b diketone

50
Coordination Chemistry Reviews 210 (2000) 279–328 Group 2 element b-diketonate complexes: synthetic and structural investigations David J. Otway, William S. Rees Jr * School of Chemistry and Biochemistry, School of Materials Science and Engineering and the Molecular Design Institute, Georgia Institute of Technology, Atlanta, GA 0332 -0400, USA Received 7 June 1999; accepted 20 October 1999 Contents Abstract .................................................... 280 1. Introduction ............................................... 280 2. Syntheses of b-diketone ligands .................................... 281 2.1. Formation of b-diketones via sulfur extrusion ......................... 282 www.elsevier.com/locate/ccr Abbre6iations: Dec, decomposes; Des, desolvates; Di, diglyme, CH 3 O(CH 2 CH 2 O) 2 CH 3 ; b-Diket, b-diketonate; diki-, Bu t COCHCN{(CH 2 CH 2 O) 2 Me}Me; Dme, dimethoxyethane, monoglyme, CH 3 OCH 2 CH 2 OCH 3 ; Dmf, dimethylformamide; Dptriki-, Bu t COCHCN{(CH 2 CH 2 O) 3 Me}Bu t ; DSC, differential scanning calorimetry; EI + , electron impact, positive mode (mass spectrometry condition); Et 2 O, diethylether; EtOH, ethanol, C 2 H 5 OH; FAB + , fast atom bombardment, positive mode (mass spectrometry condition); Hacac, 2,4-pentanedione, acetylacetone; HOAr N , HOC 6 H 3 -2,6-(CH 2 NMe 2 ) 2 ; Hbdmap, bisdimethylaminopropanol; Hdfhd, 1,1,1,2,2,6,6,7,7,7-decafluoro-3,5-heptanedione; Hdmppd, 2,2-dimethyl-4-phenyl-3,5-pentanedione; Hdnppd, 1,3-di(dinitro)phenyl-1,3-propanedione; Hdppd, 1,3- diphenyl-1,3-propanedione; Hept, heptaglyme, CH 3 O(CH 2 CH 2 O) 7 CH 3 ; Hfod, 1,1,1,2,2,3,3-heptafluoro- 7,7-dimethyl-4,6-octanedione; Hhfac, 1,1,1,5,5,5-hexafluoro-2,4-pentanedione, hexafluoroacetlyaceto- nate; Hmteta, Me 2 NCH 2 CH 2 N{Me}CH 2 CH 2 N{Me}CH 2 CH 2 NMe 2 , hexamethyl-triethylenediamine; Hofhd, 1,1,1,2,2,6,6,6-octafluoro 3,5-hexandione; Hpta, pivaloyltrifluoroacetylacetonate or 1,1,1-tri- fluoro-5,5-dimethyl-2,4-hexanedione; Hpfdmhd, 1,1,1,2,2-pentafluoro-6,6,-dimethyl-3,5-heptanedione; Htclac, 1,1,1-trichloro-2,4-pentanedione; Htdfnd, 1,1,1,2,2,3,3,7,7,8,8,9,9,9-tetradecafluoro-4,6-nonane- dione; Htfac, 1,1,1-trifluoro-2,4-pentanedione, trifluoroacetlyacetonate; Htmhd, 2,2,6,6-tetramethyl-3,5- heptanedione, dipivaloylmethane; m/e +, mass/charge ratio, (mass spectrometry condition); MOCVD, metallorganic chemical vapor deposition; m.p., melting point; NEt 3 , triethylamine; ns, not soluble; Ph, phenyl group; Piv, pivalic acid; Pmdeta, Me 2 NCH 2 CH 2 N{Me}CH 2 CH 2 NMe 2 , pentamethyldiethylene- triamine; Py, pyridine; S, soluble; Sls, slightly soluble; STA, simultaneous thermal analysis; Tet, tetraglyme, CH 3 O(CH 2 CH 2 O) 4 CH 3 ; TGA, thermogravimetric analysis; Thf, tetrahydrofuran; Tmeda, tetramethlyethylenediamine; Tri, triglyme, CH 3 O(CH 2 CH 2 O) 3 CH 3 ; YBCO, yttrium barium copper oxid. * Corresponding author. Tel.: +1-404-8944049; fax: +1-404-8941144. E-mail addresses: [email protected] (W.S. Rees Jr); [email protected] (D.J. Otway) 0010-8545/00/$ - see front matter © 2000 Elsevier Science B.V. All rights reserved. PII: S0010-8545(00)00360-X

Transcript of b diketone

Page 1: b diketone

Coordination Chemistry Reviews210 (2000) 279–328

Group 2 element b-diketonate complexes:synthetic and structural investigations

David J. Otway, William S. Rees Jr *School of Chemistry and Biochemistry,

School of Materials Science and Engineering and the Molecular Design Institute,Georgia Institute of Technology, Atlanta, GA 0332-0400, USA

Received 7 June 1999; accepted 20 October 1999

Contents

Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2801. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2802. Syntheses of b-diketone ligands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

2.1. Formation of b-diketones via sulfur extrusion. . . . . . . . . . . . . . . . . . . . . . . . . 282

www.elsevier.com/locate/ccr

Abbre6iations: Dec, decomposes; Des, desolvates; Di, diglyme, CH3O(CH2CH2O)2CH3; b-Diket,b-diketonate; diki-, ButCOCHCN{(CH2CH2O)2Me}Me; Dme, dimethoxyethane, monoglyme,CH3OCH2CH2OCH3; Dmf, dimethylformamide; Dptriki-, ButCOCHCN{(CH2CH2O)3Me}But; DSC,differential scanning calorimetry; EI+, electron impact, positive mode (mass spectrometry condition);Et2O, diethylether; EtOH, ethanol, C2H5OH; FAB+, fast atom bombardment, positive mode (massspectrometry condition); Hacac, 2,4-pentanedione, acetylacetone; HOArN, HOC6H3-2,6-(CH2NMe2)2;Hbdmap, bisdimethylaminopropanol; Hdfhd, 1,1,1,2,2,6,6,7,7,7-decafluoro-3,5-heptanedione; Hdmppd,2,2-dimethyl-4-phenyl-3,5-pentanedione; Hdnppd, 1,3-di(dinitro)phenyl-1,3-propanedione; Hdppd, 1,3-diphenyl-1,3-propanedione; Hept, heptaglyme, CH3O(CH2CH2O)7CH3; Hfod, 1,1,1,2,2,3,3-heptafluoro-7,7-dimethyl-4,6-octanedione; Hhfac, 1,1,1,5,5,5-hexafluoro-2,4-pentanedione, hexafluoroacetlyaceto-nate; Hmteta, Me2NCH2CH2N{Me}CH2CH2N{Me}CH2CH2NMe2, hexamethyl-triethylenediamine;Hofhd, 1,1,1,2,2,6,6,6-octafluoro 3,5-hexandione; Hpta, pivaloyltrifluoroacetylacetonate or 1,1,1-tri-fluoro-5,5-dimethyl-2,4-hexanedione; Hpfdmhd, 1,1,1,2,2-pentafluoro-6,6,-dimethyl-3,5-heptanedione;Htclac, 1,1,1-trichloro-2,4-pentanedione; Htdfnd, 1,1,1,2,2,3,3,7,7,8,8,9,9,9-tetradecafluoro-4,6-nonane-dione; Htfac, 1,1,1-trifluoro-2,4-pentanedione, trifluoroacetlyacetonate; Htmhd, 2,2,6,6-tetramethyl-3,5-heptanedione, dipivaloylmethane; m/e+ , mass/charge ratio, (mass spectrometry condition); MOCVD,metallorganic chemical vapor deposition; m.p., melting point; NEt3, triethylamine; ns, not soluble; Ph,phenyl group; Piv, pivalic acid; Pmdeta, Me2NCH2CH2N{Me}CH2CH2NMe2, pentamethyldiethylene-triamine; Py, pyridine; S, soluble; Sls, slightly soluble; STA, simultaneous thermal analysis; Tet,tetraglyme, CH3O(CH2CH2O)4CH3; TGA, thermogravimetric analysis; Thf, tetrahydrofuran; Tmeda,tetramethlyethylenediamine; Tri, triglyme, CH3O(CH2CH2O)3CH3; YBCO, yttrium barium copper oxid.

* Corresponding author. Tel.: +1-404-8944049; fax: +1-404-8941144.E-mail addresses: [email protected] (W.S. Rees Jr); [email protected] (D.J. Otway)

0010-8545/00/$ - see front matter © 2000 Elsevier Science B.V. All rights reserved.PII: S0010-8545(00)00360-X

Page 2: b diketone

280 D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

2.2. b-Diketones from a,b-epoxyketones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2822.3. b-Diketones from a-diazo-b-hydroxyketones . . . . . . . . . . . . . . . . . . . . . . . . . . 2822.4. b-Diketones from acyl cyanides and lithium enolates. . . . . . . . . . . . . . . . . . . . . 2822.5. b-Diketones via boroxazines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2822.6. b-Diketones utilizing organocopper catalysts. . . . . . . . . . . . . . . . . . . . . . . . . . 2822.7. b-Diketones from the acylation of ketones with anhydrides . . . . . . . . . . . . . . . . . 2832.8. b-Diketones from the acylation of ketones by acid chlorides . . . . . . . . . . . . . . . . 2832.9. b-Diketones from the acylation of ketones by esters (Claissen condensation) . . . . . . . 2832.10. b-Diketones from the amines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

3. General syntheses of metal b-diketonates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2843.1. Direct routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2843.2. From metal alkoxides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2843.3. Metathesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

4. General reactivity of metal b-diketonates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2844.1. Electrophilic substitution reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2844.2. Adduct formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

5. Coordination modes observed in metal b-diketonates . . . . . . . . . . . . . . . . . . . . . . . 2856. Group 2 element b-diketonate complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2877. General discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2888. Beryllium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2919. Magnesium and calcium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

10. Strontium compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30711. Barium compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

11.1. Large heteroleptic clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31611.2. Infinite chains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31611.3. Homoleptic tetramers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31611.4. Dimers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32311.5. Monomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

Abstract

An overview of the Group 2 element b-diketonates is presented, including their synthesis,structural characteristics, physical properties, and some potential applications. © 2000Elsevier Science B.V. All rights reserved.

Keywords: Group 2 element; b Diketonate; Synthetic and structural investigations; MOCVD

1. Introduction

Metal b-diketonates M(RCOCHCOR)x (where R, alkyl; aryl etc., and the Rgroups are not necessarily equivalent) are amongst the most widely studied coordi-nation compounds and their chemistry has been investigated for most of the metalsin the periodic table [1]. The coordination tendencies of the ligand (i.e. to form

Page 3: b diketone

281D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

chelates with the metal and delocalize the negative charge over a ‘metallocycle’) arewell established and a large number of publications have appeared [2,3]. Variationsof the R groups often influence the properties of this class of compounds. Apartfrom the bonding and structural aspects associated with these complexes, the abilityof these ligands to ‘wrap-up’ a variety of metals has provided inorganic chemistswith examples of compounds of electropositive metal ions which portray covalentcharacteristics, i.e. solubilities in organic solvents and high volatilities. These specialcharacteristics have been extensively exploited in the past for solvent extraction andgas–liquid chromatographic techniques [4,5]. Interest in metal b-diketonate com-plexes also arises from their application as contact shift reagents for the enhancedresolution of non-magnetic resonance (NMR) spectra, in laser technology and inthe polymer industry [1]. The presence of trace quantities of b-diketonate complexesin fuels [6–8] has also aroused interest. Several reviews have been published in thisarea, [9–13] as well an excellent book by Bradley, Mehrotra and Gaur [1].

More recently, the quest for the production of high quality oxide thin films bymetal organic chemical vapor deposition (MOCVD) has led workers to exploreb-diketonate complexes as potential molecular precursors [149]. In general, suchprecursors must be volatile, have sufficient stability to transport to the depositionsite, and decompose cleanly to give the desired material. An additional advantageof the metal b-diketonate complexes is that they often exhibit greater hydrolyticstability than their respective alkoxide counterparts. A range of b-diketonatecomplexes of both main group and transition metals have been used to deposit filmsof metals, [14] metal oxides, [14] metal sulfides, [15] and metal fluorides [14].However, the deposition of Group 2 element containing oxides, and sulfides, hasbeen hampered by the relatively poor volatilities and thermal stabilities of theGroup 2 element b-diketonate precursors. Consequently, this has led to a renais-sance within the area, partially due to their potential utility as MOCVD precursorsfor Group 2 element containing electronic materials such as YBa2Cu3O7−x, [16–24]SrS:Ce, [25] Ba1−xSrxTiO3, [26–28] and this area has experienced rapid develop-ment in the last 3 years. Thus, the scope of this review article is that of the Group2 element b-diketonates, their synthesis, structural characteristics, physical proper-ties, and some potential. As of now, there have been no reports of radiumcomplexes with b-diketones synthesized.

2. Syntheses of b-diketone ligands

b-Diketones are capable of keto–enol tautomerism, the tautomers exist inequilibrium with each other in solution (Fig. 1), and structurally they possess a cisconfiguration and syn conformation. Under appropriate conditions the enolichydrogen atom of the b-diketone may be replaced by a metal cation to produce asix-membered metallocycle, thereby shifting the keto–enol equilibrium in favor ofthe enol form. The position of the keto-enol equilibrium for each differs accordingto the electronic characteristics of the substituents. Some of the more commonlyutilized syntheses to b-diketone ligands are described below.

Page 4: b diketone

282 D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

Fig. 1. Keto–enol tautomerism in b-diketones.

2.1. Formation of b-diketones 6ia sulfur extrusion

Thioesters containing a b-keto group in the alkyl position can be converted tob-diketones by treatment of the ligand with a tertiary phosphine under basicconditions [29]. The starting thioesters themselves may be prepared by the reactionbetween a thiol acid and an a-haloketone [30].

