BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung...

37
BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Umum Fondasi adalah suatu konstruksi bagian dasar bangunan yang berfungsi meneruskan beban dari struktur atas ke lapisan tanah di bawahnya. Tiang (Pile) adalah bagian dari suatu bagian konstruksi pondasi yang berbentuk batang langsing yang dipancang hingga tertanam dalam tanah dan berfungsi untuk menyalurkan beban dari struktur atas melewati tanah lunak dan air kedalam pendukung tanah yang keras yang terletak cukup dalam. Penyaluran beban oleh tiang pancang ini dapat dilakukan melalui lekatan antara sisi tiang dengan tanah tempat tiang dipancang (tahanan samping), dukungan tiang oleh ujung tiang (end bearing). Besar kapasitas tahanan ujung dan tahanan samping akan bergantung dari: 1. Kondisi pelapisan tanah dasar pendukung tempat fondasi bertumpu beserta parameter tiap lapisan tanahnya masing-masing. Parameter tanah dasar yang mendukung daya dukung fondasi adalah : a. Index properties: Berat volume Angka pori Porositas Kadar air Derajat kejenuhan Atterberg Limit: LL, PL, dan PI b. Engineering Properties: Sudut geser dalam: φ Kohesi: C Koefisien konsolidasi: Cc 2. Bentuk geometri fondasi: bentuk, dimensi, dan elevasi 3. Beban Fondasi LAPORAN TUGAS AKHIR Hal. II - 1

Transcript of BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung...

Page 1: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

BAB II

TINJAUAN PUSTAKA

2.1 Umum

Fondasi adalah suatu konstruksi bagian dasar bangunan yang berfungsi meneruskan

beban dari struktur atas ke lapisan tanah di bawahnya. Tiang (Pile) adalah bagian dari

suatu bagian konstruksi pondasi yang berbentuk batang langsing yang dipancang hingga

tertanam dalam tanah dan berfungsi untuk menyalurkan beban dari struktur atas melewati

tanah lunak dan air kedalam pendukung tanah yang keras yang terletak cukup dalam.

Penyaluran beban oleh tiang pancang ini dapat dilakukan melalui lekatan antara sisi tiang

dengan tanah tempat tiang dipancang (tahanan samping), dukungan tiang oleh ujung tiang

(end bearing). Besar kapasitas tahanan ujung dan tahanan samping akan bergantung dari:

1. Kondisi pelapisan tanah dasar pendukung tempat fondasi bertumpu beserta parameter

tiap lapisan tanahnya masing-masing. Parameter tanah dasar yang mendukung daya

dukung fondasi adalah :

a. Index properties:

Berat volume

Angka pori

Porositas

Kadar air

Derajat kejenuhan

Atterberg Limit: LL, PL, dan PI

b. Engineering Properties:

Sudut geser dalam: φ

Kohesi: C

Koefisien konsolidasi: Cc

2. Bentuk geometri fondasi: bentuk, dimensi, dan elevasi

3. Beban Fondasi

LAPORAN TUGAS AKHIR Hal. II - 1

Page 2: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

Penyelidikan tanah dasar dalam mendesain bangunan geoteknik sangat penting sebab

seorang engineer harus memahami kondisi geologi tanah, sifat tanah dan kekuatan tanah

setempat. Jenis investigasi disesuaikan dengan jenis proyek, kepentingan proyek, dan

kondisi tanah asli dan tes lapangan menjadi sangat penting bila dilakukan pada tanah yang

sangat sensitif terhadap gangguan.

Jenis penyelidikan tanah yang biasanya dilakukan dalam merencanakan suatu sistem

fondasi adalah :

1. Boring Investigasi (tangan atau mesin)

2. CPT (sondir)

3. SPT (Standard Penetration Test)

4. Vane Shear

5. Sampling: Undisturbed (UDS) dan Disturbed (DS) Sample

6. Uji laboratorium: untuk menentukan parameter index dan engineering properties

Untuk kondisi tanah yang memiliki lapisan atas yang kurang baik, penggunaan

pondasi dangkal biasanya akan memberikan daya dukung yang rendah, maka untuk kondisi

seperti ini pondasi tiang sebagai alternatif banyak digunakan.

Beberapa kondisi dimana pondasi tiang dibutuhkan (Gambar 2.1), kondisi itu antara

lain sebagai berikut :

a. Untuk lapisan tanah atas yang terlalu lunak untuk menahan beban struktur atas.Untuk

kondisi seperti ini tiang dibutuhkan untuk mentransfer beban struktur atas kelapisan

bawah yang lebih keras. (Gambar 2.1 a dan b)

b. Pondasi yang direncanakan untuk menahan beban horizontal. Pondasi tiang menahan

beban horizontal dengan kapasitas momen nominalnya, dan masih tetap dapat

menahan beban axial. (Gambar 2.1 c)

c. Untuk tanah-tanah yang expansif, pondasi tiang menjadi alternatif yang sangat baik.

Karena pondasi dapat diteruskan hingga melewati lapisan yang ekspansif ini.

(Gambar 2.1 d)

d. Pondasi yang diperuntukkan untuk menahan beban Uplift.(Gambar 2.1 e)

e. Pondasi di tanah yang lapis atasnya beresiko terkena erosi air. (Gambar 2.1 f)

LAPORAN TUGAS AKHIR Hal. II - 2

Page 3: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

Gambar 2.1 Beberapa kondisi dimana pondasi tiang digunakan dalam praktek (Das, 1999)

Di dalam rekayasa pondasi juga dipelajari mengenai beberapa klasifikasi pondasi

tiang. Berikut klasifikasi tiang berdasarkan pergerakan pada tanah (displacement):

1. Large displacement piles

Jenis tiang yang termasuk dalam kategori ini adalah tiang massif ataupun tiang

berlubang dengan ujung tertutup. Pelaksanaan di lapangan dapat dilakukan dengan

dipancang atau ditekan sampai elevasi yang dituju sehingga terjadi perpindahan

tanah yang cukup besar dari tempatnya semula.

2. Small displacement piles

Tiang dipancang atau ditekan ke dalam tanah sampai pada elevasi yang diinginkan.

Perbedaan dengan tipe tiang yang pertama adalah tiang tipe small displacement

mempunyai penampang yang lebih kecil. Contoh yang termasuk dalam kategori ini

adalah tiang baja penampang H atau I, tiang pipa atau box dengan ujung terbuka

yang memungkinkan tanah masuk melalui penampang yang berlubang. Jenis tiang

pancang berulir juga termasuk dalam kategori ini.

