magnetic Field @ Flux Density

1. Magnetic field (by CCC) :

N = number of turns.

I = current flows in CCC.

R = radius of coil.

n = number of turn per unit length.

d = distance between rod to specified

point.

2. Magnetic force :

q = charge.

v = velocity of moving charge.

B = uniform external magnetic field.

l = length of rod.

θ = angle between direction of B and v

or I.

3. Total torque (motor) :

A = area of coil.

B = radial magnetic field.

Chapter 7 : Electromagnetic induction :

1. Magnetic flux :

θ = angle between direction of B and

normal A.

2. Energy stored in inductor :

L = self-inductance.

3. Self-inductance :

l = length of solenoid.

4. Mutual-inductance :

5. Induced electromotive force :

Chapter 8 : Alternating Current

1. AC general equations :

ξo = peak e.m.f. supply.

Vo = peak circuit voltage.

Io = peak circuit current.

ω = angular velocity.

...centre of coil

...core of solenoid

...around straight rod

...by moving charge

...by CCC

...relative motion

...moving rod

...rotating rotor

(magnet bar-coil)

...mutual circuit

...current circuit

...impedance circuit

...emf supply

...voltage circuit

Page 12: Back2Basic-v2

12

2. Root mean square :

3. Pure resistor :

Vo = peak resistance potential

difference.

Io = peak resistance current.

R = resistance of resistor.

∆φ = phase difference between V and

I.

4. Pure inductor :

Vo = peak inductance potential

difference.

Io = peak inductance current.

XL = inductive reactance of inductor.

∆φ = phase difference between V and

I.

5. Pure capacitor :

Vo = peak capacitance potential

difference.

Io = peak capacitance current.

Xc = capacitive reactance of capacitor.

∆φ = phase difference between V and

I.

6. RLC circuit :

7. AC Power :

8. Resonance frequency :

Chapter 9 : Quantization of Light

1. Photon energy :

f = frequency of photon.

ET = total photon energy.

2. Photoelectric effect :

E = a photon energy.

Wo = work function of metal.

Kmax = maximum kinetic energy of

electron.

VS = stopping voltage.

Chapter 10 : Wave-Particle Duality

1. Duality equation :

p = momentum of an electron.

λ = de-Broglie wavelength of electron.

Page 13: Back2Basic-v2

13

2. Electron diffraction :

d = atomic separation.

θ = glance angle.

m = order.

3. De-Broglie wavelength :

m = mass of electron.

K = kinetic energy of electron.

e = electron charge.

V = voltage supplied.

Chapter 11 : Bohr’s Model of Hydrogen Atom

1. Electron angular momentum :

m = mass of electron.

v = electron velocity.

r = radius of allowed orbit.

n = orbit number.

2. Emmision / absorption of energy :

Ef = final energy level.

Ei = initial energy level.

3. Radius of hydrogen orbit :

rn = 5.29 x10-11

n2

4. Energy level :

Chapter 12 : X-ray

1. X-ray wavelength :

λmin = minimum wavelength of X-ray.

c = speed of light.

e = electron charge.

V = voltage.

Ef = final energy level.

Ei = initial energy level.

2. Moseley’s equation :

f = X-ray frequency.

Z = atomic number.

3. Bragg’s equation :

d = atomic separation.

α = bragg’s angle.

m = order.

λ = X-ray wavelength.

Chapter 13 : Nucleus

1. Mass defect :

A =mass number = nucleon no.

Z = atomic number = proton no.

mn = neutron mass.

mp = proton mass.

MN = nucleus mass.

2. Binding energy :

c =speed of light.

.....in eV

.....in J

.....bremstrahlung wavelength

.....characteristic wavelength

.....in kg

.....in a.m.u.

.....in J

.....in eV

Page 14: Back2Basic-v2

14

3. Binding energy / nucleon :

Chapter 14 : Nuclear Reactions

1. Nuclear energy released :

ma =mass of particle a.

mb =mass of particle b.

MX =mass of nuclide X.

MY =mass of nuclide Y.

Chapter 15 : Radioactivity

1. Activity :

dN =number of decayed elements.

N =number of element at that instant.

λ =decay constant.

Ao =initial activity of radioactive

element.

2. Number of radioactive element :

No =initial number of radioactive

element.

3. Half-life :

.....in J

.....in eV