Avella 05 - Bcp Cflp

download Avella 05 - Bcp Cflp

of 27

Transcript of Avella 05 - Bcp Cflp

  • 7/31/2019 Avella 05 - Bcp Cflp

    1/27

    A cutting plane algorithm for the

    Capacitated Facility Location Problem

    Pasquale Avella Maurizio Boccia

    March 15, 2005

    RCOST Research Center on Software Technology, Universita del Sannio,

    C.so Garibaldi 107, 82100 Benevento, Italy, [email protected] di Ingegneria, Universita del Sannio, Piazza Roma 21, palazzo ex INPS,

    82100 Benevento, Italy, [email protected]

  • 7/31/2019 Avella 05 - Bcp Cflp

    2/27

    Abstract

    The Capacitated Facility Location Problem (CFLP) is to locate a set of facilities

    with capacity constraints, to satisfy at the minimum cost the order-demands of a set of

    clients.

    In this paper we present a reformulation ofCFLPbased on Mixed Dicut Inequalities,

    a family of knapsack inequalities of a mixed type, containing both binary and continuous

    (flow) variables. By aggregating flow variables, any Mixed Dicut Inequality turns into a

    binary knapsack inequality with a single continuous variable. We will refer to the convex

    hull of the feasible solutions of this knapsack problem as the Mixed Dicut polytope.

    We observe that the Mixed Dicut polytope is a rich source of valid inequalities for

    CFLP: basic families of valid CFLP inequalities, like Variable Upper Bounds, Cover,

    Flow Cover and Effective Capacity Inequalities, are valid for the Mixed Dicut polytope.

    Furthermore we observe that new families of valid inequalities for CFLP can be derived

    by the lifting procedures studied for the knapsack with a single continuous variable.

    To deal with large-scale instances, we have developed a Branch-and-Price algorithm,

    where the separation algorithm consists of the complete enumeration of the facets of the

    Mixed Dicut polytope for a set of candidate Mixed Dicut Inequalities. We observe that

    our procedure returns inequalities that dominate most of the known classes presented

    in the literature. We report on computational experience with instances up to 1000

    facilities and 1000 clients to validate the approach.

    Keywords: Capacitated Facility Location Problem, Mixed Dicut Inequalities, Facet-

    enumeration.

  • 7/31/2019 Avella 05 - Bcp Cflp

    3/27

  • 7/31/2019 Avella 05 - Bcp Cflp

    4/27

    and Flow Cover and Effective Capacity Inequalities, are valid for the Mixed Dicut

    polytope. Furthermore new families of valid inequalities can be derived by using the

    lifting procedures introduced by Marchand and Wolsey [17] for the knapsack with a

    single continuous variable.

    A Branch-and-Price algorithm is proposed to handle large scale instances. The

    LP-relaxation is solved by delayed column generation. The cutting plane generation

    consists of the complete enumeration of the facets of the Mixed Dicut polytope for a set

    of candidate base Mixed Dicut Inequalities. The procedure returns valid inequalities

    dominating most of the known classes presented in the literature.

    The remainder of the paper is organized as follows. In Section 2 we describe the

    standard formulation of CFLP. In Section 3 we review the literature concerning poly-

    hedral properties of CFLP. In Section 4 we present the reformulation of CFLP as a

    Fixed Charge Network Flow problem and introduce the family of the Mixed Dicut In-

    equalities. In Section 5 we review all the known families of valid inequalities for CFLP

    and prove that they are valid for the Mixed Dicut Polytope. In Section 6 we define

    a new class of valid inequalities by extending to the Mixed Dicut Polytope the results

    presented in [17] for the 0-1 Knapsack Problem with a Single Continuous Variable. In

    Section 7 we describe the facet-enumeration and the selection of candidate Mixed Dicut

    Inequalities. In Section 8 we describe the Branch-and-Cut-and-Price algorithm devel-

    oped to deal with large-scale instances. Finally in Section 9 we report on computational

    results validating the usefulness of the proposed approach.