2.2. b-Diketones from a,b-epoxyketones

b-Diketone ligands can be prepared by heating a,b-epoxyketones at 80–140°C intoluene with small amounts of a tetrakis(triphenylphosphine)palladium catalyst andDPPE [31]. This reaction is a rearrangement of a single ring to a single site ofunsaturation.

2.3. b-Diketones from a-diazo-b-hydroxyketones

a-Diazo-b-hydroxyketones, obtained by the condensation of aldehydes with1-diazo-1-lithioacetone, can be transformed into the corresponding b-diketoneligands with a rhodium(II) acetate catalyst [32].

2.4. b-Diketones from acyl cyanides and lithium enolates

b-Diketones may be prepared by the reaction of acyl cyanides with ketoneenolates, which are formed using lithium diisopropylamide as a base [33].

2.5. b-Diketones 6ia boroxazines

Enol boranes readily undergo cycloaddition with nitriles under mild conditions toproduce boroxazines, which may then undergo hydrolysis to the correspondingb-diketone ligands [34]. This reaction is applicable to a wide variety of R groups,and readily allows for the synthesis of either centrally substituted or unsubstitutedb-diketones.

2.6. b-Diketones utilizing organocopper catalysts

Selective C-acylation can usually be achieved by quenching organocuprate-gener-ated enolates with acid chlorides using ether as a solvent [35]. C-, O-diacylated

Page 5: b diketone

283D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

products are often obtained as well, but these rapidly undergo hydrolysis to give theb-diketone.

2.7. b-Diketones from the acylation of ketones with anhydrides

Ketones may be acylated by anhydrides with a BF3 catalyst, to give a b-diketone.With unsymmetrical diketones, acylation usually occurs on the more highly substi-tuted side. The actual product is a complex containing BF2

−, which can bedecomposed by aqueous sodium acetate to give the b-diketone.

2.8. b-Diketones from the acylation of ketones by acid chlorides

A ketone having an a-hydrogen may be acylated with an acid chloride in pyridineto form a b-diketone.

2.9. b-Diketones from the acylation of ketones by esters (Claissen condensation)

A predominant route to b-diketones is the acylation of ketones by esters. Therelatively low reactivity of the ester carbonyl group generally means that alkali-metal hydroxides or hydrides must be utilized as condensing reagents. Althoughmany ketones may be acylated with esters, there are some limitations to thereaction. Ketones which possess an a-methylene group can usually be acylated atthat position with oxalic or formic esters, and sometimes with ethyl acetate, phenylor methyl benzoate, and certain other esters [36,37]. In the case of acetone, whichhas an a-methyl group on both sides, there is a tendency towards acylation of bothmethyl positions to yield an a,b,g-triketone.

2.10. b-Diketones from the amines

Recently (1995), there was a report on the synthesis of a range of b-diketones bySokolov et al. [38]. They react acetylinic ketones with amines, then follow this byhydrolysis of the resulting aminovinylketones to give some 1,3-diketones. The yieldsare relatively high, and for those diketones that are difficult to synthesize via aClaissen condensation, this may be considered an alternative route.

All of the above methods may be utilized to prepare a variety of b-diketones;however, the Claissen condensation reaction is generally the method of choicebecause of its overall efficiency. It requires only one step and provides forreasonably high yields (60–80%). The starting materials are also readily obtainable.In comparison to the other methods available, which require multiple steps, moreexpensive starting materials and lower overall yields, Claissen condensation reac-tions are, in general, able to yield the desired compounds in a cost-effective (bothtime and money) manner. Virtually all the b-diketone ligands described herein maybe purchased from a commercial vendors (e.g. Lancaster Synthesis, Aldrich), whilstthe exceptions to this rule are synthesized via Claissen condensation reactions.

Page 6: b diketone

284 D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

3. General syntheses of metal b-diketonates

3.1. Direct routes

The direct syntheses of metal b-diketonates may be achieved from a number ofsources (M, MOx, MClx, M(CO3)x, MHx ; see Mehrotra et al. [1] for an overview ofthese syntheses). Similar constraints may be placed on the source used as for thesynthesis of metal alkoxides.

3.2. From metal alkoxides

Metal alkoxides will undergo exchange reactions with b-diketones in a stoichio-metric fashion. The advantage of this synthetic route over direct methods is that theisolation of very pure materials is rendered possible if enough care is taken in thepreparation of the starting metal alkoxide materials (i.e. the use of anhydrous,oxygen free solvents and rigorous handling techniques), e.g. [39,40].

[Ti(OPri)4]+n(b-diket) �hexane

[(PriO)4−nTi(b-diket)n ]x+nPriOH

Thus, it is possible to synthesize a range of materials via this route with theirproperties tailored as required.

3.3. Metathesis

For example.

TiCl4+4KL�4KCl+TiL4

4. General reactivity of metal b-diketonates

There are a number of chemical reactions that may occur with metal b-diketo-nates and again these have been reviewed by Mehrotra et al. [1]. Examples of someof these reactions are summarized below.

4.1. Electrophilic substitution reactions

A wide variety of ligands will react with the 3-carbon atom of a six-memberedchelate ring, substituting the proton with an electrophile, for example Fig. 2 (whereX+, Cl; Br; NO2; NCS; COCH3; COOH etc.).

Fig. 2. Electrophilic substitution reactions of metal b-diketonates.

Page 7: b diketone

285D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

A complete discussion of these reactions may be found in [1] together withconditions and work up details.

4.2. Adduct formation

Many different types of Lewis base ligands will coordinate to a metal b-diketo-nate complex and these reactions have shown to help to break down the degree ofoligomerization of some of the higher coordinate metals e.g. Groups 1, 2 and thelanthanides [41].

Reactions of this type are known for most metal chelates with a wide range ofmaterials reported to date for most of the metals in the periodic table. This strategyhas proved to be very useful in the further ‘tailoring’ of such chelate systems withrespect to their usage as molecular precursors. This strategy only works when thecharge on the metal is such that 2× (charge)Boptimum coordination number.When it is not, then the latent Lewis acidity of the metal supplies the energy foradduct formation. Both entropy and enthalpy play a large role herein.

5. Coordination modes observed in metal b-diketonates

As with the metal alkoxides, a wide range of coordination modes has beenobserved for b-diketonate ligands in metal complexes. The degree of bridging isdetermined by the metal, the steric bulk of the ligand itself and whether or not anyLewis bases are present. Thus for instance, [Mn(acac)3] [42] is a monomer in thesolid state with purely chelating b-diketonate ligands whereas [Pr(tmhd)3]2 (eventhough the bulky b-diketonate tetramethyl-3,5-heptanedionate, tmhd, is used) is adimeric solid with chelating and bridging tmhd ligands [43].

In complexes with large atomic radii metals, like caesium, strontium or barium,a number of bonding modes of the b-diketonate ligands may be observed. Mostresearchers in this field have reached agreement that the predominate interatomicinteractions in these complexes are electrostatic (i.e. ionic) in nature, with currentdata lending little support for covalency in metal ligand bonding. Nevertheless, it isindispensable in examining the complexes discussed herein to be capable of depict-ing interatomic connectivity’s. Thus, as with the broad area of boron hydrides, onedoes not associate each ‘line of connectivity’ with a localized two-electron bond.The Lewis acidity and consequent electron deficiency of most metal centers in theirb-diketonate complexes enables the metals to form oligomers through the bridgingproperties of the b-diketonate ligand. The ability of these ligands to bridge metalcenters arises from the fact that L− utilizes only one each lone pair electron peroxygen atom in primary bonding, and therefore has one each lone pair electron peroxygen atom available for employment in the secondary interaction. The degree ofoligomerization is dependent on a number of factors, including.1. The size of the metal. The larger the ionic radii of the metal, the higher the

density of coordination sites around it, and thus bridging b-diketonate linkagesare favored over terminal ones.

Page 8: b diketone

286 D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

2. The more electron deficient metals encourage greater oligomerization. There-fore, electropositive metals often form large aggregates.

3. The steric effects of the b-diketonate ligand are important.The heavier Group 2 metals have low charge density ratios, and they have a

pronounced tendency to expand their coordination sphere. This can give rise toaggregates via the bridging of coordinated b-diketonate ligands. The averagecoordination numbers observed for strontium and barium complexes are 6–8, butboth metals have been observed to form complexes with a coordination number aslow as 3 (for M�N only bonded systems, not M�O) and as high as 9 (for Sr) and12 (for Ba).

b-Diketonates, with their ability to chelate to the metal center, prove to be veryadept at also bridging (via the lone pairs on the oxygen atoms) to other metalcenters to help to fill their coordination spheres. A comprehensive study of some ofthese complexes has revealed six main coordination modes for such ligands andthey are illustrated in Fig. 3. The bonding modes 4, 5 and 6 are more rare than thefirst three, and are only usually observed in large aggregates of metals with a largecoordination sphere, e.g. [Ba4(tmhd)8] [44–47].

As noted above this aggregation may be broken down by the addition of a Lewisbase.

As mentioned above, an extensive overview of the literature published in 1978has been undertaken by Mehrotra et al. [1] in his book and the reader is referredto this publication for further details of early Group 2 element b-diketonatecomplexes.

Fig. 3. Bonding modes of metal b-diketonates.

Page 9: b diketone

287D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

6. Group 2 element b-diketonate complexes

In general, the heavier Group 2 element b-diketonate compounds are oligomericor polymeric, which may account for their decreased volatilities. They readily formaddition compounds with Lewis bases resulting in a decrease in the degree ofoligomerization/polymerization. This point is particularly significant, since thecorresponding Group 2 element alkoxide derivatives prefer to expand their coordi-nation number through alkoxy bridging interactions rather than by addition of aLewis base; [48] this may be due to the chelate effect of the b-diketonate ligand.Furthermore, if sterically encumbered ligands, such as tmhd or hexafluoro-2,4-pen-tanedionate (hfac), are used in association with Lewis bases then discrete molecularcrystalline solids may be obtained.

The basic groundwork in the area was laid out by Hammond in the 1960’s, [49]with the syntheses of the compounds ‘M(tmhd)2’ and ‘M(dppd)2’. These com-pounds are placed in quotation marks since they were isolated from ethanolicsolutions. They are probably ethanol solvates or may be even more complex {see,for example, the recent complex [Ba5(O)(tmhd)5(Htmhd)4(OH)3] (Fig. 4) synthesizedfrom Ba(OH)2 in water} [50,51]. Mass spectrometric studies of the simple[M(acac)2]n compounds were carried out by MacDonald et al. [52] in the late 1960’sand the gas chromatographic properties of the [M(tmhd)2]n compounds were alsostudied at this time [53]. A number of these compounds have been structurallycharacterized and will be discussed later.

Fig. 4. Molecular structure of [Ba5(O)(tmhd)5(Htmhd)4(OH)3] [50,51]. The central barium is sixcoordinate and the other barium centers are seven coordinate. The molecule’s overall geometry may bebest described as a distorted square based pyramid.

Page 10: b diketone

288 D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

With the discovery of superconducting metal oxides by Bednorz and Muller in1986, [54] the area of metal oxide precursor research was revitalized. In the periodfrom 1988 onwards, a steadily increasing amount of work was published onchelates of the Group 2 elements, especially those involving barium [55]. Thesituation in late 1991 was summed up thus.

‘Although many alkaline-earth metal b-diketonate chelates were synthesized adecade or two ago, these compounds need further characterization with respect totheir structures, volatilities and thermal stabilities, particularly in the light of theirgreat importance to the MOCVD of superconducting films’ [50,51].

Thus in the following few years, a greatly increasing number of publications haveseen print in this rapidly expanding area, as it is one of great current interest tochemists and materials scientists alike.

7. General discussion

The synthesis of Group 2 element chelates has created numerous problems forresearchers in this area of chemistry for a number of years. A typical problem(mentioned above) is the contamination of the products by water (or other Lewisbases), as the unadducted complexes are very prone to the uptake of coordinatingsolvents. The reason for this is the large atomic radii of the metal 2+ ions, andtheir associated Lewis acidity. Thus, for example the synthesis of ‘Ba(tmhd)2’ fromBa(OH)2 and Htmhd in water, actually gave the compound[Ba5(O)(tmhd)5(Htmhd)4(OH)3] as a final product, [50,51] with the formation of anoligomeric species to satisfy the metals coordinative saturation (Fig. 4). Indeed, thecommercially available compound ‘Ba(tmhd)2’ is in fact likely to be this hydratedoligomeric material. The inclusion of water has caused numerous problems whenthe material is utilized as a MOCVD precursor, including higher than normalsublimation temperatures, poor volatility (mass transport), and high residues (dueto the decomposition of the material before sublimation) [48,56].

If reactions of this type are carried out in rigorously non-aqueous media (e.g.utilizing the metal with Htmhd in dry pentane) and under anaerobic conditions inthe presence of a mono or bidentate Lewis base (e.g. Et2O, [57] MeOH, [58–60]bipy, [61] NH3, [62] o-phen, [63]), then it is possible to obtain products with goodpurities and without water contaminants. The presence of the aforementionedLewis bases have been shown, by X-ray structural analysis, to give rise to discretedimeric molecules (e.g. Fig. 5).

Similarly, if a multidentate Lewis base is utilized (with at least four possiblebinding sites for the heavier metals), the oligomerization seen above in Fig. 4 maybe further reduced to give monomeric species of the form [M(tmhd)2(L)] (where M,Sr; and Ba; L, triglyme; tetraglyme; Fig. 6 shows the structure of one of thesemolecules) [64–71].