3. Non displacement piles

Tiang tipe ini ditanam ke dalam tanah dengan cara pemindahan tanah terlebih dahulu

(dibor atau digali secara manual atau dengan mesin). Setelah lubang selesai dibuat

LAPORAN TUGAS AKHIR Hal. II - 3

Page 4: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

baru dilaksanakan pengisian lubang dengan tiang (dicor). Dengan demikian

mobilisasi friksi tidak sebesar friksi pada displacement piles. Contoh: tiang bor pile.

4. Composit pile

Tiang komposit merupakan gabungan dari berbagai jenis tiang di atas. Sebagai

contoh adalah tiang komposit tipe displacement. Tiang ini memiliki tiang baja profil

H yang tergabung hingga ujung bagian bawah dari tiang beton pracetak (precast).

Sebagai contoh jenis displacement dan non-displacement adalah pada tahap pertama

dilakukan pemancangan dengan tiang pipa ujung terbuka kemudian tanah di dalam

pipa dikeluarkan (dibor). Setelah itu, dibuatlah tiang bor dan tiang cast in place pada

lubang tersebut.

2.2 Pemancangan Tiang

Pada umumnya pondasi tiang dipancang ke dalam tanah menggunakan hammer

ataupun berupa alat penggetar (vibratory drivers). Untuk kasus khusus, pondasi tiang juga

dapat dimasukkan ke dalam tanah dengan jetting ataupun dibor terlebih dahulu.

Pada pemancangan tiang hal-hal yang sangat penting untuk diketahui adalah sebagai

berikut:

1. Jenis alat pemancang yang digunakan.

Jenis hammer sangat menentukan energi yang akan diterima oleh tiang dan juga

tanah pada saat pemancangan. Ketika pemancangan tiang, suara yang ditimbulkan

juga sangat keras sehingga dapat mengganggu aktivitas lingkungan disekitarnya.

Tiap jenis hammer menimbulkan efek suara yang berbeda. Semakin keras lapisan

tanah tempat pemancangan juga akan menimbulkan efek suara yang semakin keras.

Energi pemancangan yang ditimbulkan oleh berat ram dan tinggi jatuh akan

menentukan besar energi yang akan diterima oleh tiang pancang pada saat

pemancangan. Jenis hammer yang biasa digunakan diantaranya:

A. External Combustion Hammers

LAPORAN TUGAS AKHIR Hal. II - 4

Page 5: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

Gambar 2.2 External Combustion Hammers (GRL, 1988)

B. Diesel Hammer

Umumnya ada dua tipe diesel hammer, yaitu:

i. Open end diesel hammers

ii. Close end diesel hammers

Gambar 2.3 Diesel Hammer (GRL, 1988)

C. Vibrator Hammer

LAPORAN TUGAS AKHIR Hal. II - 5

Page 6: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

Gambar 2.4 Vibrator Pile Drivers (Irsyam, 2004)

2. Properti hammer, hammer cushion, helmet, pile cushion.

Dalam proses pemancangan, hammer cap dipasang pada kepala tiang. Pile Cushion

digunakan diantara tiang dan cap. Pile cushion ini mempunyai kegunaan untuk

mereduksi beban tumbukan dan menyebarkannya. Sedangkan hammer cushion

diletakkan di pile cap. Untuk lebih jelas dapat dilihat pada gambar berikut:

Gambar 2.5 Properti Hammer, Hammer Cushion, Helmet, Pile Cushion (GRL, 1988)

3. Properti tiang pancang

Biasanya tiang pancang yang digunakan dipilih berdasarkan kriteria sebagai berikut:

a. Jenis, ukuran dan berat struktur yang akan didukung.

b. Sifat fisik lapisan tanah.

LAPORAN TUGAS AKHIR Hal. II - 6

Page 7: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

c. Kedalaman lapisan yang mampu mendukung tiang pancang.

d. Perbedaan kedalaman terhadap lapisan pendukung.

e. Ketersediaan material untuk tiang pancang.

f. Jumlah tiang pancang yang diperlukan.

g. Peralatan pemancang.

h. Perbandingan biaya.

i. Ketahanan yang disyaratkan.

j. Jenis struktur proyek.

k. Gangguan konstruksi, terutama kebisingan dan getaran yang ditimbulkan

akibat pemancangan tiang.

2.3 Kapasitas Daya Dukung Aksial

Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan

kapasitas daya dukung statik dari Meyerhof, Terzaghi, Tomlinson, American Petroleum

Institute (API) 1986, based on N-SPT dan lain-lain. Dalam tugas akhir ini, pembahasan

daya dukung aksial statik dibatasi menggunakan metoda yang dianjurkan American

Petroleum Institute (API) 1986 dan metoda based on N-SPT.

Kapasitas daya dukung dibedakan atas daya dukung ujung dan daya dukung geser.

Apabila daya dukung keduanya dimobilisasikan akan didapatkan:

∑+= feult QQQ (2.1)

Dari kapasitas daya dukung aksial ultimate maka kita bisa mendapatkan kapasitas daya

dukung aksial izin sebagai berikut:

SFQ

Q ultall = (2.2)

dimana:

Qult = Kapasitas daya dukung maksimum atau ultimate

Qe = Kapasitas daya dukung ujung (end bearing) yang didapat dari tanah dibawah

ujung pondasi tiang

Qf = Kapasitas daya dukung gesek (skin friction) yang didapat dari gaya geser atau

gaya adhesi antara tiang dengan tanah

Qall = Kapasitas daya dukung izin tiang pancang

SF = Faktor keamanan (safety factor) yang digunakan

LAPORAN TUGAS AKHIR Hal. II - 7

Page 8: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

2.3.1 Daya Dukung Aksial Berdasarkan Metode API (1986)

2.3.1.1 Kapasitas Daya Dukung Ujung

Berdasarkan metoda yang disarankan oleh American Petroleum Institute (API)

1986, perhitungan daya dukung ujung tiang secara umum dirumuskan seperti berikut:

             pbe AqQ += (2.3)

dimana:

Qe = End bearing Capacity

qb = Unit end Bearing

Ap = Section Area of pile

Untuk tanah berbutir halus atau clay soil (c-soils)

Secara umum qb dirumuskan sebagai berikut:

ucb C.Nq = (2.4)

dimana:

Nc = 9

Cu = average undrained Shear Strength of clay on base of end bearing pile

Untuk tanah berbutir kasar atau pasir (φ-soils)

Secara umum qb dirumuskan sebagai berikut:

q'

vb N.σq = (2.5)

dimana:

σ v’ = overburden pressure

Nq = bearing capacity factor

LAPORAN TUGAS AKHIR Hal. II - 8

Page 9: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

Untuk nilai Nq tertentu, metoda API 1986 memberi batasan nilai unit end bearing yang

boleh dihasilkan pada penggunaan rumus daya dukung ujung untuk tanah pasir, seperti

berikut :