    2 Problem formulation

    Let M = {1, . . . , m} be a set of facilities, N = {1, . . . , n} a set of clients and let

    G(M N, A) be a complete bipartite graph. Let uk be the capacity of the facility k

    and let dj be the demand of client j N. Let hk be the fixed cost of opening facility

    k M. Let ckj be the cost of sending one unit of demand from the facility k M to

    2

  • 7/31/2019 Avella 05 - Bcp Cflp

    5/27

    the client j N through the arc kj A and let fkj be the flow of the demand from

    facility k M to the client j N.

    A subset K M of facilities is feasible if the client demands can be assigned to the

    facilities in K while respecting the capacity bounds, i.e. if the following Transportation

    Problem, denoted as Transp(K), admits a feasible solution:

    min

    kK

    jN

    ckjfkj

    kK

    fkj = dj, j N

    jN

    fkj uk, k K (1)

    fkj 0, k M, j N (2)

    Let c(K) be the value of the optimal solution ofTransp(K) and let h(K) =

    kKhk

    be the sum of the fixed costs of the open facilities. The Capacitated Facility Location

    Problem (CFLP) is to find a feasible subset K M of open facilities, minimizing the

    objective function z(K) = h(K) + c(H(K)).

    Let yk be the binary variable associated with the facility k M, i.e. yk = 1 ifk is

    open (i.e.k K), 0 otherwise. Formulation F1 of CFLP is:

    min

    kM

    hkyk +

    kM

    jN

    ckjfkj

    kM

    fkj = dj, j N (3)

    jN

    fkj ukyk, k M (4)

    yk {0, 1}, k M

    fkj 0, k M, j N

    Constraints 3 require that the whole demand of each client be satisfied. Capacity

    constraints 4 require that no client can be supplied from a closed facility and that the

    total demand supplied from the facility k K does not exceed its capacity uk.

    3

  • 7/31/2019 Avella 05 - Bcp Cflp

    6/27

    3 Basic polyhedral results

    Let X(G,d,u) be the set of the integer feasible solutions of formulation F1 and let

    CAP(G,d,u) = conv(X(G,d,u)) be the Capacitated Facility Location Polytope. The

    dimension of the CAP(G,d,u) is |M| + |N| + |M| |N| if G is a complete bipartite

    graph [1]. In the following of this section we review the main classes of valid inequalities

    introduced in the literature. For any S N, we will denote d(S) =jS

    dj .

    3.1 Variable Upper Bounds

    Let k M, j N. The Variable Upper Bound

    fkj ukyk (5)

    is valid for CAP(G,d,u). The (5) can be strengthened to fkj djyk, if dj < uk.

    Proposition 3.1 ([1]) Let k M, j N. The Variable Upper Bound fkj djyk is

    facet-defining for CAP(G,d,u) ifhM

    uh maxhM

    uh > d(N) and dj < uk.

    3.2 Cover Inequalities

    Let C M be a subset of facilities and let C = M \ C. The set C is said a cover if

    kC

    uk < d(N). Since the capacity of the facilities in C is not large enough to satisfy the

    client demand, at least one of the facilities in C must be open and the Cover Inequality

    kC

    yk 1 (6)

    is valid for CAP(G,d,u). The cover C is minimal if each subset S C is not a cover.

    Proposition 3.2 (Aardal [1]) LetC M be a minimal cover and let umin = minkC

    uk

    be the minimum capacity of a facility in C. The Cover Inequality:

    kC

    yk 1

    is facet-defining for conv(X(G,d,u) {yk = 1, k M\ C}) if

    kM\C

    uk + umin > d(N).

    Sequential lifting can make the (6) facet-defining for CAP(G,d,u) [1].

    4

  • 7/31/2019 Avella 05 - Bcp Cflp

    7/27

    3.3 Flow Cover and Effective Capacity inequalties

    Let J N and let C M be a flow-cover, i.e. a subset of facilities with the property

    thatkC

    uk d(J) = > 0.

    Theorem 3.1 The Flow Cover Inequality

    kC

    jJ

    fkj +

    kC

    (uk )+(1 yk) d(J) (7)

    is valid for CAP(G,d,u).