If the multidentate Lewis base (glyme) ligand utilized contains three oxygens,dimeric compounds may be observed, e.g. [Ba(tmhd)2(di)]2 (made under anaerobicconditions, Fig. 7) and [Sr(tmhd)2(di)(m-H2O)]2 (formed via the fortuitous incorpo-ration of water into the anhydrous complex) [72–75].

Page 11: b diketone

289D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

Fig. 5. Molecular structure of the centrosymmetric dimer [Ba(tmhd)2(NH3)2]2 [62]. Each barium centeris eight coordinate.Fig. 6. Molecular structure of [Ba(tmhd)2(tet)] [70,71]. The barium center is nine coordinate with ageometry best described as a distorted dodecahedron with an additional oxygen intruding on one edge.

Page 12: b diketone

290 D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

Fig. 7. Molecular structure of the centrosymmetric dimer [Ba(tmhd)2(di)]2. Each barium center is eightcoordinate with a distorted square antiprismatic geometry [74,75].Fig. 8. Molecular structure of Be(acac)2.

These glyme based complexes may be synthesized via addition of a glyme ligandto one of the homoleptic, anhydrous b-diketonate complexes described later in thischapter under anaerobic conditions or, as shown more recently, via a water basedroute [76]. The latter reaction proceeds with the total removal of any coordinatedwater for the triglyme and tetraglyme based compounds, but any water present isretained in the case of diglyme complexes.

Page 13: b diketone

291D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

If on the other hand, the reactions are worked up in the absence of any Lewisbase, via either an ethoxide starting material or by utilizing liquid ammonia as areactant, then true homoleptic species may be isolated, e.g. for calcium the trimer[Ca(tmhd)2]3 [77] is obtained and for barium, the tetramer [Ba(tmhd)2]4 [2,3]. Thus,it may be seen that quite often the final reaction products are dependent on themethodology utilized during synthesis. Those compounds that have been studiedcrystallographically are illustrated in the figures herein and in Tables 1–3, 6 and 8.Physical data for the known Group 2 element b-diketonate complexes may befound in Tables 4, 5, 7 and 9.

8. Beryllium

There are only a few Be b-diketonate complexes described in the literature (seeTable 1). Of these, the most studied complex is the acac− derivative. The synthesisof Be(acac)2 is accomplished by the reaction of BeCl2 and Hacac in aqueous alcohol[78,79]. The compound is a simple monomer in both the solid and gaseous states asshown by X-ray diffraction and Gas Phase Electron Diffraction (GPED; Fig. 8).

9. Magnesium and calcium

Crystallographic data for magnesium and calcium b-diketonate complexes maybe found in Tables 2 and 3, respectively. Physical characteristics are presented inTables 4 and 5. The magnesium and calcium 2,4-pentanedionate derivatives,[Mg(acac)2(H2O)2] [80] and [{Ca(acac)2(H2O)2} · H2O]� [85] (Fig. 9 a and b) areboth monomeric, but the calcium compound as a result of a lattice water moleculeis involved in extensive hydrogen bonding.

In contrast, the Lewis base free derivative was isolated by dehydration of thehydrated complex and was found to be a trimer [Mg3(acac)6] (Fig. 10) [82]. Theterminal magnesium ions are tris-chelated in a propeller-like fashion, while thecentral magnesium ion is surrounded by six bridging b-diketonate oxygen atoms.The molecule can be viewed as [Mg{Mg2(acac)6}].

Hollander and co-workers in the early 1970’s described a series of diphenyl-1,3-propanedionate compounds of magnesium, [83] and calcium [88] as Lewis baseadducts, e.g. [Mg(dppd)2(dmf)2] [83] (Fig. 11), and [Ca4(dppd)8(EtOH)2] [99]. Alsorecently Rees et al. [150] have synthesized and characterized [Mg(tmhd)2(Et2O)2].

The magnesium in both compounds is octahedrally coordinated to the oxygenatoms of two DMF molecules and two b-diketonate ligands. In contrast, thecalcium derivative is a tetramer, with two six coordinate and two seven coordinatecalcium ions. The structure consists of an O8 cube with the calcium ions m4-cappingat four cube faces. The authors observed the ability of the heavier Group 2 metals,calcium and strontium, to accommodate coordination numbers greater than six,whilst magnesium is restricted to an octahedral geometry.

Page 14: b diketone

292D

.J.O

tway,

W.S

.R

eesJr

/C

oordinationC

hemistry

Re6iew

s210

(2000)279

–328

Table 1Beryllium b-diketonate compoundsa

c/A, g/° Average M�O (b-diket)/A, ReferencesCompound a/A, , a/°Space group b/A, , b/°

7.762(1) 1.625 [78]P21[Be(acac)2] 13.537(2) 11.378(2)–100.76(1)–– 1.615 [79]–[Be(acac)2] (GPED) –D2d

a –Line indicates data that was not reported in the literature, or is otherwise not relevant to the compound described.Fig. 8. Molecular structure of Be(acac)2.

Table 2Magnesium b-diketonate compoundsa

Average M�O (b-diket)/A,Space group Average M�O (L)/A, Referencesa/A, , a/° b/A, , b/° c/A, , g/°Compound

11.176 (1) 2.034 2.148 (H2O) [80][Mg(acac)2(H2O)2] P2/c 10.983 (1) 5.354 (1)– –– 106.36(14)

2.491 (Cl) [81]2.09318.164(4)7.835(2) 13.303(3)[Mg(acac)Cl(H2O)2]2 P21/c2.037 (H2O)– 90.70(2) –[Mg(acac)2(H2O)2]

11.173(9) 2.082 – [82][Mg(acac)2]3 P-1 8.749(6) 10.958(6)[Mg(dppd)2(dmf)2] 2.095 (dmf)C2/c [83]16.893(3) 12.853(2) 16.927(3) 2.056

––– 117.08(5)[C14H19N2]+lMg(hfac)3]− –P21/n [84]12.775 21.268 13.594 2.06

a –Line indicates data that was not reported in the literature, or is otherwise not relevant to the compound described.

Page 15: b diketone

293D

.J.O

tway,

W.S

.R

eesJr

/C

oordinationC

hemistry

Re6iew

s210

(2000)279

–328

Table 3Calcium b-diketonate compoundsa

b/A, , c/A, , Average M�O Average M�O ReferencesCompound a/A, ,Spacegroup g/°a/° (b-diket)/A,b/° (L)/A,

[Ca(acac)2(H2O)] · H2O 2.356 (H2O)Pbnb [85]5.260 (2) 13.683 (3) 20.062 (7) 2.328– ––

2.365P-1 2.408 (EtOH) [86]15.247 (1) 13.555 (1) 14.097 (1)[Ca(dppd)2(EtOH)0.5]495.97 (1) 113.59 (1)74.64 (1)

[Ca(dppd)2(pmdeta)] 2.633 (pmdeta)C2/c [87]50.531 (7) 17.625 (5) 12.230 (3) 2.317–101.84 (1)–

1.874P-1 – [87]9.775 (3) 10.620 (3) 17.811 (2)[Ca(dppd)2(Hdppd)]92.77 (1) 94.75 (1) 107.14

– [77]2.37218.906 (5)[Ca3(tmhd)6] 19.638 (6)20.023 (4)Pca21

23.266 (9) 2.337 2.35 [77][Ca(tmhd)2(EtOH)]2 P-1 13.556 (6) 14.138 (6)80.25 (3)73.96 (2)74.07 (2)

2.362P-1 2.534 (tri) [88]10.378 (3) 11.601 (4) 15.483 (3)[Ca(tmhd)2(tri)]84.03 (3) 71.75 (2) 82.61 (3)

2.347 (OEt) [89]2.310 (Oph)20.443 (2)26.959 (7)[Ca(tmhd)(OEt)(EtOH)]4 P21/c 14.781 (2)2.404 (EtOH)– 110.60 (2) –

P-1 61 (MeOH)12.758 (6) 15.460 (7) 24.862 (14)[Ca(tmhd)(OPh)(MeOH)]4101.84 (4)91.71 (4)101.41 (4)

P-1 2.730 (N, EtOH) [91]10.222 (8) 13.925 (11) 22.331 (2)[Ca(tmhd)(OArN)(EtOH)]297.80 (5)98.11 (12) 96.10 (7)

25.114 (5)P21/c 2.322 2.354 (OR) [89]14.180 (1) 12.047 (3)[Ca2(tmhd)3-(OCH2CH2Nme2)]2

– 2.519 (N)– 100.64 (1)14.837 (8) 2.365 2.503 (tri) [92]P2/n[Ca(fod)2(tri)] 11.894 (9) 10.699 (6)

2.387 (H2O) [93]2.4189.838 (1)11.205 (1) 9.095 (1)[Ca(hfac)2(H2O)2]2 P-1– 96.19 (1) –

13.215 (4) 2.402 2.468 (tet) [88][Ca(hfac)2(tet)] P-1 9.453 (2) 12.600 (2)70.30 (2) 83.09 (2) 76.49 (2)

2.497 (hept) [94]2.390[{Ca(hfac)2} 2(hept)] 11.011 (2)P21/c 10.288 (2) 24.335 (5)– 109.66 (12) –

a –Line indicates data that was not reported in the literature, or is otherwise not relevant to the compound described.

Page 16: b diketone

294D

.J.O

tway,

W.S

.R

eesJr

/C

oordinationC

hemistry

Re6iew

s210

(2000)279

–328

Table 4Physical data for magnesium b-diketonate compoundsa

Compound Thermal data (°C) Other ReferencesSublimation temperature (°C)Melting point (°C) Solubility,e, ar, alk

– – [80]– –[Mg(acac)2(H2O)2] –[81][Mg(acac)Cl(H2O)2]2 ––– ––

–– – – –[Mg(acac)2(H2O)2]– – [82][Mg(acac)2]3 – – –

[90]– Ms[Mg(acac)2(EtOH)2]n s, sls, nsDec 258–261 –MsDec 202–206 [90]– s, s, ns –[Mg(dppd)2]n–– [83]– – –[Mg(dppd)2(dmf)2]

[84]– ––[C14H19N2]+lMg(hfac)3]− ––– Ms [90]–[Mg(hfac)2(EtOH)2]n s, s, nsDec 175–177

[90]135–137 Ms[Mg(Oet)(hfac)(EtOH]n – –s, s, slsMs55–61 [90]– s, s, sls –[Mg(hfac)2(dme)]n

– Ms [90]Liquid[Mg(hfac)2(hept)0.5]n – s, s, sls– Ms [90]Liquid[Mg(fod)2(EtOH)0.5]n – s, s, sls

[90]– Mss, s, sls[Mg(fod)2(tri)0.5]n –126–129258–261 Ms [90]140–165 s, s, s[Mg(tmhd)2]n Sublimes intact

[90]– Ms[Mg(tmhd)2(EtOH)0.5]n s, s, s83–85 –Ms104–107 [90]– s, s, s –[Mg(tmhd)2(di)0.5]n

120–123 Ms [90]– s, s, s[Mg(tmhd)2(tri)0.5]n Losses L, then sublimation

a –Line indicates data that was not reported in the literature, or is otherwise not relevant to the compound described; dec, decomposes; des, desolvates;e, ethers (such as thf, Et2O); ar, aromatic solvents such as toluene or benzene; and alk, alkanes (hydrocarbons) such as n-hexane or n-heptane; sublimationtemperatures are at 10−2 Torr or lower (reduced pressure); thermal data is at 1 atm.; subl, sublimes; L, adduct ligand; ms, mass spectrum reported; dep,deposition reported with compound data; vp, vapor pressure reported; where an is shown in the compound formula, it is denoting that the exact solid stateformulation is not known (i.e. whether the compound is a monomer, dimer etc).

Page 17: b diketone

295D

.J.O

tway,

W.S

.R

eesJr

/C

oordinationC

hemistry

Re6iew

s210

(2000)279

–328

Table 5Physical data for calcium b-diketonate compoundsa

Compound Thermal data (°C) Other ReferencesMelting point Solubility,Sublimationtemperature (°C)(°C) e, ar, alk

[85]––––[Ca(acac)2(H2O)] · H2O– Ms [90][Ca(acac)2(EtOH)2]n –Dec 267–269 s, sls, ns

[90]Dec 267–270 Ms[Ca(dppd)2]n – –s, s, ns–274 [86]– – –[Ca(dppd)2(EtOH)0.5]4

– Ms, air stable [87]143–145[Ca(dppd)2(pmdeta)] – s, s, nsTwo step subl 230–411 Ms [87][Ca(dppd)2(Hdppd)] –68–72 s, s, ns

[49][Ca(dmppd)2]n ––Dec ––Ms, depDec 170–255 [95]190–200 s, s, ns –[Ca(tfac)2]nMs, depDec 170–230 [95]130–150 s, s ns –[Ca(hfac)2]n

[93]––[Ca(hfac)2(H2O)2]2 ––– Ms [90]Dec 180–183[Ca(hfac)2(EtOH)0.5]n – s, s, ns

[87][Ca(hfac)2(tri)]n Ms–103–106 s, s, s–Ms82–85 [88]130–150 s, s, s Sublimes intact[Ca(hfac)2(tet)]

Sublimes intact no temperature[{Ca(hfac)2}2(hept)] Ms [94]112–116 – s, s, sgiven

[87]–s, s, ns– Ms[Ca(hfac)4]2(pmdetaH) 83–86– NMR [96]– –[Ca(hfac)2(18–C–6)]n –– NMR [96]– –[Ca(hfac)2(2N-18�C-6)]n –

[90]– Mss, ns, s[Ca(fod)2]n –201–205 s– Ms [92]80–83[Ca(fod)2(tri)] – s, s, s

[25,77][Ca3(tmhd)6] Ms, dep238–241 170–220 Sublimes intacts, s, sLosses L, then sublDes 112–115, Ms [77]– s, s, s[Ca(tmhd)2(EtOH)]2

melt 235–238Ms, air stable71–74 [88]– s, s, s Losses L, then subl[Ca(tmhd)2(tri)]