Tabel 2.1 Batas nilai unit end bearing untuk jenis-jenis tanah pasir dengan nilai Nq tertentu (API,

1987)

Soil Nq Limiting q (Kpa)

Very Loose To Medium, Sand To Silt 8 1900

Loose To Dense Sand, Sand To Silt 12 2900

Medium To Dense, Sand To Sand-Silt 20 4800

Dense To Very Dense , Sand To Sand silt 40 9600

Dense To Very Dense, Gravel To Sand 50 12000

2.3.1.2 Kapasitas Daya Dukung Skin Friction

Berdasarkan metoda yang disarankan oleh American Petroleum Institute (API)

1986 ,perhitungan daya dukung skin friction tiang secara umum dapat dirumuskan seperti

berikut:

(2.6) ΔLp..fQ ss ∑=dimana: Qs = total skin friction

fs = unit skin resistances

p = perimeter dari tiang pancang

ΔL = panjang unit tiang

Untuk tanah lempung (c-soils)

Secara umum fs dapat dirumuskan sebagai berikut:

uC.fs α= (2.7)

dimana:

α = adhesion factor, Gambar 2.6

Cu = undrained shear strength

LAPORAN TUGAS AKHIR Hal. II - 9

Page 10: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

Gambar 2.6 Hubungan antara kuat geser (Cu) dengan faktor adhesi (α ) (API, 1987)

Untuk tanah pasir (φ-soils)

Secara umum fs dapat dirumuskan sebagai berikut:

fs = K σv’ tan δ (2.8)

dimana:

σv’ = overburden pressure

δ = friction angle between soil and pile ( using 2/3 φ )

K = Lateral earth pressure

Pada jenis tanah berpasir untuk parameter teknik seperti (δ) tertentu yang besar nilainya

berasal dari sudut geser tanah, metoda API 1986 memberikan batas-batas nilai unit skin

friction yang dihasilkan seperti berikut:

Tabel 2.2 Batas nilai unit skin friction untuk jenis-jenis tanah pasir untuk nilai (δ) tertentu (API,

1987)

Soil δ, Degrees Limiting f (Kpa)

Very Loose To Medium, Sand To Silt 15 47.8

Loose To Dense Sand, Sand To Silt 20 67

Medium To Dense, Sand To Sand-Silt 25 83.1

Dense To Very Dense , Sand To Sand silt 30 95.5

Dense To Very Dense, Gravel To Sand 35 114.8

LAPORAN TUGAS AKHIR Hal. II - 10

Page 11: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

2.3.2 Daya Dukung Aksial Berdasarkan Metode Based On N-SPT

2.3.2.1 Kapasitas Daya Dukung Ujung

Berdasarkan metoda Based on N-SPT, perhitungan daya dukung ujung tiang

secara umum dapat dirumuskan seperti berikut:

Qe = qb . AP (2.9) dimana:

Qe = End Bearing Capacity

qb = Unit End Bearing

Ap = Section Area of pile

Untuk tanah berbutir halus atau clay soil (c-soils)

Secara umum qb dirumuskan sebagai berikut:

qb = Nc . Cu (2.10)

dimana:

Nc = 9,

Cu = undrained shear strength

Untuk tanah berbutir kasar atau pasir (φ-soils)

Secara umum qb dirumuskan sebagai berikut:

qb = 40 × N-SPTav × ≤ 400 × N-SPTav (2.11)

dimana:

N-SPTav = (N1+N2)/2

N1 = harga rata-rata dari dasar ke 10 D ke atas

N2 = harga rata-rata dari dasar ke 4 D ke bawah

l = tebal lapisan tanah

D = diameter tiang pancang

LAPORAN TUGAS AKHIR Hal. II - 11

Page 12: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

2.3.2.2 Kapasitas Daya Dukung Skin Friction

Berdasarkan metoda Based on N-SPT, perhitungan daya dukung skin friction

tiang secara umum dapat dirumuskan seperti berikut:

Qs = Σfs . p . ΔL (2.12)

dimana:

Qs = total skin friction

fs = unit skin resistances

p = perimeter dari tiang pancang

ΔL = panjang unit tiang

Untuk tanah lempung (c-soils)

Secara umum fs dapat dirumuskan sebagai berikut:

fs = α . Cu (2.13)

dimana:

α = adhesion factor, Gambar 2.7

Cu = undrained shear strength

Untuk tanah pasir (φ-soils)

Secara umum fs dapat dirumuskan sebagai berikut:

fs = 2 × N-SPT (2.14)

dimana: N-SPT = Nilai N-SPT pada lapisan tanah

LAPORAN TUGAS AKHIR Hal. II - 12

Page 13: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

2.4 Kapasitas Daya Dukung Lateral

Tiang vertikal yang menanggung beban lateral akan menahan beban ini dengan

memobilisasi tahanan tanah pasif yang mengelilinginya. Pendistribusian tegangan tanah

pasif akibat beban lateral akan mempengaruhi kekakuan tiang, kekakuan tanah, dan

kondisi ujung tiang. Secara umum tiang yang menerima beban lateral dapat dibagi dalam

dua bagian besar, yaitu tiang pendek (rigid pile) dan tiang panjang (elastic pile).

Berdasarkan kondisi ujung atas maka dikenal istilah free head dan fixed head. Jika Kepala

tiang dapat bertranslasi dan berotasi akibat beban geser dan/atau momen maka tiang

tersebut dikatakan berkepala bebas (free head) sedangkan jika kepala tiang hanya

bertranslasi maka disebut tiang dengan kepala jepit (fixed head).

(a) Free Head (b) Fixed Head

Gambar 2.7 Tiang pendek dikenai beban lateral (Tomlinson, 1977)

(a) Free Head (b) Fixed Head

Gambar 2.8 Tiang panjang dikenai beban lateral (Tomlinson, 1977)

LAPORAN TUGAS AKHIR Hal. II - 13

Page 14: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

LAPORAN TUGAS AKHIR Hal. II - 14

Langkah pertama untuk memperkirakan kapasitas tiang tunggal adalah menentukan

perilaku tiang tersebut, apakah perilakunya sebagai tiang pendek ataukah sebagai tiang

panjang yang fleksibel. Hal ini dilakukan dengan menentukan faktor kekakuan R dan T.

Faktor kekakuan ini bergantung pada kekakuan tiang (EI) dan kompresibilitas tanah.