    Aardal [1] proved that Flow Cover inequalities are facet-defining if maxiI{ui} >

    andkM

    uk > d(J)+urr I. Flow Cover Inequalities generalize the Residual Capacity

    Inequalities, introduced by Leung and Magnanti [16] for the special CFLP where all the

    facilites have the same capacity u.

    The same author introduced the family of the Effective Capacity Inequalities, that

    dominate Flow Cover Inequalities. Suppose the bipartite graph G(M N, A) is not

    complete and let Jk J be the subset of clients reachable by the facility k M.The effective capacity of the facility k is uk = min{uk, d(Jk)}. Let J N and let

    C M be an effective flow-cover for J, i.e. a subset of facilities with the property thatkM

    uk d(J) = > 0, maxkC

    uk.

    Theorem 3.2 The Effective Capacity Inequality

    kC

    jJk

    fkj +

    kC

    (uk )+(1 yk) d(J) (8)

    is valid for CAP(G,d,u).

    Aardal provides necessary and sufficient conditions guaranteeing that Effective Ca-

    pacity Inequalities are facet-defining for CAP(G,d,u).

    5

  • 7/31/2019 Avella 05 - Bcp Cflp

    8/27

    4 Fixed Charge Network Flow reformulation

    Let o be a supernode and let O = {ok : k M} be an additional set of arcs connecting

    o to M. Let xkj be the variable representing the capacity installed on the arc kj . With

    these additions, it is easy to see that CFLP is a Single Commodity Uncapacitated Fixed

    Charge Network Flow problem on the graph Go(o M N, O A), where the amount

    of flowjN

    dj must be sent from the source node o to the sink nodes N through the

    transhipment nodes M. A minor difference with the standard version is that capacities

    xij are not forced to be integral.

    min

    kM

    hkyk +

    kM

    jN

    ckjxkj

    kM

    fok =

    jN

    dj (9)

    jN

    fkj fok = 0, k M (10)

    kM

    fkj = dj, j N (11)

    fok ukyk, k M (12)

    fkj xkj , k M (13)

    yk {0, 1}, k M (14)

    fkj 0, k M, j N (15)

    xkj 0, k M, j N (16)

    Let K M and let J N. The set of arcs (K, J) = {ok O : k K} {kj

    A : k M \ K, j J} defines a dicut on Goseparating o and the node J. By Max

    Flow-Min Cut theorem it is easy to show that CFLP can be reformulated using the

    Mixed Dicut Inequalities introduced in Ortega and Wolsey [19].

    Proposition 4.1 LetK M and let J N. The Mixed Dicut Inequality

    kK

    ukyk +

    kM\K

    jJ

    xkj d(J) (17)

    6

  • 7/31/2019 Avella 05 - Bcp Cflp

    9/27

    is valid for CAP(G,d,u).

    Since the capacity xkj is fractional, in any optimal solution we will get xkj = fkj ,

    for any value of fkj and it follows that we can project out variables xkj and the Mixed

    Dicut Formulation F2 of CFLP is:

    min

    kM

    hkyk +

    kM

    jN

    ckjfkj

    kKu

    kyk +

    kM\K

    jJ f

    kj jJ d

    j, K M, J N (18)

    yk {0, 1}, k M (19)

    0 fkj dj, k M, j N (20)

    5 CFLP inequalities and the Mixed Dicut Polytope

    By letting s =

    kM\K

    jJ

    fkj , any Mixed Dicut Inequality (17) turns into a knapsack

    inequality with a single continuous variable. Let K M and J N and letkK

    ukyk +

    s d(J)} be a Mixed Dicut Inequality. Let Y(K, J) = {(y, s) Bn R+ :kK

    ukyk +

    s d(J)} be the set of incidence vectors of the feasible solutions and let CU T(K, J) =

    conv(Y(K, J)) be the Mixed Dicut Polytope. It is easy to prove that CU T(K, J) is

    full-dimensional. Studying CU T(K, J) can lead to tighter cutting planes families that

    strengthen formulations F1 and F2. In the following we observe that the families of

    valid inequalities described in Section 4 are valid for CU T(K, J) for some K M and

    J N.