[90]s, s, s Ms––[Ca(tmhd)2(tet)]n 50–55Ms82–87 [90]– s, s, s –[Ca(tmhd)2(hept)0.5]n

– Ms, air stable [87]117–119[Ca(tmhd)2(tmeda)]n – s, s, s[Ca(tmhd)(OEt)(EtOH)]4 [89]Des 67 170–200 minimal s, s, sls – Ms

[90][Ca(tmhd)(OPh)(MeOH)]4 MsDes 139–143 s, s, sls– –[Ca(tmhd)(OArN)(EtOH)]2 MsDes 145–150, [90]– s, s, sls –

melt 219–224

Page 18: b diketone

296D

.J.O

tway,

W.S

.R

eesJr

/C

oordinationC

hemistry

Re6iew

s210

(2000)279

–328

Table 5 (Continued)

Compound Solubility,Sublimation Thermal data (°C) Other ReferencesMelting pointe, ar, alk(°C) temperature (°C)

[90][Ca(tmhd)1.5(OArN)0.5]n 219–225 – s, s, sls – MsMs [89]–[Ca2(tmhd)3(OCH2CH2- s, s, slsMinimal\280

NMe2)]2Ms [90][Ca(tmhd)1.5(OCH2CH2- Dec 280 – s, s, sls –

OPri)0.5]n

a –Line indicates data that was not reported in the literature, or is otherwise not relevant to the compound described; dec, decomposes; des, desolvates;e, ethers (such as thf, Et2O); ar, aromatic solvents such as toluene or benzene; and alk, alkanes (hydrocarbons) such as n-hexane or n-heptane; sublimationtemperatures are at 10−2 Torr or lower (reduced pressure); thermal data is at 1 atm.; subl, sublimes; L, adduct ligand; ms, mass spectrum reported; dep,deposition reported with compound data; vp, vapor pressure reported; where an is shown in the compound formula, it is denoting that the exact solid stateformulation is not known (i.e. whether the compound is a monomer, dimer etc).

Page 19: b diketone

297D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

Interestingly, several workers [97,98] have suggested that an improvement is seenin the volatilities of the b-diketonate compounds in the MOCVD apparatus whenfree b-diketone is added to the carrier gas, resulting from a decrease in the degreeof aggregation.

This observation was clearly demonstrated when a tris-substituted derivative wasisolated as the monomer, [Ca(dppd)2(Hdppd)] (Fig. 12); [87] significantly thebis-substituted compound is an oligomer (tetrameric or larger).

Fig. 9. (a) Molecular structure of [Mg(acac)2(H2O)2] [80] and (b) crystal structure of[{Ca(acac)2(H2O)2} · H2O]� [85].Fig. 11. Molecular structure of [Mg(dppd)2(dmf)2] [83].

Page 20: b diketone

298 D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

Fig. 10. Molecular structure of [Mg3(acac)6] [82].

The calcium is six coordinate with three chelating dppd ligands arranged in adistorted octahedral geometry. The methylene proton is disordered over all threeligands resulting in near identical Ca�O, C�O and C�C bond lengths and angles.

The stabilization of the dppd derivative as a monomer [Ca(dppd)2(pmdeta)] witha tridentate amine (pmdeta) ligand has also been achieved (Fig. 13) [87].

Fig. 12. Molecular structure of [Ca(dppd)2(Hdppd)] [87].

Page 21: b diketone

299D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

Fig. 13. Molecular structure of [Ca(dppd)2(pmdeta)] [87].

The calcium ion is seven coordinate and has a distorted capped octahedralgeometry. The tridentate amine ligand and the two dppd ligands lie in differentplanes to produce a twisted propellane structure.

The poor volatility behavior of Group 2 element 2,4-pentanedionates anddiphenyl-1,3-propanedionates led researchers to investigate the physico-chemicalproperties of the fluoro-substituted and sterically bulky b-diketonate ligands, e.g.hfac, fod and tmhd.

Fig. 14. Molecular structure of [Ca2(hfac)4(H2O)4] [93].

Page 22: b diketone

300 D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

Recently, Bradley et al. [93] reported the structural characterization of thehydrated dimer [Ca2(hfac)4(H2O)4] (Fig. 14). The calcium ions are eight coordinateand lie in a distorted dodecahedral geometry. The coordination sphere consists ofa chelating hfac ligand, two water molecules, a second chelating hfac ligand whichalso bridges the two calcium ions through one of the oxygen atoms and a Ca–Finteraction via a CF3 group on a neighboring hfac ligand.

Fig. 15. Molecular structure of [Ca(hfac)2(tet)] [88].Fig. 16. Molecular structure of [Ca(tmhd)2(tri)] [88].

Page 23: b diketone

301D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

Interestingly, the molecular architecture of this compound may be modified byadding a multidentate Lewis base, which will effectively ‘plug’ the vacant coordinationsites on the metal and restrict any bridging interactions. Thus, by employing a glymeligand such as tetraglyme, an eight coordinate monomeric compound has beenisolated [Ca(hfac)2(tet)] [88] (Fig. 15).

The calcium ion is bonded to two chelating hfac ligands and to four oxygen atomsof the tetraglyme ligand in a distorted square antiprismatic geometry. Surprisingly,despite the apparent space around the calcium center, the fifth glyme oxygen atomdoes not participate in bonding. Thus, it would seem that calcium prefers to adoptan eight rather than a possible nine coordinate geometry.

In contrast, the related magnesium derivative is isolated as a tris-substitutedanionic compound [Mg(hfac)3]− stabilized by a protonated 1,8-bis-(dimethy-lamino)naphthalene molecule [84]. The magnesium is six coordinate with six oxygenatoms of the three chelating hfac ligands. Although the reaction mechanism is unclear,it is suggested that proton transfer onto the amine ligand initiates formation of thetris-substituted anion, similar observations were noted for the reactions of fluoro-sub-stituted b-diketonate complexes [Sr(tfac)4]2− [87] and [Ba(hfac)5]3− [50,51], whichwere stabilized by protonated tmeda and ethylenediamine ligands, respectively.

Another representative of the fluoro-substituted b-diketonates is the heptafluoroderivative [Ca(fod)2(tri)] [92]. The gross molecular structure is very similar to thatof the tmhd derivative [Ca(tmhd)2(tri)] [88] (Fig. 16). The calcium ion is eightcoordinate and the coordination polyhedron may be considered as a distorted squareantiprismatic. In this compound the triglyme ligand is observed to be lying in ameridional plane, whilst the two tmhd groups are lying, respectively, above and belowthe plane in an approximately orthogonal relationship.

A comprehensive study by Arunasalam [77,89,90] of the formation and reactionsof some magnesium and calcium b-diketonate compounds has been undertaken.

One of the most interesting results of this study was the isolation of the homolepticcalcium tmhd compound [Ca3(tmhd)6] in good purity and yield (Fig. 17). Thiscompound may be readily utilized in the MOCVD of CaO containing materials [25].

Fig. 17. Molecular structure of [Ca3(tmhd)6] [77].

Page 24: b diketone

302D

.J.O

tway,

W.S

.R

eesJr

/C

oordinationC

hemistry

Re6iew

s210

(2000)279

–328

Table 6Strontium b-diketonate compoundsa

b/A, ,a/A, ,Space c/A, ,Compound Average M�O Average M�O Referencesgroup (b-diket)/A, (L)/A,g/°a/° b/°

16.031 (20) 2.500 2.600 (Me2CO) [99][Sr(dppd)2(Me2CO)]4 13.759 (50)P-1 14.182 (10)113.07 (20)90.36 (20)107.57 (3)

2.540P21/c 2.748 (tet) [73]12.950 (2) 27.008 (4) 12.373 (7)[Sr(dppd)2(tet)]–– 112.55(3)

[87]2.57128.416 (3)27.095 (4) 11.154 (1)[Sr(tfac)4]2[tmedaH] Fdd2– – –

13.324 (1) 2.572 2.718 (tri) [100,101][Sr(hfac)2(tri)(H2O)]2 P-1 10.3889 (7) 11.432 (7)– 2.763 (H2O)– 129.91 (11)

2.651 (tri) [100,101]2.52116.414 (2)[Sr(hfac)2(tri)] 9.337 (1)22.916 (3)C2/c114.20 (9) 95.87 (7) 101.94 (7)

2.713 (tet) [100,101]2.548Pbca 20.934 (2)[Sr(hfac)2(tet)] 15.872 (4)17.820 (1)– – –

[92][Sr(fod)2(tri)] P2/n b

2.498P-1 – [44–47]14.413 (4) 14.658 (5) 24.352 (9)[Sr3(tmhd)6(Htmhd)]109.82 (2)100.20 (2)97.20 (1)

2.489C2/c 2.681 (di) [72]29.267 (6) 10.565 (2) 21.846 (5)[Sr(tmhd)2(di)(H2O)0.5]2– 2.967 (H2O)95.99 (1)

2.674 (tri) [72]2.49515.490 (2)19.705 (3)[Sr(tmhd)2(tri)] P21/c 11.986 (5)– 96.24 (2) –

2.521 (OSiPh3)[Sr(tmhd)(OSiPh3)]3 [102]P-1 13.62 13.82 25.472 2.491115.196.66 93.1

a –Line indicates data that was not reported in the literature, or is otherwise not relevant to the compound described.b Isostructural with [Ca(fod)2(tri)]; parameters not determined.

Page 25: b diketone

303D

.J.O

tway,

W.S

.R

eesJr

/C

oordinationC

hemistry

Re6iew

s210

(2000)279

–328

Table 7Physical data for strontium b-diketonate compoundsa

Melting pointCompound Thermal dataSublimation Solubility, Other References(°C) e, ar, alk (°C)temperature (°C)

[Sr(acac)2(EtOH)]n [103]Dec 180 – sls, ns, ns Five step dec MsFour step dec Ms [103][Sr(dppd)2(EtOH)]n –Dec 210 sls, ns, ns

[99]–[Sr(dppd)2(Me2CO)] – ––Ms96–98 [73]– s, s, sls –[Sr(dppd)2(tet)]

– Ms, dep [95]Dec 160–230[Sr(tfac)2]n 200–225 s, –, –– Ms [73][Sr(tfac)2(tri)]n –73–75 s, s, sls

[87][Sr(tfac)4]2(tmedaH) Ms–86–88 s, s, ns–Ms98–102 [87]– s, s, ns –[Sr(tfac)4]2(pmdetaH)Ms69–72 [87]– s, s, ns –[Sr(tfac)4]2(hmtetaH)

[95]– Ms, deps, –, –[Sr(hfac)2]n 180–190Dec 220–275Two step subl Ms [103]Des 106[Sr(hfac)2(EtOH)]n 150–170 s, sls, ns

[100,101][Sr(hfac)2(tri)(H2O)]2 Ms–Dec 210 s, sls, ns–Ms84–86 [100,101]160–180 s, s, s Subl intact[Sr(hfac)2(tri)]

Subl intact Ms [100,101][Sr(hfac)2(tet)] 150–17093–95 s, s, s[96]– NMR[Sr(hfac)2(18-C-6)]n –– –

NMR– [96]– – –[Sr(hfac)2(2N-18�C-6)]nMs86–88 [92]– s, s, s –[Sr(fod)2(tri)]

[44–47]Two step subl Ms, low T NMRs, s, s[Sr3 (tmhd)6(Htmhd)] 180–210172–176– Ms [72][Sr(tmhd)2(di)(H2O)0.5]2 –96–98 s, s, sls

Ms [72]s, s, s87–89 –[Sr(tmhd)2(tri)] Loss of L, thensubl

56–60 – Ms [87]s, s, s[Sr(tmhd)2(tet)]n Loss of L, thensubl

[102][Sr(tmhd)(OSiPh3)]3 195–198 – s, s, sls Multi step dec Ms[89]s, sls, ns Ms, low T NMRThree step dec–[Sr(tmhd)(OEt)(EtOH)0.66]n Des 72

MsDes 72 [103]– s, s, sls Four step dec[Sr(tmhd)(OCH2CH2NMe2)]nTwo step dec Ms [89]Dec 170[H0.5Sr(tmhd)1.5(OCH2CH2OMe)]n – s, s, sls

Ms [103][H0.5Sr(tmhd)1.5 135–138 – s, s, s Three step dec(OCH2CH2N(Me)CH2CH2NMe2)]n

[103]Three step dec Ms[Sr(tmhd)(acac)(MeOH)1.33]n s, sls, nsDec 160 –[103][Sr(tmhd)(hfac)(EtOH)0.5]n 98–102 – s, s, sls Three step dec Ms, low TNMR

a –Line indicates data that was not reported in the literature, or is otherwise not relevant to the compound described; dec, decomposes; des, desolvates;e, ethers (such as thf, Et2O); ar, aromatic solvents such as toluene or benzene; and alk, alkanes (hydrocarbons) such as n-hexane or n-heptane; sublimationtemperatures are at 10−2 Torr or lower (reduced pressure); thermal data is at 1 atm.; subl, sublimes; L, adduct ligand; ms, mass spectrum reported; dep,deposition reported with compound data; vp, vapor pressure reported; where an is shown in the compound formula, it is denoting that the exact solid stateformulation is not known (i.e. whether the compound is a monomer, dimer etc).

Page 26: b diketone

304 D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

Fig. 18. Molecular structure of [Ca(tmhd)(OEt)(EtOH)]4 [89].Fig. 19. Molecular structure of [Sr(hfac)2(tet)] [100,101].

Page 27: b diketone

305D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

Fig. 20. Molecular structure of [Sr(hfac)2(tri)] [100,101].Fig. 21. Molecular structure of [Sr(hfac)2(tri)(H2O)]2 [100,101].