Faktor kekakuan ini nantinya akan dinyatakan dalam istilah soil modulus, yang tidak tetap

tetapi bergantung pada lebar tiang dan kedalamannya. Soil modulus (K) ini dapat

dihubungkan dengan modulus horizontal subgrade reaction dari konsep Terzaghi. Untuk

tanah keras lempung OC, nilai dari modulus tanah biasanya diasumsikan konstan terhadap

kedalaman.

Faktor Kekakuan 4KBEIR = (2.15)

K = k1 / 1.5 dan B = lebar tiang

k1 = subgrade modulus yang ditentukan dari pengukuran uji beban lapangan -

penurunan dengan pelat bujur sangkar 30 x 30 cm

[m]horizontallendutan]N/m[platbebank

2

1 =

Tabel 2.3 Hubungan modulus of subgrade reaction (k1) dengan nilai Cu tanah lempung OC yang

keras (Terzaghi, 1955)

Parameter Stiff Very stiff Hard

Undrained Cohesion (Cu) kN/m2 100 - 200 200 – 400 > 400

Kisaran nilai ks MN/m3 18 - 36 36 - 72 > 72

Recommended ks MN/m3 27 54 > 108

Untuk tanah lempung NC dan untuk tanah butiran (pasir) maka modulus tanah

dianggap meningkat secara linear terhadap kedalaman, maka :

Faktor kekakuan 5

h

EITη

= (2.16)

Dimana modulus tanah adalah D

K h x⋅=η

Page 15: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

Nilai koefisien modulus variasi ηh diperoleh secara langsung dari loading test pada

tiang tanah yang terendam air di mustang Island, Texas (Reese):

Tabel 2.4 Faktor untuk menghitung nilai dari koefisien modulus variasi (ηh) untuk tanah tak

nonkohesif dalam [MN/m3] (Tomlinson, 1977)

Relative density Loose Medium Dense

ηh for dry or moist soil [Terzaghi] 2.5 7.5 20

ηh for submerged soil/ jenuh 1.4 5 12

ηh for submerged soil [Reese] 5.3 16.3 34

Nilai lain ηh yang diamati adalah seperti berikut ini :

Lempung NC lunak : 350 to 700 kN/m3

Lanau organic silts : 150 kN/m3

Setelah perhitungan faktor kekakuan R dan T, kriteria penentuan kekakuan tiang

sebagai tiang panjang atau tiang pendek berkaitan dengan kedalaman penetrasi tiang sebgai

berikut ini :

Tabel 2.5 Kriteria penentuan kekakuan tiang sebagai tiang panjang atau tiang pendek (Tomlinson,

1977)

Soil Modulus ( Faktor Kekakuan ) Pile Type

Linearly Increasing (NC) Constant (OC)

Pendek / Rigid ( free head ) L ≤ 2T L ≤ 2R

Panjang / Elastic ( free head ) L ≥ 4T L ≥ 3,5R

2.4.1 Kapasitas Ultimit Tiang Pendek

Metode yang dikembangkan oleh Brinch Hansen dapat digunakan untuk menghitung

kapasitas ultimit lateral tiang pendek. Metoda ini dapat digunakan untuk kondisi tanah

homogen dan untuk kondisi tanah berlapis. Lihat Gambar 2.9 berikut, titik X adalah titik

rotasi tiang.

LAPORAN TUGAS AKHIR Hal. II - 15

Page 16: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

Diagram tahanan pasif tanah dibagi menjadi n bagian dengan bagian horizontal

sepanjang L/n. Tahanan pasif dari elemen pada kedalaman z dibawah permukaan tanah

diberikan oleh :

Pz = Poz Kqz + c Kcz (2.17) dimana :

Poz adalah nilai tekanan efektif pada kedalaman z.

C adalah nilai kohesi tanah pada kedalaman z.

Kqz ,Kcz adalah koefisien tekanan pasif untuk komponen friksi dan kohesi menurut Brinch

Hansen.

(a) soil reaction (b) Shearing Force Diagram (c) Bending Moment Diagram

Gambar 2.9 Metode Brinch Hansen, memperkirakan kekuatan tiang pendek yang dikenai beban

lateral (Tomlinson, 1977)

Lokasi titik X (titik rotasi) dari tiang dilakukan dengan trial and error sampai tahanan

diatas titik X dan dibawahnya mencapai keseimbangan.

∑∑ ∑=

=

=

=

+−+=Lz

xzz

xz

zz Bze

nLpBze

nLpM )()(

0   (2.18)

Setelah lokasi dari X ditemukan, maka nilai Hu ( gaya horizontal ultimit) diperoleh dengan

jalan menghitung momen terhadap X, sebagai berikut :

∑∑=

=

=

=

−+−=+Lz

xzz

xz

zzu xzB

nLpzxB

nLpxeH )()()(

0    (2.19)

 

LAPORAN TUGAS AKHIR Hal. II - 16

Page 17: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

 

Gambar 2.10 Koefisien tekanan pasif menurut Brinch Hansen (Tomlinson, 1977)

Untuk pembebanan short-term pada tanah kohesif yang homogen ( = 0), maka

metode Broms baik untuk digunakan. Untuk tanah seperti demikian Broms

mengasumsikan bahwa reaksi dari tanah dapat disederhanakan seperti gambar berikut.

Gambar 2.11 Tahanan tanah dan bidang momen pada tiang pendek ( freehead & fixed head ) yang

dikenai beban lateral pada lempung (Broms, 1964)

Broms menganggap daerah dimana terletak zero pressure adalah hingga kedalaman

1.5B , yang menunjukkan efek susut tanah dari tiang. Nilai Hu ultimit diperoleh dari grafik

(Gambar 2.12). Nilai Hu ini berhubungan dengan nilai cu , lebar tiang B dan perbandingan

kedalaman tiang dengan lebar tiang. Dari Gambar 2.11 sebelumnya terlihat bahwa posisi f

(posisi momen maksimum) dapat diperoleh dengan persamaan :

LAPORAN TUGAS AKHIR Hal. II - 17

Page 18: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

BcHf

u

u

..9=

  (2.20)

dan )50,050,1(max fBeHM u ++= (2.21)

Bagian bawah tiang sepanjang g berfungsi menahan momen Mmax, dan dari prinsip

kesetimbangan diperoleh untuk tiang pendek rigid : 2

max ...25,2 gBcM u=   (2.22)

Tiang pendek yang ujungnya terjepit (Gambar 2.11 b) dapat dianggap berlaku seperti

balok yang terjepit salah satu ujungnya, dan beban bekerja sepanjang tiang sehingga

diperoleh :

).25,2.(..9.21 22

max BLBcM u −=  (2.23)

Kapasitas ultimit tiang pendek dengan kepala terjepit juga dapat ditentukan dari grafik