    5.1 Variable Upper Bounds

    Proposition 5.1 Letk M and letj N. The Variable Upper Bound (5) fkj ukyk

    is valid for CU T({k}, {j}).

    7

  • 7/31/2019 Avella 05 - Bcp Cflp

    10/27

    Proof. By adding the equalitykM

    fkj = dj to the Variable Upper Bound fkj ukyk,

    we get the Mixed Dicut Inequality ukyk + s dj.

    5.2 Cover Inequalities

    Consider the dicut ({o} : M) = {ok : k M} formed by the arcs leaving the node o

    and entering the set M.

    Proposition 5.2 The Cover Inequality (6) is valid for CUT(M, N).

    Proof. Trivial, since CU T(M, N) = conv{y {0, 1}|M| :kM

    ukyk d(N)} is a

    knapsack polytope.

    5.3 Flow Cover Inequalities

    In this subsection we show that the Flow Cover Inequality can be derived by sequential

    lifting as a valid inequality for the Mixed Dicut Polytope. The following two lemmas

    can be used to down lift a valid inequality for a Mixed Dicut Polytope. Theorem 5.1

    shown that such an inequality is a Flow Cover Inequlitiy (7).

    Lemma 5.1 The optimal solution of the knapsack problem:

    min z =

    kS

    (uk )+yk + s

    s +

    kS

    ukyk d(J)

    kC\(Sh)

    uk uh (21)

    s 0

    yk {0, 1}, k S

    is yk = 1 for k S, s = (uh )+. It follows that the optimalsolution value is

    z =

    kS(uk )+ + (uh )

    +.

    Proof. Since =kC

    uk jJ

    dj, we pose d(J)

    kC\S

    uk = +kS

    uk, so we can

    write:

    8

  • 7/31/2019 Avella 05 - Bcp Cflp

    11/27

    min z = +

    kS

    (uk )+yk

    s +

    kS

    ukyk +

    kS

    uk uh

    s 0

    yk {0, 1}, k S

    Suppose now that yk = 0 in any optimal solution. If we set yk = 1 for k = S, we

    must add the yk coefficient (uk ), but at the same time s decreases by uk. The netamount (uk )

    + uk is negative, a contradiction.

    Lemma 5.2 Let S C and let s +

    kS(uk )+yk

    kS(uk )

    + be a valid

    inequality for CU T(C, J) {yk = 1, k C\ S}. Let h C\ S. The inequality

    s +

    kS

    (uk )+yk + hyh

    kS

    (uk )+ +

    is valid for CU T(C, J) {yk = 1, k C\ (S h)} if h = (uh )+.

    Proof. Let z be the optimal solution of the knapsack problem (21). Using the standard

    procedure for down-lifitng, the inequality s+kS

    (uk)+yk+hyh

    kS(uk)

    ++

    is valid iff = z

    kS(uk)+. By lemma 5.1 we have that z =

    kS(uk)

    +(uh

    )+ and the proof is complete.

    Now we are able to prove the following theorem.

    Theorem 5.1 The Flow Cover Inequality (7) is valid for CUT(C, J)

    Proof. The Inequality s 0 is valid for CU T(C, J) {yk = 1, k C}. Applying

    iteratively lemma 5.2 to compute lifting coefficients, we have that the inequality

    s +

    kC

    (uk )+yk

    kC

    (uk )+ (22)

    is valid for CU T(C, J). By subtracting the equalitykM

    jJ = d(J) to the (22), we

    obtain the Flow Cover InequalitykC

    jJ

    fkj +kC

    (uk )+(1 yk) d(J) .

    9

  • 7/31/2019 Avella 05 - Bcp Cflp

    12/27

    5.4 Effective Capacity Inequalities

    Let K M be a subset of facilities and suppose that Go(M N, O A) is sparse. Let

    Jk N be the subset of clients reachable by the facility k K and let J = kKJk be

    the subset of clients reached by all the facilities in K. The set of arcs {ok O : k

    C}{kj A : k C\M, j Jk} define a mixed dicut on Go. Let uk = min{uk, d(Jk)}.