Page 28: b diketone

306 D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

Fig. 22. Molecular structure of [Sr3(tmhd)6(Htmhd)] [44–47].Fig. 23. Molecular structure of [Ba5(tmhd)9Cl(H2O)7] [132].

Page 29: b diketone

307D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

A number of mixed anionic ligand compounds have also been reported forcalcium, [89,91] including the cubane [Ca(tmhd)(OEt)(EtOH)]4 (Fig. 18). These are,in general, non-volatile crystalline solids; however it has been postulated that theymay be of utility as sol–gel precursors to CaO containing materials because of the‘cross-linking’ potential of the b-diketone and/or alkoxide ligands [89].

10. Strontium compounds

There are relatively few crystallographically characterized strontium b-diketonatecomplexes in the literature, and those known are listed in Table 6. A full listing ofthose compounds reported in the literature, with their physical characteristics, isshown in Table 7. Apart from [Sr(dppd)2(Me2CO)]4, which was studied in the early1970’s, [99] all of the other known compounds have been isolated during thecurrent decade. These compounds can be neatly divided into two groups, Lewisbase adducted compounds and others. The adducts [Sr(dppd)2(tet)], [73] [Sr(t-fac)4]2[tmedaH], [87] [Sr(hfac)2(tet)] (Fig. 19), [100,101] [Sr(hfac)2(tri)] (Fig. 20),[100,101] [Sr(fod)2(tri)], [92] [Sr(tmhd)2(tri)], [72] are all monomeric, eight or ninecoordinate crystalline solids.

The two water containing compounds [Sr(hfac)2(tri)(H2O)]2 (Fig. 21), [100,101]and [Sr(tmhd)2(di)(H2O)0.5]2 [72] are an example of how precisely this type ofcompound requires its coordination sphere to be fulfilled. Thus, it can be statedthat, for strontium, a nine coordinate metal center is desirable for air and moisturestability.

The unadducted compounds, the CVD precursor [Sr3(tmhd)6(Htmhd)] (Fig. 22),[44–47] and [Sr(tmhd)(OSiPh3)]3, [102] are both trimeric, with a similar, triangulararrayed strontium metal centered, structural motif.

11. Barium compounds

In stark contrast to strontium, a very large variety of barium b-diketonatecompounds have been reported. This may, in part, be due to the requirement for avolatile barium source for utilization in MOCVD techniques. As noted earlier,YBa2Cu3O7−x (YBCO) thin films (deposited by MOCVD) are of great currentinterest, [16–24] and as such, the lack of a volatile, reproducible source of bariumfor these materials is a distinct ‘stumbling-block’. There are many publicationsregarding the MOCVD of barium containing films (via the use of barium b-diketo-nate compounds), and the reader is directed to reviews of the area for concisedetails [16–24,104,105].

It can be seen from Tables 8 and 9 (crystallographic and physical data tables forbarium b-diketonate compounds, respectively) that a wide range of ligands havebeen utilized, with varying degrees of success. Many of the compounds arepolymeric and/or contain water. Thus the inclusion of a Lewis base adduct to

Page 30: b diketone

308D

.J.O

tway,

W.S

.R

eesJr

/C

oordinationC

hemistry

Re6iew

s210

(2000)279

–328

Table 8Barium b-diketonate compoundsa

a/A, , c/A, ,SpaceCompound Average M�Ob/A, , Average M�O Referencesgroup g/° (L)/A,(b-diket)/A,b/°a/°

[Ba(tfac)2(tet)] 2.867 (tet)P-1 [70,71]9.566 (3) 16.400 (3) 15.230 (4) 2.691109.63 (2)93.01 (2) 91.70 (2)

2.983 (hmteta) [106]2.677Pbca 14.607 (7)[Ba(tfac)2(hmteta)] 25.507 (9)17.155 (6)– – –

16.372 (5) 2.785 2.935 (H2O) [107–109][Ba(pta)2(H2O)]n P-1 8.641 (3) 15.737 (4)96.25 (2)95.21 (2) 108.03 (2)

– [107–109]2.753[Ba4(pta)8] P-1 20.613 (10)15.777 (8)14.382 (7)79.43 (2) 82.21 (2) 82.34 (2)

2.71C2/c 2.89 (tet) [110]23.07 (1) 9.898 (3) 15.813 (6)[Ba(pta)2(tet)]–93.26 (2)–

22.836 (7) 2.710 2.856 (tet) [111–115][Ba(tdfnd)2(tet)] P1/c 17.150 (2) 10.735 (5)–97.56 (7)–

2.688Pbca 2.846 (tet) [116]12.381 (6) 23.062 (9) 29.138 (9)[Ba(tdfnd)2(tet)] (disordered)–– –

2.93 (tet) [89]2.79022.527 (9)8.752 (4)[Ba(hfac)2(H2O)]n P21/c 8.659 (4)– 100.46 (4) –

2.791C2/c – [50,51]22.379 (7) 12.143 (3) 33.820 (8)[enH2]1.5[Ba(hfac)5]EtOH–102.22 (2)–

2.68–2.82P21/c – [117,118]11.276 (2) 22.368 (2) 15.531 (3)[Ba(hfac)2(Et2O)]n– –100.01 (2)

2.769P21/c 2.915 (EtOH) [103]11.523 (3) 19.281 (8) 8.596 (3)[Ba(hfac)2(EtOH)]n–– 103.68 (3)

15.494 (2) 2.82 – [119,120]P41212[Ba(hfac)2(18-C-6)] 14.421 (2) –2.919 (18-C-6) [64–68,96]2.73910.087P21 11.87914.181[Ba(hfac)2(18-C-6)]

– 108.82 (1) –25.103 (6) 2.848 2.815P21/c [121][Ba(hfac)2(N-18�C-6)] 12.945 (4) 14.406 (2)

(N-18�C-6)– 95.16 (2) –

2.857 (tet) [69]2.703[Ba(hfac)2(tet)] 9.506 (1)P-1 15.085 (1)10.969 (1)84.10 (1) 88.10 (1) 65.31 (1)

Page 31: b diketone

309D

.J.O

tway,

W.S

.R

eesJr

/C

oordinationC

hemistry

Re6iew

s210

(2000)279

–328

Table 8 (Continued)

c/A, ,b/A, ,Compound Average M�O ReferencesAverage M�OSpace a/A, ,a/°group (b-diket)/A,b/° g/° (L)/A,

2.837 (tet) [70,71]15.465 (3)11.155 (2) 2.7059.648 (2)P-1[Ba(hfac)2(tet)]114.46 (1)94.15 (1) 90.73 (1)

2.847 (N-tet) [121]2.716Pbca 21.69 (8)[Ba(hfac)2(N-tet)] 15.74 (2)17.81 (7)– – –

23.334 2.787 2.837 (pent) [122][Ba(hfac)2(pent)] C2/c 20.074 14.331– 106.77 –

2.770 2.842 (glyme) [123]19.133 (3)[Ba(hfac)2(CH3O{CH2CH2O}6 P-1 19.076 (2)12.830 (2)−nC4H9)]

119.55 (1) 90.24 (2) 107.24C2/c 2.664 2.961 (tet) [124]48.821 7.866[Ba(dmhd)2(tet)] (disordered) 17.923

–109.76–P21/a 2.681 2.864 (tet) [124]12.379 27.505[Ba(dppd)2(tet)] 13.187

– –112.792.558C2/c 2.828 (N) [125,126]32.764 (6) 12.110 (2) 15.690 (5)[Ba(diki)2]

– 2.862 (O)– 102.12 (3)Pccn 2.580 2.857 (N) [125,126]24.939 (4) 10.546 (2)[Ba(triki)2] 14.349 (4)

2.82 (O)–––2.612C2/c 2.799 (O) [125,126]27.687 (5) 10.453 (2) 22.679 (6)[Ba(dpmiki)2]2

– 101.88 (2) –3.01 (H2O) [127]2.70836.575 (15)[Ba6(tmhd)12(H2O)13] –36.853 (11)R3c

2.677I2/a 2.94 (O) [44–47]24.365 (9) 21.174 (10) 48.486 (16)[Ba5(tmhd)5(Htmhd)4(O)(OH)3]2.949 (OH)– –100.98 (3)

2.785Pbca 2.715 (H2O) [128]18.546 (3) 27.275 (6) 29.872 (7)[Ba6(tmhd)10(O2)(H2O)6]– 2.90 (H2O)– –

[Ba6(tmhd)10(O2)(H2O)6] 2.72 (H2O)P-1 [129]15.834 (4) 16.190 (4) 16.423 (5) 2.7353.00 (H2O)80.09 (2) 67.83 (1)64.95 (2)

17.362 (3)P-1 2.716 2.725 (H2O) [130]15.190 (2) 16.358 (2)[Ba6(tmhd)10(O2)(OH)2(H2O)4]2

−2[HNEt3]+

2.79 (OH)86.09 (2) 115.64 (3) 83.573.180 (Me2SiO) [131]–28.507 (4)[Ba6(tmhd)10(Me2SiO)2] 18.605 (4)14.731 (4)P-1

75.72 (2)73.98 (2) 83.31 (2)2.791 (piv) [132]2.62[Ba6(tmhd)4(piv)8(py)4]2(py) 33.95 (2)C2/c 27.123 (12)18.214 (8)2.968 (py)– 115.01 (2) –

Page 32: b diketone

310D

.J.O

tway,

W.S

.R

eesJr

/C

oordinationC

hemistry

Re6iew

s210

(2000)279

–328

Table 8 (Continued)

c/A, ,b/A, ,Compound Average M�O ReferencesAverage M�OSpace a/A, ,a/°group (b-diket)/A,b/° g/° (L)/A,

2.821 (piv) [61]22.871 (3)18.194 (1) 2.6617.331 (3)P21/n[Ba7(tmhd)2(piv)12(py)4(H2O)4]2(py)– 3.03 (py)– 91.03 (1)

2.745 (H2O)2.712P-1 3.203 (C1) [132]17.082 (4) 17.152 (3) 26.274 (6)[Ba5(tmhd)9Cl(H2O)7]

76.16 (2) 2.959 (H2O)71.36 (2) 75.02 (2)2.858 (piv)[Ba5(tmhd)9(piv)] [50,51]C2/c 62.300 (14) 14.929 (4) 32.500 (10) 2.803

–116.45 (2)–2.670P-1 2.795 (MeOH) [58–60]10.693 (3) 10.720 (3) 15.627 (3){[Ba(tmhd)2(MeOH)3]MeOH}2

109.26 (1) 91.9 (1) 94.86 (1)2.777 (MeOH) [133]2.74311.132 (9)[Ba(tmhd)2(MeOH)2(H2O)2]n 10.569 (1)27.801 (4)C2/c2.720 (H2O)–– [44–47]2.765P-1 14.969 (3)[Ba4(tmhd)8] (hexane, 150 K) 14.822 (3)13.836 (3)

62.47 (2) 65.98 (1) 60.78 (1)15.190 (2) 2.749 – [44–47][Ba4(tmhd)8] (pentane) P-1 14.903 (3) 15.084 (2)61.84 (1)65.92 (1) 60.36 (1)

– [58–60]2.72718.128 (6)21.784 (4)[Ba4(tmhd)8] (sublimed) Pbca 26.244 (4)– – –

2.678P-1 2.901 (tet) [73]10.596 (5) 14.420 (2) 15.455 (2)[Ba(tmhd)2(tet)] (150 K)105.13 (2)97.82 (1)115.38 (1)

2.683P-1 2.893 (tet) [70,71]10.606 (3) 14.452 (3) 15.463 (4)[Ba(tmhd)2(tet)]115.31 (1) 105.15 (1)97.74 (2)

2.628P21/c 2.865 (tri) [88]10.686 (3) 23.614 (6) 15.650 (3)[Ba(tmhd)2(tri)]–– 109.11 (2)

2.615P-1 2.859 (di) [74,75]10.431 (6) 10.441 (6) 15.955 (7)[Ba(tmhd)2(di)]2–76.52 (3)–

2.66C2/c 2.87 (di) [134]29.857 (5) 10.506 (3) 21.941 (7)[Ba(tmhd)2(di)(H2O)0.5]23.05 (H2O)– 96.21 (2) –3.04 (tmeda) [135]2.6718.267 (2)[Ba(tmhd)2(tmeda)2] 16.078 (2)14.970 (2)C2/c

–– 96.21 (2)2.973 (pmdeta) [136,137]2.624[Ba(tmhd)2(pmdeta)] 10.577 (3)P21/c 15.963 (5)23.547 (7)

– 105.21 (2) –

Page 33: b diketone

311D

.J.O

tway,

W.S

.R

eesJr

/C

oordinationC

hemistry

Re6iew

s210

(2000)279

–328

Table 8 (Continued)

c/A, ,b/A, , Average M�Oa/A, , Average M�OSpace ReferencesCompoundg/° (b-diket)/A,b/° (L)/A,group a/°

[Ba(tmhd)2(hmteta)] 2.986 (hmteta)P21/c [136,137]10.833 (6) 20.442 (12) 19.404 (9) 2.649–– 104.35 (4)

21.459 (5) 2.769 2.91 (bipy) [61]12.067 (2)[Ba(tmhd)2(bipy)2]2 14.807 (4)P-1104.31 (2)105.56 (2)92.40 (2)

2.741P-1 2.905 (NH3) [62]10.450 (3) 10.567 (2) 13.794 (4)[Ba(tmhd)2(NH3)2]293.58 (2) 110.54 (3) 91.17 (2)

2.827 (Et2O) [57]2.71314.789 (2)[Ba(tmhd)2(Et2O)2]2 14.533 (2)14.865 (2)P21/n–– 110.54 (3)

2.729 2.867 (O) [89]29.782 (5)[Ba2(tmhd)3(OCH2CH2OPri)- C2/c 11.395 (2)30.899 (7)(HOCH2CH2OPri)]2

– 103.08 (1) –27.03 (3)P-1 2.684 2.815 (OH) [138]14.59 (2) 15.41 (2)[Ba5(OH)(tmhd)5(OCHMe-

CH2NMe2)4]2.96 (N)111.7 (1)96.1 (1)105.6 (1)

2.777P21/n 2.962 (N) [138]10.767 (2) 19.101 (4) 15.956 (3)[Ba(tmhd)2(HOCHMeCH2NMe2)]2–93.59 (2)–

2.723P-1 2.909 (HOAr) [139]13.190 (2) 16.081 (4) 16.152 (4)[Ba(tmhd)2(HOAr)2(thf)]2109.06 (2) 2.888 (thf)112.43 (2) 97.28 (2)

a –Line indicates data that was not reported in the literature, or is otherwise not relevant to the compound described.