(Gambar 2.13). Untuk tanah pasir ( cu = 0 ) distribusi tahanan tanah dan bidang momen

digambarkan seperti Gambar 2.14. Untuk tiap kedalaman z maka besarnya tanahan tanah

yang termobilisasi diberikan oleh:

pozz KpBp ××= 3  (2.24)

Nilai B adalah lebar tiang yang tegak lurus terhadap arah rotasi tiang. Sedangkan poz

adalah nilai tekanan tanah efektif pada kedalaman z, Kp adalah Koefisien tekanan lateral

pasif Rankine, yaitu Kp = ( 1 + sin ) / ( 1-sin ). Maka nilai tahanan lateral ultimit, Hu

dapat ditentukan dengan cara yang sama pada metoda Brinch Hansen. Untuk kondisi tanah

pasir yang homogen, Broms juga telah membuat grafik (Gambar 2.14) hubungan H/KpB3γ

dengan L/B, dari grafik ini kemudian dapat ditentukan nilai tahanan lateral ultimit Hu.

Nilai Hu juga dapat ditentukan dari persamaan berikut :

LeKLB

LeLKLB

H ppu +

=+

=32 5,0

)(35,1 γγ

  (2.25)

LAPORAN TUGAS AKHIR Hal. II - 18

Page 19: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

Gambar 2.12 Kapasitas Lateral ultimit tiang pendek pada lempung dihubungkan dengan

kedalaman penetrasi tiang (Broms,1964)

Gambar 2.13 Tahanan tanah dan bidang momen pada tiang pendek ( freehead & fixedhead )

yang dikenai beban lateral pada pasir (Broms,1964)

Untuk tiang pendek dengan kepala terjepit pada tanah terjepit pada tanah pasir maka

mekanisme keruntuhannya adalah pergerakan kepala tiang yang melampaui batas toleransi.

Sehingga nilai Hu dapat ditentukan dari rumus sebagai berikut :

pu KLBH 25,1 γ=  (2.26)

LAPORAN TUGAS AKHIR Hal. II - 19

Page 20: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

Gambar 2.14 Kapasitas lateral ultimit tiang pendek pada tanah pasir dihubungkan dengan

kedalaman penetrasi tiang (Broms,1964)

Nilai persamaan tersebut diatas akurat jika momen negatif maksimum yang

termobilisasi dikepala tiang lebih kecil dari tahanan momen ultimit Mu pada tiang di titik

ini. Persamaan momen untuk tiang diberikan oleh :

pKLBM 3max γ=

  (2.27) 

2.4.2 Kapasitas Ultimit Tiang Panjang

Tahanan pasif yang dapat dimobilisasi oleh tanah hingga tiang yang tak berhingga

panjangnya mencapai titik lelehnya juga tak hingga. Karena itu kapasitas lateral tiang

panjang akan ditentukan oleh kapasitas tiang itu menahan momen.

Broms mendefinisikan keruntuhan tiang panjang akan tercapai apabila kapasitas

lelah momen penampang tiang sudah dicapai. Pada penampang tiang diperkirakan akan

terbentuk sendi plastis, yang masih mampu menahan geser. Reaksi tanah lempung dan

momen pada tiang menurut Broms dapat dilihat pada Gambar 2.15. Nilai momen positif

maksimum untuk tiang dengan kepala bebas (free head) sama dengan persamaaan berikut:

)50,050,1(max fBeHM u ++= (2.28)

LAPORAN TUGAS AKHIR Hal. II - 20

Page 21: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

dimana Bc

Hfu

u

..9=

(2.29)

Nilai ultimit dari Hu, diambil ketika nilai Mmax sama dengan nilai momen ultimit dari

penampang tiang itu sendiri. Sehingga untuk tiang dengan kepala bebas nilai Hu

dinyatakan oleh:

)50,050,1( fBeM

H uu ++=

(2.30)

Dari Gambar 2.15 b untuk kondisi kepala tiang yang terjepit maka nilai Hu dapat

dinyatakan sebagai:

)50,050,1(2

fBM

H uu +=

(2.31)

Gambar 2.15 Tahanan tanah dan bidang momen pada tiang panjang (freehead & fixedhead) yang

dikenai beban lateral pada lempung (Broms,1964)

Broms membuat grafik yang menghubungkan nilai Hu / Cu B2 dan Mu / Cu B3 untuk

tanah lempung, ditunjukkan oleh Gambar 2.16 untuk kasus dimana kepala tiang terjepit

dan kepala tiang bebas. Nilai dari tahanan ultimit lateral Hu, dapat ditentukan dengan

melihat grafik dan mendapatkan nilai Hu / Cu B2 yang bersesuaian dengan Mu / Cu B3.

LAPORAN TUGAS AKHIR Hal. II - 21

Page 22: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

Gambar 2.16 Tahanan tanah lateral ultimit untuk tiang panjang pada lempung dihubungkan

dengan tahanan momen ultimit tiang (Broms,1964)

Reaksi tanah pasir akibat penetrasi tiang panjang dan momen yang terjadi pada tiang

di tanah berpasir menurut Broms dapat digambarkan seperti Gambar 2.18. Untuk tiang

dengan kepala bebas Gambar 2.17 a momen maksimum terjadi pada posisi dimana gaya

gesernya sama dengan nol. Untuk tiang berkepala bebas, maka nilai f dapat ditentukan

dengan persamaan:

p

u

BKH

82,0=  (2.32)

Nilai maksimum momen diberikan oleh

)67,0(max feHM u +=   (2.33)

Untuk momen bernilai nol pada kepala tiang, nilai tahanan lateral ultimit diberikan oleh

persamaan berikut ini:

p

u

uu

BKHe

MH

γ54,0+

=

 

(2.34)

Broms juga telah membuat grafik hubungan antara Hu / γ B3 Kp dengan Mu / γ B4 Kp

seperti terlihat pada Gambar 2.18, dengan bantuan grafik ini maka dapat ditentukan nilai

dari kapasitas lateral ultimit tiang, Hu, untuk tiang dengan ujung terjepit seperti pada

Gambar 2.17 b. Nilai maksimum momen negatif terjadi pada kepala tiang dan nilai ultimit

lateral tiang dicapai ketika tercapai momen ultimit.

LAPORAN TUGAS AKHIR Hal. II - 22

Page 23: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

Gambar 2.17 Reaksi tanah dan bidang momen untuk tiang panjang di tanah pasir

(Broms,1964)

Nilai tahanan lateral ultimit dari tiang dengan kepala terjepit pada tanah pasir diberikan

oleh persamaan berikut:

54,0

)()(

p

u

uuu

BKH

e

MMH

γ+

−++=

 

(2.35) 

Untuk tiang yang penampangnya tetap sepanjang kedalaman penetrasi maka nilai Mu (+)

sama dengan Mu (-) sama dengan Mu.