    As in [1], the Mixed Dicut Inequality defined by K and J can be strengthened as:

    kK

    ukyk + s

    jJ

    dj

    that is valid for CAP(G,d,u). The Effective Mixed Dicut Polytope is:

    ECUT(K, Jk) = conv{yk {0, 1}, k K, s R+ :

    kK

    ukyk + s d(J)

    Studying this polytope we can define new cutting planes families valid for CAP(G,d,u).

    Particularly, if C M is an effective flow-cover (section 3.3), using the lifting proce-

    dure described in Section (5.3) for the Flow Cover Inequalities, we obtain the Effective

    Capacity Inequality

    kC

    jJk

    fkj +

    kC

    (uk )+(1 yk) d(J) (23)

    defined in section (3.3).

    6 More families of valid inequalities

    Let Ys(K, J) = {(y, s) Y : s = s} be the subset of the incidence vectors of the

    feasible solutions of a Mixed Dicut Inequality having the property that s = s. Let

    CUTs(K, J) = conv(Y(K, J)).

    Another way to generate facets of CU T(K, J) is to set s = s, consider facets of

    the underlying knapsack polytope CU Ts(K, J) and reintroduce the continuous variable

    s by lifting. This procedure leads to new families of valid inequalities for CUT(K, J)

    and, consequently, for CAP(G,u,d). Marchand and Wolsey [17] introduced a lifting

    procedure for the case wherekK

    uk d(J) and s = 0.

    10

  • 7/31/2019 Avella 05 - Bcp Cflp

    13/27

    Theorem 6.1 (Marchand and Wolsey [17]) LetCU T0(K, J) = conv{(y, s) Y(K, J) :

    s = 0} and letkK

    kyk 0 be a valid inequality for CU T0(K, J). The inequality

    kK

    kyk 0 s

    (24)

    is valid for CU T(K, J) iff mins>0

    s0(s)

    , where

    (s) = min{

    kK

    kyk :

    kK

    ukyk d(J) s, y B|K|}

    Proof. We will give a geometric proof of the validity of the (24). (s) is a step function

    (fig. 1). The inequalitykK

    kyk (s) is valid for CU T(K, J) if (s) (s), for each

    s R.

    Let s be such that maxs>0

    0(s)s

    = 0(s)

    s. Let (s) = 0

    s

    be the line of minimum

    slope intersecting (s) and crossing the points (0, 0) and (s, (s)). It is easy to observe

    that (s) (s) and the proof is complete.

    Figure 1: The function (s)

    The lifting procedure can be generalized by removing the restriction thatkK

    uk

    d(J).

    Let smin = max(0, d(J) kK

    uk) be the minimum value of s that guarantees that

    the set of the feasible solutions Y(K, J) is nonempty.

    11

  • 7/31/2019 Avella 05 - Bcp Cflp

    14/27

    Theorem 6.2 Lets smin and letkK

    kyk s be a valid inequality for the knapsack

    polytope CU Ts(K, J).

    The inequality

    kK

    kyk s s smin

    (25)

    is valid for CU T(K, J) if mins>smin

    ssmins(s)

    , where

    (s) = min{

    kK

    kyk :

    kK

    ukyk d(J) s, y B|K|} (26)

    Proof. The function (s) is defined for s smin. Let s be such that maxs>smins(s)ssmin =

    s(s)

    ssmin. Let s

    ssmin

    be the line of minimum slope intersecting (s) and crossing

    the points (smin, (s)) and (s, (s)) (figure 2). It is immediate that (s) s

    ssmin

    and the proof is complete.

    Figure 2: The function (s) in the case

    kKuk < d(J)

    7 The separation routine

    The above results suggest that the facial structure of CU T(K, J) can be exploited to

    generate strong cutting planes. We propose a twp-step separation algorithm based

    12

  • 7/31/2019 Avella 05 - Bcp Cflp

    15/27

    on the enumeration of the facets of CU T(K, J). The first step consists of choosing a

    Mixed Dicut InequalitykK

    ukyk +

    kM\K

    jJ

    xkj d(J), with K suitably small, as a

    base inequality. Then for each base inequality we enumerate the feasible solutions of

    Y(K, J) and run a facet-enumeration routine to list the facets ofCU T(K, J), returning

    violated cutting planes.