Page 34: b diketone

312D

.J.O

tway,

W.S

.R

eesJr

/C

oordinationC

hemistry

Re6iew

s210

(2000)279

–328

Table 9Physical data for barium b-diketonate compoundsa

Compound Solubility,Sublimation temperature Thermal dataMelting point Other References(°C)(°C) e, ar, alk(°C)

[103][Ba(acac)2(EtOH)]n Dec 210 – sls, ns, ns Four step dec MsNMR [64–68]s, s, sDec 135 –[Ba(acac)2(18-C-6)(H2O)0.5]n Loss of L, then

decDec 110–112 NMR [64–68]– s, s, s[Ba(tclac)2(H2O)0.5]n –

– NMR [64–68][Ba(tclac)2(18-C-6)]n Dec 158–160 – s, s, s– NMR [124][Ba(dmhd)2(tet)] (disordered) –– –

[103]sls, ns, ns MsFour step dec–[Ba(dppd)2(EtOH)]n Dec 250Ms– [124]– s, s, sls Multi step dec[Ba(dppd)2(tet)]

– – [49]Dec[Ba(dmpbd)2]n – ––\200 [64–68]– – –[Ba(dnppd)2(18-C-6)]n

[95][Ba(tfac)2]n Ms, dep–170–235 s, s, s205–215NMRDec 168–230 [64–68]– s, s, s Light sensitive[Ba(tfac)2(H2O)0.5]n

Loss of L, thenDec 190–192 NMR [64–68][Ba(tfac)2(18-C-6)]n 150–160 Partial s, s, ssubl

[70,71]Subl intact133–136 150[Ba(tfac)2(tet)] Dep/vps, s, s143–147 – Ms [106]s, s, sls[Ba(tfac)2(hmteta)] Loss of L, then

subl– Ms [140][Ba(dfhd)2]n 229 220 –

Dep [141–143]Ba(dfhd)2(H2O)]n – s, s, sls Loss of L, then200dec

[140]–[Ba(ofhd)2]n 233 Ms–220293 – [141–143]– –[Ba(pfdmhd)2]n –

Loss of L, then[Ba(pta)2(H2O)]n – [107–109]– – –subl

[107–109]– –180–200 Subl intact[Ba4(pta)8]Partial dissocPartial subl 150 above that – [110]– –[Ba(pta)2(tet)]

[Ba4(pta)8] 220–240Two step subl Dep [141–143][Ba(tdfnd)2(H2O)]n 187 Loss L, then subl s, s, slsSubl intact two186 Dep [141–143][Ba(tdfnd)2]n – s, s, sstep

[111–115]DepSubl intacts, s, s[Ba(tdfnd)2(tet)] 9070

Page 35: b diketone

313D

.J.O

tway,

W.S

.R

eesJr

/C

oordinationC

hemistry

Re6iew

s210

(2000)279

–328

Table 9 (Continued)

Solubility, Thermal data Other ReferencesCompound Sublimation temperatureMelting point(°C)(°C) e, ar, alk(°C)

[116][Ba(tdfnd)2(tet)] (disordered) 61–63 90 s, s, s Subl intact Dep[95]\210 Ms, dep[Ba(hfac)2]n 205–215 –s, s, s

NMR– [97]– – –[Ba(hfac)2(H2O)]nTwo step subl NMR [44–47]–[enH2]1.5[Ba(hfac)5]EtOH – –

[117,118][Ba(hfac)2(Et2O)]n – – – – –[103][Ba(hfac)2(EtOH)]n MsThree step decDes 120 s, sls, ns160–180

Ms53–56 [87]– s, s, s –[Ba(hfac)4].2(pmdetaH)NMR185–188 [64–68,96,144,145]165 s, s, s[Ba(hfac)2(18-C-6)]

[121]– Air stable–[Ba(hfac)2(N-18�C-6)] 135–137236–240– – [96]–[Ba(hfac)2(2N-18�C-6)]n – –

[64–68,70,71,144,120 Dep/vp[Ba(hfac)2(tet)] 121–125 Subl intacts, s, s145]

167–169 Air stable [121]129–136 –[Ba(hfac)2(N-tet)] Subl intact146–147 Air stable [122]123 –[Ba(hfac)2(pent)] Subl intact

[64–68]Subl intact MW, air stable[Ba(hfac)2(hexa)]n s, s, s59–62 145Air stable109–112 [94]– s, s, s Subl intact[Ba(hfac)2(hept)0.5]n

[Ba(hfac)2(CH3O{CH2CH2O}6 Dep, ms52–54 [123]120 s, s, s 20% Residue−nC4H9)]

Ms [123]s, s, s100 –109–110[Ba(hfac)2(CH3O{CH2CH2O}5-C2H5)]n

– MW, ms [146][Ba(dmmod)2]n Liquid – –[125,126][Ba(miki)2]n MW, ms39% Residue138–140 s, s, sls–

MW, ms170–171 [125,126]– s, s, sls 39% Residue[Ba(diki)2]MW, ms80–82 [125,126]– s, s, sls 29% Residue[Ba(triki)2]

[125,126]s, s, sls MW, ms26% Residue–[Ba(dpmiki)2]2 165–168MW, ms137–138 [125,126]– s, s, sls 33% Residue[Ba(dpdiki)2]n

23% Residue MW, ms [125,126]127–128[Ba(dptriki)2]n – s, s, sls[Ba6(tmhd)12(H2O)13] [127]– – – – –

Ms [50,51]–[Ba5(tmhd)5(Htmhd)4(O)- – – –(OH)3]

–– [128,129]– – –[Ba6(tmhd)10(O2)(H2O)6]

Page 36: b diketone

314D

.J.O

tway,

W.S

.R

eesJr

/C

oordinationC

hemistry

Re6iew

s210

(2000)279

–328

Table 9 (Continued)

Solubility, Thermal data Other ReferencesCompound Sublimation temperatureMelting point(°C)(°C) e, ar, alk(°C)

– – – [130][Ba6(tmhd)10(O2)(OH)2- ––(H2O)4]2-2[HNEt3]+

[131]– ––[Ba6(tmhd)10(Me2SiO)2] ––– – [132]– –[Ba6(tmhd)4(piv)8(py)4].2(py) –– – – [61]–[Ba7(tmhd)2(piv)12(py)- –

4(H2O)4].2(py)[132]Dec 310Des 90Ba5(tmhd)9Cl(H2O)7] – – –

– – [44–47]– –[Ba5(tmhd)9(piv)] –– Loss of L, then Ms [64–68]{[Ba(tmhd)2(MeOH)3]. – –

sublMeOH}2

Multi step dec Ms [133][Ba(tmhd)2(MeOH)2(H2O)2]n – – –194–197 [44–47]Ms, low TSublimes intact[Ba4(tmhd)8] (hexane, 150 K) s, s, s190–210

NMR– – [44–47]–[Ba4(tmhd)8] (pentane) 190–230 –

[64–68]–190–230–[Ba4(tmhd)8] (sublimed) – Vp93–95 – s, s, s[Ba(tmhd)2(di)]2 Loss of L, then Ms [74,75]

sublLoss of L, then[Ba(tmhd)2(tri)] Ms [88]77–79 – s, s, ssubl

Ms, dep [70,71,147]Loss of L, thens, s, s[Ba(tmhd)2(tet)] –90–92subl

Ms [135]–[Ba(tmhd)2(tmeda)2] 95–105 Loss of L, thens, s, ssubl

– – Dep [136,137]s, s, s[Ba(tmhd)2(pmdeta)] Loss of L, thensubl

Dep [136,137][Ba(tmhd)2(hmteta)] –– s, s, s Loss of L, thensubl

157 – UV/vis [61]s, s, s[Ba(tmhd)2(bipy)2]2 Loss of L, thensublLoss of L, then[Ba(tmhd)2(NH3)2]2 MW [62]170–173 – s, s, ssubl

[57]– ––[Ba(tmhd)2(Et2O)2]2 ––

Page 37: b diketone

315D

.J.O

tway,

W.S

.R

eesJr

/C

oordinationC

hemistry

Re6iew

s210

(2000)279

–328

Table 9 (Continued)

Compound Solubility,Sublimation temperature Thermal dataMelting point Other Referencese, ar, alk (°C)(°C)(°C)

MW [63]–[Ba(tmhd)2(o-phen)]n 216 Loss of L, thens, s, ssubl

– – [134]– –[Ba(tmhd)2(di)(H2O)0.5]2 –130–135 – NMR [64–68]s, s, s[Ba(tmhd)2(18-C-6)(H2O)0.5]n Loss of L, then

sublMs [93]s, s, s–[Ba2(tmhd)3(OCH2CH2OPri)- 108–111 Four step dec

(HOCH2CH2OPri)]2211–214 Three step dec Ms [93]–[Ba(tmhd)1.5(OEt)0.5- s, sls, ns

(EtOH)0.33]n106–110 Three step dec Ms [89]–[H0.5Ba(tmhd)1.5- sls, sls, sls

(OCH2CH2OMe)]n[103]Four step decs, s, s Ms–Des 64[Ba(tmhd)(bdmap)(EtOH)0.5]n

s, s, s96–98 Four step dec Ms [103]–[H0.33Ba(tmhd)1.33-(OCH2CH2N(Me)CH2-CH2NMe2)]n

Ms [103]–[H0.5Ba(tmhd)1.5(O(CH2- s, s, s Five step dec97–100CH2O)2Me)]n

69–72 Four step dec Ms [103]–[Ba(tmhd)(O- s, s, s(CH2CH2O)3Me)]n

49–51 Four step dec Ms [103]–[Ba(tmhd)(O(CH2CH2O)4- s, s, sOH)]n

Loss of L, then – [136,137]s, s, s[Ba(tmhd)2(HO- –125–130(CH2CH2O)2Me)] subl

116–120[Ba(tmhd)2(HO- –– [136,137]s, s, s Loss of L, then(CH2CH2O)3Me)] subl

Ms [138]– s, s, s– Multi step dec[Ba5(OH)(tmhd)5(OCHMe-CH2NMe2)4]

168 Loss of L, then– Ms [138][Ba(tmhd)2(HOCHMe- s, s, slssublCH2NMe2)]2Dec Ms [139]–[Ba(tmhd)2(HOAr)2(thf)]2 – s, s, s

a –Line indicates data that was not reported in the literature, or is otherwise not relevant to the compound described; dec, decomposes; des, desolvates;e, ethers (such as thf, Et2O); ar, aromatic solvents such as toluene or benzene; and alk, alkanes (hydrocarbons) such as n-hexane or n-heptane; sublimationtemperatures are at 10−2 Torr or lower (reduced pressure); thermal data is at 1 atm.; subl, sublimes; L, adduct ligand; ms, mass spectrum reported; dep,deposition reported with compound data; vp, vapor pressure reported; where an is shown in the compound formula, it is denoting that the exact solid stateformulation is not known (i.e. whether the compound is a monomer, dimer etc).

Page 38: b diketone

316 D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

decrease the oligomerization of these materials has been heavily utilized by manyresearch groups.

For ease of discussion, the compounds may be divided into five categories, largeheteroleptic (penta-, hexa- and hepta-meric) clusters (1); infinite chains (2); ho-moleptic tetramers (3); dimers (4); and monomers (5). Taking each of thesecategories in turn.

11.1. Large heteroleptic clusters

Compounds with a central structural core of Ba5, Ba6, and Ba7 have beenreported. All incorporate the tmhd− b-diketonate ligand and have various anionicsupporting ligands (e.g. Cl−, O2

2−, OH−, Me2SiO−, and piv−). Illustrative exam-ples of (a) a Ba5 core would be [Ba5(tmhd)9Cl(H2O)7] (Fig. 23), [132] and[Ba5(O)(tmhd)5(Htmhd)4(OH)3] (Fig. 4 above) [50,51]; (b) for Ba6 core, the com-pound [Ba6(tmhd)10(O2)(H2O)6] (Fig. 24) [128]; and (c) for Ba7, the compound[Ba7(tmhd)2(piv)12(py)4(H2O)4] · 2(py) [132].

11.2. Infinite chains

Barium compounds containing fluorinated b-diketonate ligands as well as wateror other small molecules (e.g. Et2O, EtOH) exhibit an infinite chain motif in thesolid state [93,103,107–109,130]. This is readily illustrated in the compound [Ba(h-fac)2(EtOH)]� (Fig. 25) [103] where each barium center is ten coordinate, with twoBa�F bonds per metal center.

This perhaps explains why this type of compound often gives rise to BaF2 whensubjected to high temperatures [16–24,103]. Other compounds of this type include[Ba(hfac)2(Et2O)]�, [117,118] [Ba(hfac)2(H2O)]�, [97,98] and [Ba(pta)2(H2O)]�[107–109].