Gambar 2.18 Tahanan tanah lateral ultimit untuk tiang panjang pada tanah pasir

dihubungkan dengan tahanan momen ultimit tiang (Broms,1964)

LAPORAN TUGAS AKHIR Hal. II - 23

Page 24: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

2.4.3 Defleksi Tiang Vertikal akibat beban Lateral

Cara sederhana untuk mengontrol defleksi yang diakibatkan oleh beban lateral

apakah masih dalam batas toleransi yang diijinkan adalah dengan mengasumsikan bahwa

pada kedalaman tertentu tiang terjepit sehingga defleksi dihitung seperti perhitungan

kantilever. Kepala tiang dapat bebas dan dapat pula terjepit sehingga defleksi dihitung

seperti perhitungan kantilever. Kepala tiang dapat bebas dan dapat pula terjepit dengan

kebebasan gerak translasi, untuk lebih jelasnya lihat Gambar 2.20.

e

zf

Hu

e

zf

Hu

Gambar 2.19 Tiang yang dikenai beban lateral disederhanakan sebagai kantilever sederhana

(Tomlinson, 1977)

Dari gambar diatas dapat diturunkan persamaan defleksi pada tiang akibat pemberian

beban lateral, sebagai berikut :

Defleksi pada kepala tiang yang bebas :

(2.36) EIzeH

y f

3)( 3+

=

Defleksi pada kepala tiang yang terjepit :

(2.37) EIzeH

y f

12)( 3+

=

Dimana zf adalah kedalaman dari permukaan tanah ke titik virtual fixity. Kedalaman Zr

untuk desain praktisnya diambil 1.5 m untuk tanah berbutir yang padat dan lempung keras,

3m untuk lempung lunak dan lanau.

LAPORAN TUGAS AKHIR Hal. II - 24

Page 25: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

Broms juga membuat metode menghitung defleksi dengan konsep modulus of

subgrade reaction. Metoda ini dibedakan untuk tanah lempung dan tanah pasir sebagai

berikut:

Tiang Pada Tanah Lempung

Tiang pada tanah lempung, defleksi tiang dipengaruhi oleh besaran panjang tak berdimensi

βL, dimana :

(2.38) 4

4EIBKh=β

Untuk tiang pendek nilai βL jika kondisi kepala tiang bebas adalah lebih kecil 1.5 dan jika

kondisi kepala tiang terjepit nilainya lebih kecil 0.5, sehingga nilai defleksi lateralnya

dapat didekati.

Lateral defleksi pada permukaan tanah (kepala bebas),

(2.39) Blk

LeH

yh

)5,11(40

+=

Lateral defleksi pada permukaan tanah (kepala terjepit)

(2.40) BLkHyh

=0

Nilai k dalam persamaan diatas adalah koefisien subgrade reaction, untuk tanah yang

memiliki modulus yang konstan maka nilai k diambil sama dengan k1 (tabel 2.3).

Sedangkan untuk tanah yang modulusnya meningkat secara linear, hingga kedalaman 0.8

βL maka nilai k1 yang diambil nilai rata-rata.

Untuk kasus tiang panjang, dapat juga diturunkan pendekatan untuk

memperkirakan defleksi lateralnya pada permukaan tanah sebagai berikut :

Tiang dengan kepala bebas (βL > 2.5 )

(2.41) BK

eHy∞

+=

)1(20

ββ

LAPORAN TUGAS AKHIR Hal. II - 25

Page 26: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

Tiang dengan kepala terjepit (βL < 1.5 )

(2.42) BKHy∞

0

Koefisien Subgrade reaction untuk tiang yang sangat panjang, didapat dari persamaan

(2.43) βα 0Kk =∞

Dimana

(2.44) 124

0 52,0EI

EK=α

Nilai α dapat ditentukan dari α = n1 * n2

Faktor n1 dan n2 berhubungan dengan nilai kuat geser tanah dan dengan material tiang

yang dipakai. Nilai tahanan geser lempung diasumsikan 1.5 kali dari hasil uji unconfined

compression test.

Menurut Broms, nilai dari Ko diperoleh dari nilai secant modulus tanah, Modulus secant

E50, dikaitkan dengan tekanan pada tanah 50% dari tekanan runtuhnya.

Ko = 1.67 E50 (2.45)

Tabel 2.6 Nilai Koefisien n1 (Broms,1964)

Kekuatan Geser (kN/m2) Koefisien n1

< 27 0.32

27 -107 0.36

>107 0.40

Tabel 2.7 Nilai Koefisien n2 (Broms,1964)

Material Tiang Koefisien n2

Steel 1

Concrete 1.15

Wood 1.30

LAPORAN TUGAS AKHIR Hal. II - 26

Page 27: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

Tiang Pada Tanah Pasir

Tiang pada tanah pasir, defleksi tiang dipengaruhi oleh besaran panjang tak berdimensi ηL,

dimana :

5

EIhηη = (2.46)

Harga defleksi yo dapat dihitung berdasarkan persamaan berikut ini:

- Short pile ηL < 2 free head:

hL

LeH

yη20

33.1118 ⎟⎠⎞

⎜⎝⎛ +

= (2.47)

- Short Pile Fixed Head

hL

Hyη20

2= (2.48)

- Long Pile ηL > 4 free head

( )( ) 5/35/30

67.014.2EI

eHyhη

η+= (2.49)

- Long Pile Fixed Head

( ) 5/25/3093.0EI

Hyhη

= (2.50)

LAPORAN TUGAS AKHIR Hal. II - 27

Page 28: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

2.5 Uji Pembebanan Statik ( Static Loading Test)

Selain metoda statik API 1987 dan based on N-SPT digunakan untuk mencari daya

dukung aksial ultimate tiang pancang di beberapa lokasi di dalam proyek PLTGU Tambak

Lorok maka analisis juga dilakukan dengan cara uji pembebanan tiang ( Pile Loading

Test). Uji pembebanan (loading test) adalah suatu metode yang digunakan dalam

pemeriksaan terhadap sejumlah beban yang dapat didukung oleh suatu struktur dalam hal

ini adalah pondasi. Uji pembebanan dilakukan untuk mengetahui secara nyata bagaimana

kondisi tanah di lapangan bila diberikan beban sesuai dengan yang direncanakan.

Namun kelemahan metoda ini adalah waktu yang digunakan relatif lama dan

memakan biaya yang cukup mahal sehingga tidak ekonomis pada kondisi-kondisi tertentu.