    An accurate selection of the base inequalities and a fast enumeration procedure of

    the feasible solutions are crucial to the success of the separation algorithm.

    7.1 Selection of base inequalities

    Let (y, f) be the current fractional solution. The procedure to select candidate base

    inequalities is inspired by the separation heuristic described in [2] for the Flow Cover

    Inequalities and is based on the following observations.

    Remark 7.1 A valid inequality for CU T(K, J) can be violated by the (y, f) only if

    at least one of the variables yk, k K, has a fractional value.

    Remark 7.2 The chances of finding violated a valid inequality for CU T(K, J) in-

    crease if s is small (the smaller the s, the larger the r.h.s. of the knapsack inequalitykK

    ukyk+ d(J) s).

    Remark 7.3 The chances of finding a violated valid inequality for CU T(K, J) increase

    if we choose K and J such that the facilities in K serve only the clients in J in the

    current fractional solution.

    The following heuristic attempts to generate base inequalities according to the re-marks (7.1), (7.2) and (7.3). The selection procedure is iterated for each triple of

    facilities K = {k1, k2, k3} M such that there exists at least a k with 0 < ykj < 1.

    The main steps of the procedure are summarized below. The facet-enumeration routine

    is efficient only ifK is suitably small. Let maxK denote the maximum number of y-

    variables in a base inequality used for the facet enumeration. Computational experience

    showed us that a good choice is to set maxK = 7.

    13

  • 7/31/2019 Avella 05 - Bcp Cflp

    16/27

    Procedure 7.1 (Selection of the base inequalities)

    Initialize K and J

    0) LetK = {k1, k2, k3} be a set of facilities with the property that 0 < yk1 < 1.

    1) LetJ be defined by all the clients j J such thatkK

    fkj 0.01dj

    2) Generate the base inequalitykK

    ukyk + s d(J).

    Enlarge K

    3) Letk = arg maxkM\K

    jJfkj. Add k to K.

    4) Add to J all the clients j M \ J such thatkK

    fkj 0.01dj.

    5) If |K| maxK,kK

    ukyk + s d(J) is a base inequality else STOP.

    Adjust J

    6) For each j J compute (j) =

    kM\K

    fkj .

    7) Letjmin = arg maxjJ

    (j).

    8) IfkK

    uk < d(J), remove jmin from J.

    7) If |K| maxK generate the base inequalitykK

    ukyk + s d(J) and go to

    step 3), else STOP.

    7.2 Enumeration of the feasible solutions satisying a base in-

    equality

    Let K M, J N and let Y(K, J) denote the set of the feasible solutions satisfying

    the Mixed Dicut Inequality:

    kK

    ukyk + s d(J). (27)

    For any partial solution y, let smin(y) = max(0, d(J) kK

    ukyk) be the minimum

    value of s that makes the solution (y, s) feasible for the (27). We refer to any solution

    (y, smin(y)) as a minimal feasible solution of the (27) and we denote by Ysmin(K, J) =

    14

  • 7/31/2019 Avella 05 - Bcp Cflp

    17/27

    {(y, s) Y(K, J) : s = smin} the set defined by the minimal feasible solutions of the

    (27). In this section we will prove that the facets of CU T(K, J) are in one-to-one

    correspondence with a subset of the facets of conv(Ysmin(K, J)). We observe that the

    polytope conv(Ysmin(K, J)) is full-dimensional.

    Lemma 7.1 A inequalitykK

    kyk + s is valid for CU T(K, J) only if 0.

    Proof. LetkK

    kyk + s be a valid inequality for CU T(K, J) and let (y, s)

    Y(K, J) be a feasible solution satisfying the (27). If < 0, it is always possible to

    set s large enough (and the solution remains feasible) such thatkK

    kyk + s < , a

    contradiction.