Another compound that consists of infinite chains, albeit held together viaH-bonding, is [Ba(tmhd)2(MeOH)2(H2O)2]�, [133] which has been referred toelsewhere as a monomer [133]. However, if the crystal packing of the molecule isexamined, it readily can be seen that there are H-bonded chains through the MeOHand H2O ligands (Fig. 26).

11.3. Homoleptic tetramers

If, as noted above, rigorous anaerobic techniques are observed, and all potentialLewis base adducts removed from the metal center’s influence (e.g. in vacuo), thenthe true homoleptic barium tmhd and pta compounds may be isolated [44–47,107–109]. They have the general formula [Ba4(b-diket)8]. The fluorinated compound[Ba4(pta)8] (Fig. 27) has nine coordinate barium metal centers; two of the coordina-tion positions on each metal are taken up by F atoms of the CF3 groups on theb-diketonate ligand. When the b-diket is tmhd, two distinct structural motifs of[Ba4(tmhd)8] have been observed (orthorhombic {not shown} and triclinic {Fig.28}) [44–47,58–60].

Page 39: b diketone

317D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

Fig. 24. Molecular structure of [Ba6(tmhd)10(O2)(H2O)6] [128].Fig. 25. Molecular structure of [Ba(hfac)2(EtOH)]� [103].

Page 40: b diketone

318 D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

Fig. 26. Molecular structure of [Ba(tmhd)2(MeOH)2(H2O)2]� [133].Fig. 27. Molecular structure of [Ba4(pta)8] [107–109].

Page 41: b diketone

319D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

Fig. 28. Molecular structure of [Ba4(tmhd)8] [44–47].Fig. 29. Molecular structure of {[Ba(tmhd)2(MeOH)3]MeOH}2 [58–60].

[Ba4(tmhd)8] is heavily utilized in the thin films industry for the deposition ofBaO (usually as part of YBa2Cu3O7−x), [16–24] and is very sensitive to water andair. Thus, it is commonly stored in vacuo or under inert gas (Ar or N2). It shouldideally be colorless, but is often observed to exhibit a pale yellow color (indicatingsome denaturing of the compound).

Page 42: b diketone

320 D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

Fig. 30. Molecular structure of [Ba(tmhd)2(bipy)2]2 [61].Fig. 31. Molecular structure of [Ba(tmhd)2(HOCHMeCH2NMe2)]2 [138].

Page 43: b diketone

321D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

Fig. 32. Molecular structures of some [Ba(b-diket)2(tet)] compounds (where b-diket, dmhd; dppd; pta;tfac; hfac; and tdfnd) [64–68,70,71,111–115,124].Fig. 33. Molecular structures of some [Ba(tmhd)2(amine)] compounds (where amine, hmteta; pmdeta;and tmeda) [135–137].

Page 44: b diketone

322 D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

Fig. 34. Molecular structures of some [Ba(hfac)2(adduct)] compounds (where adduct, N-18�C-6; pent;and N-tet) [121,122].

Fig. 35. Molecular structure of [Ba(diki)2] [125,126].

Page 45: b diketone

323D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

Fig. 36. Molecular structure of [Ba2(tmhd)3(OCH2CH2OPri)(HOCH2CH2OPri)]2 [89].

11.4. Dimers

The formation of dimeric species is common for barium b-diketonate compoundsespecially when the b-diketonate ligand is tmhd, and small adduct molecules areavailable to fulfill the metal centers coordination requirements. This has been alludedto above (Fig. 5).

Further examples of this structural class are, {[Ba(tmhd)2(MeOH)3]MeOH}2 (Fig.29), [58–60] a H-bonded dimer; [Ba(tmhd)2(NH3)2]2 (Fig. 5), [62] [Ba(tmhd)2(bipy)2]2(Fig. 30), [61] [Ba(tmhd)2(HOCHMeCH2NMe2)]2 (Fig. 31), [138] [Ba(tmhd)2-(HOAr)2(thf)2]2 [139] and [Ba(tmhd)2(di)]2 [74,75]. All of the dimeric compoundsare thermally unstable, losing their adducts prior to sublimation of the parent[Ba(tmhd)2]x compound [44–47,74,75].

11.5. Monomers

Monomeric barium b-diketonate compounds comprise by far the largest category.They all have one feature in common; a multidentate Lewis base is utilized to saturatethe coordination sphere around the barium metal center (e.g. crown ethers such as18-C-6 [64–68,103], N-18�C-6 [87]; hexa- [64–68], penta- [122], tetra- [76,78],azatetra- [121] and tri-glyme [88]; and also amines such as hmteta, [107–109,136,137]pmdeta [136,137], and tmeda [135]). The degree of binding of these Lewis bases varies

Page 46: b diketone

324 D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

with regard to the b-diketonate ligand attached to the metal center [124]. Thus, hfacand tdfnd compounds with glyme ligands are volatile and sublime intact,[70,71,122,123] whereas tmhd compounds tend to dissociate prior to sublimation (amore detailed study of this phenomenon may be found in [124]). Illustrated beloware some of these compounds (Figs. 32–34).

Another class of compounds to be mentioned was synthesized by Marks et al.[125,126] and these incorporate b-diketoiminate ligands (where one of the oxygensof a b-diketonate has been replaced by a nitrogen with a pendant side arm tofurther coordinate to the metal center). An example of this type of compound,[Ba(diki)2] can be seen in Fig. 35. Unfortunately, these compounds are reported tobe pyrophoric and to decompose on heating [125,126].

As for calcium and strontium, there have also been studies on a number ofbarium mixed alkoxide/b-diketonate ligand compounds [89,103]. An illustrativeexample is the compound [Ba2(tmhd)3(OCH2CH2OPri)(HOCH2CH2OPri)]2 (Fig. 36)[89]. As with calcium, these compounds are not volatile.

Studies on the use of ‘scorpion tail’ type b-diketonate ligands (e.g. dmmod−),whilst of potential interest, (due to the liquid nature of the compounds formed withbarium), have yet to yield promising CVD precursors, as the compounds decom-pose below their vapor phase transport temperatures [146,148].

Acknowledgements

In an effort to be as representative as practicable of the state-of-the-art in thepresent subject matter, Professor P. O’Brien is gratefully acknowledged for gra-ciously permitting the utilization in this review of previously unpublished resultsfrom his laboratories that he has shared with us. We would also like to thank DrA.A. Drozdov, Dr P. Miele, Dr J. Vaissermann, Professor L. Hubert-Pfalzgraf,Professor A.H. Rheingold, and Professor A. Gleizes for providing atomic coordi-nates of certain molecules. This enabled the depiction, by the Biosym™ packageInsight II, of the molecular structures contained within this review.

References

[1] R.C. Mehrotra, R. Bohra, D.P. Gaur, Metal b-Diketonates and Allied Derivatives, AcademicPress, London, 1978.

[2] L.G. Hubert-Pfalzgraf, Appl. Organomet. Chem. 6 (1992) 627.[3] A.R. Barron, W.S. Rees Jr, Adv. Mater. Opt. Electron. 2 (1993) 271.[4] J.E. Schwarberg, R.E. Sievers, R.W. Moshier, Anal. Chem. 42 (1970) 1828.[5] R.W. Moshier, R.E. Sievers, Gas Chromatography of Metal Chelates, Pergamon Press, Oxford,

1975.[6] J.M. Suighara, L.T. McRee, J. Org. Chem. 22 (1957) 795.[7] J.R. Vallentyne, Can. J. Bot. 33 (1955) 304.[8] G.E. Mapstone, J. Proc. R. Soc. N. S. W. 82 (1948) 79.[9] N.S. Poonia, A.V. Bajaj, Chem. Rev. 79 (1979) 389.

[10] L.G. Hubert-Pfalzgraf, Polyhedron 13 (1994) 1181.[11] R.E. Sievers, S.B. Turnipseed, L. Huang, A.F. Lagalante, Coord. Chem. Rev. 128 (1993) 285.[12] R.C. Mehrotra, J. Ind. Chem. Soc. 55 (1978) 1.

Page 47: b diketone

325D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

[13] W.A. Wojtczak, P. Fleig, M.J. Hampden-Smith, Advances in Organometallic Chemistry, vol. 31,Academic Press, New York, 1996.

[14] D.C. Bradley, Polyhedron 13 (1994) 1121.[15] J. Aarik, A. Aidla, A. Jaek, M. Leskela, L. Niinisto, J. Mater. Chem. 4 (1994) 1299.[16] A.D. Berry, D.K. Gaskill, R.T. Holm, E.J. Cukauskas, R. Kaplan, R.L. Henry, Appl. Phys. Lett.

52 (1988) 1743.[17] M. Leskela, H. Molsa, L. Niinisto, Super. Sci. Tech. 6 (1993) 627.[18] G.V. Bazuev, L.D. Kurbatova, Russ. Chem. Rev. 62 (1993) 981.[19] H. Busch, A. Fink, A. Muller, K. Samwer, Super. Sci. Tech. 6 (1993) 42.[20] K.H. Dahmen, T. Gerfin, Prog. Crystal Growth Charact. 27 (1993) 117.[21] R. Hiskes, S.A. DiCarolis, J.L. Young, S.S. Laderman, R.D. Jacowitz, R.C. Taber, Appl. Phys.

Lett. 59 (1991) 606.[22] European Patent 0348496B1 (1994).[23] United States Patent 5453494 (1995).[24] United States Patent 5451434 (1995).[25] J. Aarik, A. Aidla, A. Jaek, M. Leskela, L. Niinisto, Appl. Surf. Sci. 75 (1994) 33.[26] H.A. Lu, L.A. Wills, B.W. Wessels, W.P. Lin, T.J. Zhang, G.K. Wong, D.A. Neumayer, T.J.

Marks, Appl. Phys. Lett. 62 (1993) 1314.[27] A. Wills, B.W. Wessels, D.S. Richeson, T.J. Marks, Appl. Phys. Lett. 60 (1992) 41.[28] P.C. Van Buskirk, R. Gardiner, P.S. Kirlin, S. Nutt, J. Mater. Res. 7 (1992) 542.[29] M. Roth, P. Dubs, E. Gotschi, A. Eschenmoser, Helv. Chim. Acta 54 (1971) 710.[30] J. March, Advanced Organic Chemistry, third ed., Wiley, New York, 1985, p. 941.[31] M. Sukuzi, A. Watanabe, R. Noyori, J. Am. Chem. Soc. 102 (1980) 2095.[32] R. Pellicciari, R. Fringuelli, E. Sisani, J. Chem. Soc. Perkin 1 (1980) 2566.[33] A.S. Howard, C.A. Meerholz, J.P. Michael, Tetrahedron Lett. 15 (1979) 1339.[34] J. Hooz, J. Oudenes, Synth. Commun. 12 (1982) 189.[35] R.J.K. Taylor, Synth. Rev. (1985) 364.[36] R. Adams, A.H. Blatt, A.C. Cope, D.Y. Curtin, F.C. McGrew, C. Niemann, Organic Reactions,

vol. VIII, Wiley, New York, 1954, p. 69.[37] H. Becker, W. Berger, G. Domschke, E. Fanghanel, J. Faust, M. Fischer, F. Gentz, K. Gewald,

R. Gluch, R. Mayer, K. Muller, D. Pavel, H. Schmidt, K. Schollberg, K. Schwetlick, E. Seiler, G.Zeppenfield, in: P.A. Ongley (Ed.), Organicum: Practical Handbook of Organic Chemistry,Addison-Wesley, Boston, 1973, p. 490 (B.J. Hazzard, Trans.).

[38] A.S. Zanina, S.I. Shergina, I.E. Sokolov, R.N. Myasnikova, Russ. Chem. Bull. 44 (1995) 689.[39] E. Fermin, G. Hauch, G.P. 1945303 (1971).[40] E. Fermin, G. Hauch, Chem. Abst. 75 (1971) 35116.[41] S.R. Drake, M.B. Hursthouse, K.M.A. Malik, D.J. Otway, J. Chem. Soc. Dalton Trans. (1993)

2579.[42] J.P. Fachler, A. Avdeef, Inorg. Chem. 13 (1974) 1864.[43] C.R. Erasmus, J.C.A. Boyens, Acta Crystallogr. B26 (1970) 1843.[44] A. Gleizes, S. Sans-Lenain, D. Medus, C. R. Acad. Sci. II Paris 313 (1991) 761.[45] S.R. Drake, M.B. Hursthouse, K.M.A. Malik, D.J. Otway, J. Chem. Soc. Dalton Trans. (1993)

2883.[46] A.A. Drozdov, S.I. Troyanov, Polyhedron 11 (1992) 2877.[47] United States Patent 5319118 (1994).[48] H. Reuter, Adv. Mater. 3 (1991) 258 and 568.[49] G.S. Hammond, D.C. Nonhebel, C.-H.S. Wu, Inorg. Chem. 2 (1966) 73.[50] S.B. Turnipseed, R.M. Barkley, R. Sievers, Inorg. Chem. 30 (1991) 1164.[51] L. Huang, S.B. Turnipseed, R.C. Haltiwanger, R.M. Barkley, R.E. Sievers, Inorg. Chem. 33 (1994)

798.[52] C.G. MacDonald, J.S. Shannon, Aust. J. Chem. 19 (1966) 1545.[53] J.E. Schwarberg, R.E. Sievers, R.W. Moshier, Anal. Chem. 42 (1970) 1828.[54] J.G. Bednorz, K.A. Muller, Z. Phys. B 64 (1986) 189.[55] L.I. Martynenko, N.P. Kuz’mina, A.N. Grior’ev, Russ. J. Coord. Chem. 21 (1995) 493.