Uji pembebanan yang cukup populer digunakan yaitu static loading test. Data uji

pembebanan tersebut dapat diolah secara manual maupun dianalisa dengan bantuan

program komputer.

2.5.1 Cara Uji Pembebanan Tiang

Dalam praktek biasanya dilakukan dua cara uji pembebanan tiang, yaitu:

1. Test Pile

• Desain awal tiang dilakukan berdasarkan data penyelidikan tanah.

• Uji pembebanan tiang dilakukan untuk desain akhir.

• Uji pembebanan dilakukan hingga tiang mengalami keruntuhan.

2. Test on Working Pile

• Dilakukan apabila sudah ada pengalaman desain sebelumnya.

• Dilakukan secara acak terhadap pondasi tiang untuk mengetahui kapasitas

desain pondasi tiang.

• Uji pembebanan dilakukan dengan memberikan beban hingga 200% dari

beban rencana.

2.5.2 Prosedur Pembebanan

LAPORAN TUGAS AKHIR Hal. II - 28

Page 29: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

Dalam prosedur pembebanan banyak pilihan prosedur yang mau digunakan

tergantung kebutuhan perencanaan dan juga kemampuan finansial proyek. Berikut ini

adalah prosedur pembebanan yang biasa digunakan :

• Standard Loading Test ASTM

• Cyclic Loading Test ASTM

• Slow Maintanance Load Test Method ( SM Test )

• Quick Maintanance Load Test Method ( QM Test )

• Swedish Cyclic Test Method ( SC Test )

Gambar 2.20 Load test yang digunakan dengan metoda Kentledge (Kubus Beton) (ASTM D3689-

83, 1989)

Pada proyek PLTGU Tambak Lorok ini, pihak pelaksana mengggunakan prosedur yang

dianjurkan oleh ASTM yaitu Cyclic Loading Test.

Adapun ketentuan dari Cyclic Loading Test adalah sebagai berikut:

• Setelah beban yang diberikan sama dengan 50, 100, dan 150% dari beban desain,

biarkan masing-masing beban tersebut untuk 1 jam dan angkat kembali beban

dengan pengurangan yang sama besarnya dengan pada saat increment pemberian

beban. Biarkan beban selama 20 menit untuk tiap tahap pengurangannya.

• Cyclic loading procedure, loading-unloading

Cycle 1: 0% 25% 50% 25% 0%

Cycle 2: 0% 50% 75% 100% 75% 50% 0%

LAPORAN TUGAS AKHIR Hal. II - 29

Page 30: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

Cycle 3: 0% 50% 100% 125% 150% 125% 100% 50% 0%

Cycle 4: 0% 50% 100% 150% 175% 200% 150% 100% 50%

• Setelah beban yang diberikan diangkat semua untuk tiap tahapnya, berikan kembali

beban dengan increment sebesar 50% dari beban desain sampai dengan sebesar tahap

sebelum diangkat. Jarak antar increment tersebut adalah selama 20 menit. Kemudian

beban tambahan untuk tahap berikutnya diberikan sesuai dengan prosedur yang telah

diuraikan pada bagian sebelumnya.

• Setelah beban total yang disyaratkan telah diberikan, tahan dan angkat beban tersebut

seperti yang telah diuraikan pada bagian sebelumnya.

2.5.3 Hasil Uji Pembebanan

Setelah uji pembebanan dilakukan di lapangan maka hasil uji pembebanan disajikan

dalam bentuk:

1. Hubungan antara Beban dengan waktu

Gambar 2.21 Contoh kurva hubungan beban dengan waktu (ASTM D3689-83, 1989)

LAPORAN TUGAS AKHIR Hal. II - 30

Page 31: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

2. Hubungan beban dan penurunan

Gambar 2.22 Contoh kurva hubungan beban dengan penurunan (ASTM D3689-83, 1989)

2.5.4 Interpretasi Hasil Uji Pembebanan

Setelah hasil uji pembebanan diperoleh maka tahap selanjutnya adalah

menginterpretasikan data dengan metoda-metoda yang biasa digunakan dalam proyek

proyek konstruksi. Metoda – metoda yang biasa digunakan untuk menginterpretasikan data

hasil uji pembebanan adalah sebagai berikut:

1. Metoda Davisson (1972)

Prosedur untuk menentukan beban ultimate menggunakan metoda ini adalah sebagai

berikut:

a. Gambarkan kurva beban - penurunan.

b. Tentukan penurunan elastis, Δ = (Qva) L / AE dari tiang dimana Qva adalah beban

yang digunakan, L adalah panjang tiang, A adalah luas potongan melintang tiang dan

E adalah modulus elastisitas tiang.

c. Gambarkan sebuah garis OA berdasarkan persamaan di atas.

d. Gambarkan sebuah garis BC yang sejajar dengan OA pada jarak sejauh dimana x =

0.15 + D /120 in, dengan D adalah diameter tiang dalam in.

e. Beban runtuh ditentukan dari perpotongan garis BC pada kurva beban-penurunan.

LAPORAN TUGAS AKHIR Hal. II - 31

Page 32: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

Gambar 2.23 Kurva interpretasi beban dengan penurunan metoda Davisson (Davisson, 1972)

2. Metoda De Beer

Prosedur untuk menentukan beban ultimate menggunakan metoda ini adalah sebagai

berikut:

a. Plot hubungan beban-penurunan dalam skala logaritma

b. Harga pada item a akan membentuk 2 garis lurus

c. Beban runtuh didefinisikan sebagai beban yang terletak pada perpotongan dua garis

lurus tersebut

Gambar 2.24 Contoh kurva interpretasi beban dengan penurunan metoda De Beer (de Beer, 1967)

LAPORAN TUGAS AKHIR Hal. II - 32

Page 33: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

2.6 Analisis Dinamik Dengan Program GRL WEAP87

WEAP 87 merupakan kepanjangan dari Wave Equation Analysis of Pile Driving. WEAP

87 merupakan solusi dari persamaan gelombang yang dikembangkan secara numerik oleh

Goble Rausche Likins (GRL) and Associates, Inc., (1976). WEAP 87 merupakan

pengembangan dari teori perambatan gelombang yang diturunkan oleh Smith. Program ini

mampu memasukkan data hammer yang baru dan modern. GRL WEAP 87 merupakan

program yang dapat mensimulasikan sebuah pondasi tiang yang mengalami impak dari

proses pemancangan.

Dengan menggunakan program GRL WEAP87 dihitung:

1. Jumlah pukulan (jumlah pukulan per satuan panjang dari permanen set) untuk

mencapai tahanan ultimate tertentu.