    The following theorem proves that any facet ofCU T(K, J) is also a facet ofconv(Ysmin(K, J)).

    Theorem 7.1 A inequality

    kK

    kyk + s (28)

    is facet-defining for conv(Ysmin(K, J)) if it is facet-defining for CUT(K, J).

    Proof. IfkK

    kyk + s is valid for CU T(K, J) then > 0. IfkK

    kyk + s is

    facet-defining for CU T(K, J), there exist |K| +1 linearly independent feasible solutions

    satisfying the (28) as an equality (roots).

    Let (y, s) be a root of the (28) and suppose that s > smin. Since (y, s) is a root, we

    havekK

    kyk + s = . But (y, smin) is still a feasible solution and, since 0, it

    violates the (28), i.e.kK

    kyk + smin < , a contradiction.

    It follows that all the |K| + 1 roots are of the form (y, sminy) and belong toYsmin(K, J), so we can conclude that the (28) is facet-defining for conv(Ysmin(K, J)).

    Theorem 7.2 Let

    kK

    kyk + s (29)

    be a facet of conv(Ysmin(K, J)). The (29) is facet-defining for CU T(K, J) if and only

    if 0.

    15

  • 7/31/2019 Avella 05 - Bcp Cflp

    18/27

  • 7/31/2019 Avella 05 - Bcp Cflp

    19/27

    promising initial set of columns. In our case we adopt the lagrangian core selection

    strategy presented in [4]. This strategy use the lagrangean reduced costs in order to

    select the variables of the core problem.

    The branching strategy is to set node variables yu to 1 if facility u V is open, 0

    otherwise. The node selection criterion is best-bound. The variable selection criterion

    is to choose the most fractional node variable, i.e. the variable whose fractional value

    is closest to 0.5.

    Finally we use standard reduced cost fixing to reduce the size of the problem.

    9 Computational results

    In this section we report on the computational experience with the Branch-and-Cut-and-

    Price algorithm. We ran the experiments on a Pentium IV 1.7 Ghz Personal Computer,

    with 512 Mb RAM and we used Cplex 8.1 as LP solver and the routine Qhull [7],

    developed by the Geometric Center of University of Minnesota, as facet-generation

    routine. In the selection of base inequalities we found useful to consider only MixedDicut Inequaalites with |K| 9.

    The test instances were randomly generated according to Cornuejols, Sridharan and

    Thizy ([13]), Aardal ([1], [2]) and Barahona and Chudak ([6]). The generation procedure

    is summarized below:

    a) Points representing the clients and the facilities are uniformly randomly gener-

    ated in a unit square. Transportation costs per unit flow are then computed by

    multiplying the euclidean distances by 10.

    b) Demands are drawn from U[5, 35] i.e. they are uniformly distributed in the inter-

    val [5, 35].

    c) Capacities uk are drawn from U[10, 160] and then are scaled by using the capacity

    ratio r =

    kMuk/d(J). In our experiments we set r = 5, 10, 15, 20.

    17

  • 7/31/2019 Avella 05 - Bcp Cflp

    20/27

    d) Fixed costs are generated according to the formula hk = U[0, 90]+ U[100, 110], to

    take into account the economies of scale.

    Moreover, we observe that in [13, 1, 2] the ratio r is set to 2, 3, 5, 10. We use larger

    values of r because for sizes we deal with, setting r = 2 or r = 3 leads to instances

    easily solvable by the lagrangean heuristic [4].

    The test instances are organized into 4 groups, each including instances of the same

    size. The sizes (|M| |N|) here considered are: 300 300, 500 500, 700 700 and

    1000 1000. Each class of instances includes four different sets of problems according

    to the ratio r. We used ratio indices r of 5, 10, 15 and 20 respectively.