Page 48: b diketone

326 D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

[56] D.C. Bradley, R.C. Mehrotra, D.P. Gaur, Metal Alkoxides, Academic Press, London, 1978.[57] G. Rosseto, A. Polo, F. Benetollo, M. Porchia, P. Zanella, Polyhedron 11 (1992) 979.[58] A. Gleizes, S. Sans-Lenain, D. Medus, R. Morancho, C. R. Acad. Sci. Paris II 312 (1991) 983.[59] A. Gleizes, A.A. Drozdov, S.I. Troyanov, Russ. J. Coord. Chem. 20 (1994) 871.[60] P. Tobaly, G. Lanchec, J. Chem. Thermo. 25 (1995) 503.[61] A.A. Drozdov, S.I. Troyanov, Polyhedron 12 (1993) 2973.[62] W.S. Rees, M.W. Carris, W. Hesse, Inorg. Chem. 30 (1991) 4479.[63] A.A. Drozdov, S.I. Troyanov, N.P. Kuz’mina, L.I. Martynenko, A.S. Alikhanyan, I.P.

Malkerova, J. Phys. IV C3 (1993) 379.[64] K. Timmer, H.A. Meinema, Inorg. Chim. Acta 187 (1991) 99.[65] K. Timmer, C.I.M.A. Spee, A. Mackor, H.A. Meinema, A.L. Spek, P. van der Sluis, Inorg. Chim.

Acta 190 (1991) 109.[66] H.A. Meinema, K. Timmer, H.L. Linden, C.I.M.A. Spee, Mater. Res. Soc. Symp. Proc. 335 (1994)

193.[67] European Patent 0405634A2 (1990).[68] United States Patent 5248787 (1993).[69] P. van der Sluis, A.L. Spek, K. Timmer, H.A. Meinema, Acta Crystallogr. C46 (1990) 1741.[70] R. Gardiner, D.W. Brown, P.S. Kirlin, A.L. Rheingold, Chem. Mater. 3 (1991) 1053.[71] United States Patent 5225561 (1993).[72] S.R. Drake, M.B. Hursthouse, K.M.A. Malik, S.A.S. Miller, J. Chem. Soc. Chem. Commun.

(1993) 478.[73] S.R. Drake, M.B. Hursthouse, K.M.A. Malik, S.A.S. Miller, Polyhedron 12 (1993) 1621.[74] S.R. Drake, M.B. Hursthouse, K.M.A. Malik, S.A.S. Miller, Inorg. Chem. 32 (1993) 4653.[75] European Patent 0508345A2 (1992).[76] G. Malandrino, F. Castelli, I.L. Fragala, Inorg. Chim. Acta 224 (1994) 203.[77] V.C. Arunasalam, S.R. Drake, M.B. Hursthouse, K.M.A. Malik, D.M.P. Mingos, J. Chem. Soc.

Dalton Trans. (1996) 2435.[78] J.M. Stewart, B. Morosin, Acta Crystallogr. B31 (1975) 1164.[79] S. Shibata, M. Ohta, K. Iijima, J. Mol. Struct. 67 (1980) 245.[80] B. Morosin, Acta Crystallogr. 22 (1967) 316.[81] V. DiNoto, G. Bandoli, A. Dolmella, B. Zarli, M. Viviani, M. Vidali, J. Chem. Crystallogr. 25

(1995) 375.[82] E. Weiss, J. Kopf, T. Gardein, S. Corbelin, U. Schumann, M. Kirilov, G. Petrov, Chem. Ber. 118

(1985) 3529.[83] F.J. Hollander, D.H. Templeton, A. Zalkin, Acta Crystallogr. B29 (1973) 1289.[84] M.R. Trutter, B.L. Vickery, J. Chem. Soc. Dalton Trans. (1972) 395.[85] J.J. Sahbari, M.M. Olmstead, Acta Crystallogr. C39 (1983) 208.[86] F.J. Hollander, D.H. Templeton, A. Zalkin, Acta Crystallogr. B29 (1973) 1295.[87] S.A.S. Miller, Ph.D. thesis, University of London, 1995.[88] S.R. Drake, S.A.S. Miller, D.J. Williams, Inorg. Chem. 32 (1993) 3227.[89] V.C. Arunasalam, I. Baxter, S.R. Drake, M.B. Hursthouse, K.M.A. Malik, D.J. Otway, Inorg.

Chem. 34 (1995) 5295.[90] V.C. Arunasalam, Ph.D. thesis, University of London, 1995.[91] V.C. Arunasalam, I. Baxter, S.R. Drake, M.B. Hursthouse, K.M.A. Malik, D.M.P. Mingos, J.C.

Plakatouras, Polyhedron 15 (1996) 3971.[92] V.C. Arunasalam, S.R. Drake, S.A.S. Miller, D.J. Otway, A.J.P. White, D.J. Williams, Polyhe-

dron, submitted for publication.[93] D.C. Bradley, M. Hasan, M.B. Hursthouse, M. Motevalli, O.F.Z. Khan, R.G. Pritchard, J.O.

Williams, J. Chem. Soc. Chem. Commun. (1992) 575.[94] V.C. Arunasalam, S.R. Drake, M.B. Hursthouse, K.M.A. Malik, S.A.S. Miller, D.M.P. Mingos,

D.J. Otway, J. Chem. Soc. Dalton Trans. (1997) 1331.[95] A.P. Purdy, A.D. Berry, R.T. Holm, M. Fatemi, D.K. Gaskill, Inorg. Chem. 28 (1989) 2799.[96] J.A.T. Norman, G.P. Pez, J. Chem. Soc. Chem. Commun. (1991) 971.

Page 49: b diketone

327D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

[97] J.M. Buriak, L.K. Cheatham, R.G. Gordon, J.J. Graham, A.R. Barron, Eur. J. Solid State Inorg.Chem. 29 (1992) 43.

[98] United States Patent 5139999 (1992).[99] F.J. Hollander, D.H. Templeton, A. Zalkin, Acta Crystallogr. B29 (1973) 1303.

[100] H.A. Luten, M.B. Hursthouse, K.M.A. Malik, D.J. Otway, W.S. Rees Jr, Mater. Res. Soc. Symp.Proc. 415 (1996) 99.

[101] H.A. Luten, D.J. Otway, W.S. Rees, Jr., Inorg. Chem., in preparation.[102] J.A. Darr, Ph.D. thesis, University of London, 1995.[103] D.J. Otway, Ph.D. thesis, University of London, 1994.[104] D.C. Schulz, T.J. Marks, in: W.S. Rees Jr (Ed.), CVD of Non-Metals, VCH Publishers, 1996.[105] T.J. Marks, Pure Appl. Chem. 67 (1995) 313.[106] S.R. Drake, M.B. Hursthouse, K.M.A. Malik, S.A.S. Miller, D.J. Otway, Inorg. Chem. 32 (1993)

4464.[107] A.A. Drozdov, A. Pozhitkov, S.I. Troyanov, A. Pisarevskii, Polyhedron 15 (1996) 1731.[108] A.A. Drozdov, S.I. Troyanov, J. Phys. IV C5 (1995) 373.[109] A.A. Drozdov, S.I. Troyanov, A.P. Pisarevskii, Y.T. Struchkov, J. Phys. IV C5 (1995) 503.[110] N.P. Kuz’mina, A.A. Drozdov, T.V. Zotova, G.N. Kupriyanova, A.P. Pisarevskii, Y.T.

Struchkov, Russ. J. Coord. Chem. 20 (1994) 743.[111] J.A.P. Nash, J.C. Barnes, D.J. Cole-Hamilton, B.C. Richards, S.L. Cook, M.L. Hitchman, Adv.

Mater. Opt. Electron. 5 (1995) 1.[112] S.H. Shamilan, M.L. Hitchman, S.L. Cook, B.C. Richards, J. Mater. Chem. 4 (1994) 81.[113] A.Y. Kovalgin, F. Chabert-Rocabois, M.L. Hitchman, S.H. Shamlian, S.E. Alexandrov, J. Phys.

IV C5 (1995) 357.[114] B.C. Richards, S.L. Cook, D.L. Pinch, G.W. Andrews, J. Phys. IV C5 (1995) 407.[115] B.C. Richards, S.L. Cook, D.L. Pinch, G.W. Andrews, G. Lengeling, B. Schulte, H. Jurgensen,

Y.Q. Shen, P. Vase, T. Freltoft, C.I.M.A. Spee, J.L. Linden, M.L. Hitchman, S.H. Shamlian, A.Brown, Physica C 252 (1995) 229.

[116] G. Malandrino, I.L. Fragala, D.A. Neumayer, C.L. Stern, B.J. Hinds, T.J. Marks, J. Mater.Chem. 4 (1994) 1061.

[117] A.A. Drozdov, S.I. Troyanov, J. Chem. Soc. Chem. Commun. (1993) 1619.[118] A.A. Drozdov, S.I. Troyanov, Mater. Sci. Eng. B18 (1993) 139.[119] T.M. Polyanskaya, Y.V. Gatilov, T.N. Martynova, L.D. Nikulina, Russ. J. Struct. Chem. 33

(1992) 332.[120] T.N. Martynova, T.M. Polyanskaya, Y.V. Gatilov, L.D. Nikulina, S.V. Sysoev, A.N. Golubenko,

P.P. Semyannikov, V.A. Logvinenko, Russ. J. Gen. Chem. 63 (1993) 1182.[121] M. Motevalli, P. O’Brien, I.M. Watson, Polyhedron 15 (1996) 1865.[122] M. Motevalli, P. O’Brien, I.M. Watson, Acta Crystallogr. C52 (1996) 3028.[123] D.A. Neumayer, D.B. Studebaker, B.J. Hinds, C.L. Stern, T.J. Marks, Chem. Mater. 6 (1994) 878.[124] H.A.L. Luten, D.J. Otway, W.S. Rees Jr, Mater. Res. Soc. Symp. Proc. 415 (1996) 105.[125] D.L. Schulz, B.J. Hinds, D.A. Neumayer, C.L. Stern, T.J. Marks, Chem. Mater. 5 (1993) 1605.[126] D.L. Schulz, B.J. Hinds, C.L. Stern, T.J. Marks, Inorg. Chem. 32 (1993) 249.[127] A.A. Drozdov, S.I. Trojanov, A.P. Pisarevskii, Y.T. Struchkov, Polyhedron 13 (1994) 2459.[128] N. Hovnanian, J. Galloy, P. Miele, Polyhedron 14 (1995) 297.[129] A.A. Drozdov, S.I. Trojanov, Polyhedron 15 (1996) 1747.[130] J. Auld, A.C. Jones, A.B. Leese, B. Cockayne, P.S. Wright, P. O’Brien, M. Motevalli, J. Mater.

Chem. 3 (1993) 1203.[131] W.S. Rees Jr, H.A. Luten, M.W. Carris, C.R. Caballero, W. Hesse, V.L. Goedken, Mater. Res.

Soc. Symp. Proc. 310 (1993) 375.[132] A.A. Drozdov, S.I. Trojanov, Polyhedron 13 (1994) 1445.[133] A. Gleizes, D. Medus, S. Sans-Lenain, Mater. Res. Soc. Symp. Proc. 271 (1992) 919.[134] A.A. Drozdov, S.I. Trojanov, Russ. J. Coord. Chem. 20 (1994) 163.[135] F. Labrize, L.G. Hubert-Pfalzgraf, J. Vaissermann, C.B. Knobler, Polyhedron 15 (1996) 577.[136] R.A. Gardiner, D.C. Gordon, G.T. Stauf, B.A. Vaartstra, R. Ostrander, A.L. Rheingold, Chem.

Mater. 6 (1994) 1967.

Page 50: b diketone

328 D.J. Otway, W.S. Rees Jr / Coordination Chemistry Re6iews 210 (2000) 279–328

[137] B.A. Vaartstra, R.A. Gardiner, D.C. Gordon, R. Ostrander, A.L. Rheingold, Mater. Res. Soc.Symp. Proc. 335 (1994) 203.

[138] L.G. Hubert-Pfalzgraf, F. Labrize, C. Bois, J. Vaissermann, Polyhedron 13 (1994) 2163.[139] P. Miele, J.-D. Foulon, N. Hovnanian, Polyhedron 12 (1993) 209.[140] H. Sato, S. Sugawara, Inorg. Chem. 32 (1993) 1941.[141] D.G. Gilliland, M.L. Hitchman, S.C. Thompson, D.J. Cole-Hamilton, J. Phys. III France 2 (1992)

1381.[142] S.C. Thompson, D.J. Cole-Hamilton, D.G. Gilliland, M.L. Hitchman, Adv. Mater. Opt. Electron.

1 (1992) 81.[143] M.L. Hitchman, S.H. Shamlion, D.G. Gilliland, D.J. Cole-Hamilton, S.C. Thompson, S.L. Cook,

B.C. Richards, Mater. Res. Soc. Symp. Proc. 335 (1994) 249.[144] P. Tobaly, I.M. Watson, J. Chem. Thermo. 27 (1995) 1211.[145] I.M. Watson, M.P. Atwood, D.C. Cardwell, T.J. Cumberbatch, J. Mater. Chem. 4 (1994) 1393.[146] W.S. Rees Jr, C.R. Caballero, W. Hesse, Angew. Chem. Int. Ed. Engl. 31 (1992) 735.[147] I.M. Watson, M.P. Atwood, S. Haq, Super. Sci. Tech. 7 (1994) 672.[148] J.A.P. Nash, S.C. Thompson, D.F. Foster, D.J. Cole-Hamilton, J.C. Barnes, J. Chem. Soc. Dalton

Trans. (1995) 269.[149] W.S. Rees Jr, Introduction, in: W.S. Rees Jr (Ed.), CVD of Non-Metals, VCH Publishers, 1996.[150] W.S. Rees, Jr., H.A. Luten, S. Flanagan, 1996, unpublished results.

.