2. Tegangan aksial di dalam tiang yang berkaitan dengan hitungan jumlah pukulan.

Gambar 2.25 Sistem Pemancangan menggunakan hammer (GRL, 1988)

LAPORAN TUGAS AKHIR Hal. II - 33

Page 34: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

Gambar 2.26 Pile Drivings Models (GRL, 1988)

Berdasarkan hasil program komputer GRL WEAP87 dapat dicari:

1. Daya dukung tiang saat pemancangan.

2. Tegangan maksimum selama pemancangan tiang.

3. Jumlah pukulan yang diperkirakan jika daya dukung statik aktual dari tiang diketahui

(contoh: dari analisis tanah statik).

2.6.1 Tahapan pengoperasian dari program komputer GRL WEAP87

Ada 2 (dua) cara yang dapat dilakukan untuk menjalankan atau mengoperasikan

program GRL WEAP87. Kedua metoda untuk memasukkannya seperti berikut ini:

1. Dengan memasukkan data yang diminta pada menu yang tersedia.

2. Dengan menggunakan editor (DOS Editor atau NC Editor) dengan menuliskan data

masukkan dalam file dengan jenis batch.

Setelah pemasukkan input selesai perlu dilakukan pengeditan pada files.dat untuk nama

input yang kita berikan dan nama hasil yang kita inginkan.

Tabel berikut sebagai contoh nama masukkan adalah A1.IN dan nama keluaran adalah

A1.OUT kemudian langkah terakhir adalah menjalankan program WEAP87.

LAPORAN TUGAS AKHIR Hal. II - 34

Page 35: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

Tabel 2.8 Proses PengeditanNama Input dan Output Pada Program WEAP87

0 <---------- USE I4 FORMAT TO ENTER ICOL IN THIS PLACE

C:\WEAP87\A1.IN <-- NAME OF DATA INPUT FILE

C:\WEAP87\A1.OUT <-- NAME OF OUTPUT FILE

C:\WEAP87\HAMMER.DAT <-- NAME OF HAMMER DATA FILE

C:\WEAP87\FILE21.DAT <-- NAME OF BEARING GRAPH OUTPUT FILE

C:\WEAP87\FILE22.DAT <-- NAME OF VARIABLES VS TIME OUTPUT FILE

2.6.2 Data Masukan program WEAP87

Keterangan berikut merupakan data masukan yang harus diisikan untuk menghasilkan

Output:

Baris 1

Tittle = Judul dari data yang diisikan

Baris 2

IOUT = Hasil keluaran yang dikehendaki

= -100 Merupakan minimum keluaran, hanya menyediakan model yang

sederhana dan tabel akhir

= 0 Merupakan pilihan yang dianjurkan, terdapat informasi-informasi

yang diperlukan tanpa harus mengkonsumsi jumlah kertas

= 1 Tambahan dari pilihan 0, juga terdapat dua gaya pada hammer dan

tiga belas pada tiang yang merupakan fungsi dari waktu untuk tiap -

tiap Rult.

= 2 Sama seperti pilihan 1 dengan tambahan informasi kecepatan

= 3 Sama seperti pilihan 1 dengan tambahan informasi tegangan

= 4 Sama seperti pilihan 1 dengan tambahan informasi percepatan

= 5 Sama seperti pilihan 1 dengan tambahan informasi perpindahan

= 6 Sama seperti pilihan 1 dengan tambahan informasi seperti tekanan,

pembakaran, jumlah gaya tahanan, kecepatan dan perpindahan

LAPORAN TUGAS AKHIR Hal. II - 35

Page 36: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

IHAMR = 0 Masukkan informasi hammer satu persatu

>0 Hanya memasukkan kode dari hammer yang dipergunakan sesuai data

file hammer.

N = 0.1 Jumlah dari segmen tiang, pada pilihan ini panjang elemen dihitung

secara otomatis, biasanya sekitar (1.65m)

>1 Memasukkan jumlah segmen yang diinginkan

IPERCS = 1-100 Nilai skin friction sebenarnya untuk perhitungan Rult

ITYS = 0 Memasukkan distribusi skin friction yang diinginkan

Baris 3

CAPW = Berat dari semua elemen yang terletak diantara hammer dan tiang.kips

ACAP = Luas dari hammer cushion, jika tidak diisikan dianggap ACAP =

113in 2

ECAP = Modulus elastisitas dari hammer cushion, jika tidak diisikan maka

Dianggap ECAP = 400ksi

TCAP = Tebal dari hammer cushion, in.

CORCAP = Koefisien restitusi dari hammer cushion, jika tidak diisikan maka

dianggap menggunakan default CORCAP= 1. Umumnya bila tidak

ada data yang ikehendaki maka direkomendasikan CORCAP= 0.8

DRCAP = Nilai round-out deformation (compressive slack) dari hammer cushion

yang besarnya diambil 0.001ft (3mm)

Baris 4

ACUS = Luas dari pile cushion, in 2

ECUS = Modulus elastisitas dari pile cushion, jika tidak diisikan maka

dianggapbahan dari plywood, ECUS= 30 ksi

TCUS = Tebal dari pile cushion, in

CORCUS = Koefisien restitusi dari pile cushion, jika tidak diisikan maka dianggap

CORCUS= 1

DRCU = Nilai round-out deformation dari piel cushion yang besarnya diambil

0.01ft (3mm)

LAPORAN TUGAS AKHIR Hal. II - 36

Page 37: BAB II TINJAUAN PUSTAKA - · PDF file2.3. Kapasitas Daya Dukung Aksial . Kapasitas daya dukung aksial statik dapat dihitung dengan persamaan-persamaan kapasitas daya dukung statik

BAB II TINJAUAN PUSTAKA

 

Baris 5

XPT = Panjang tiang, ft.

AP(1) = Luas cross-section tiang, in 2 .

EP(1) = Modulus elastisitas tiang, ksi.

WP(1) = Berat spesifik tiang, lbs/ ft 3 .

CORPTP = Koefisien restitusi dari ujung tiang atas. Nilainya adalah 0.85 untuk

tiang dari baja, 0.5 untuk tiang kayu. Sedangkan untuk defaultnya

adalah 1 untuk tiang dari beton yang menggunakan pile cushion.

DRPT = Nilai round-out deformation (compressive slack) dari ujung atas tiang

yang besarnya diambil 0.01ft (3mm)

Baris 6

QS(1) = Tahanan quake untuk sisi, biasanya= 0.1 in

QS(N1) = Tahanan quake pada ujung, biasanya= 0.1 in

SJ(1) = Tahanan damping untuk sis

SJ(N1) = Tahanan damping untuk ujung.

LAPORAN TUGAS AKHIR Hal. II - 37