    The results are shown in tables 1-4, whose format is the following. Column Ratio is

    the value ofr, UBHeur is the initial upper bound and column U BHeur Time is the time

    spent to compute the initial upper bound. Columns LP and LPCuts report respectively

    on the value of the LP relaxation and on the value of the LP relaxation after the addition

    of cutting planes. Column %Gap shows the % of the gap closed by the cut generation

    routine at the root node, i.e. % Gap =(LPCutsLP)/(BU BLP). Columns BLB abd

    BU B report respectively on the best lower bound and on the best upper bound yielded

    by Branch-and-Cut-and-Price within the time limit. Columns B&C&P and B&C&P

    Time report respectively on the number of nodes and on the total computation time

    for the Branch-and-Cut-and-Price-procedure.

    The time limit for the Branch-and-Cut-and-Price was set to 100000 seconds. All

    the instances in the test bed were solved to optimality, with the exceptions of I1000-8,

    I1000-11 and I1000-12, where, however, the algorithm yielded a very small gap. We

    observe that the cut generation strategy has led in most of the test to a significant

    reduction of the gap.

    We observe that the reduction of the gap is small for r = 5. This because the LP

    lower bound is already very close to the optimal solution, so that it is more difficult to

    find violated cutting planes by the LP solution. For these cases the pricing approach

    assume a more significant role than cutting plane generation. On the other hand, for

    18

  • 7/31/2019 Avella 05 - Bcp Cflp

    21/27

    higher values of r, also the initial gap increases and our cut generation strategy turned

    out to be effective in solving the CFLP instances.

    Tables 1-2 report also on lower bound at the root node computed by CPLEX 8.1

    solver (CPLEXroot), and the total time necessary to CPLEX to solve the instances

    (CPLEXTime). We remark that even if Cplex implements a flow cover separation

    procedure, it is not able to appreciably raise the lower bound.

    Acknowledgements

    The authors wish to thank Antonio Sassano and Sara Mattia for the helpful suggestions.

    References

    [1] K. AARDAL 1992. On the solution of one and two-level capacitated facility location

    problems by the cutting plane approach. Ph.D Thesis Universit Catholique de

    Louvain, Lovain-la-Neuve, Belgium.

    [2] K. AARDAL 1998. Capacitated Facility Location: Separation Algorithms and

    Computational Experience, Mathematical Programming, 81, 149-175.

    [3] K. AARDAL, Y. POCHET, L.A. WOLSEY 1995. Capacitated Facility Location:

    Valid Inequalities and facets. Mathematics of Operations Research 20, 562-582.

    [4] P. AVELLA, M. BOCCIA, A. SFORZA, I. VASILIEV 2004. An effective heuristic

    for large-scale Capacitated Plant Location problems, Technical Report, available

    on line at http://www.diima.unisa.it/boccia/.

    [5] R. ANBIL, F. BARAHONA 2000. The volume algorithm: producing primal so-

    lutions with a subgradient method. Mathematical Programming, published online

    March 15.

    19

  • 7/31/2019 Avella 05 - Bcp Cflp

    22/27

    [6] F. BARAHONA, F. A. CHUDAK 1999. Near-optimal solution to large scale facility

    location problems, internal report IBM research division T. J. Watson Research

    Center , RC 21606.

    [7] C.B. BARBER, D.P. DOBKIN, H.T. HUHDANPAA 1996. The Quickhull algo-

    rithm for convex hulls. ACM Trans. on Mathematical Software, 22(4):469-483,

    http://www.qhull.org.

    [8] J. E. BEASLEY 1993, Lagrangean Heuristics for Location Problems, EJOR 65,

    383-399.

    [9] D. BERTSIMAS, J.N. TSITSIKLIS 1997. Introduction to Linear Optimization.

    Athena Scientific, Belmont, Massachussetts.

    [10] S. CERIA, C. CORDIER, H. MARCHAND, L.A. WOLSEY 2002. Cutting Planes

    for Integer Programs with General Integer Variables. Discrete Applied Mathemat-

    ics, 123, 397-446.

    [11] T. CHRISTOF, G. REINELT 1997. Low-dimensional linear ordering polytopes.

    Tech. Rep. Institut fur Angewandte Mathematik, Universitat Heidelberg.

    [12] F. A. CHUDAK, D. P. WILLIAMSON 1999. Improved Approximation Algorithms

    for Capacitated Facility Location Problems, 7th International IPCO Conference

    Proceedings, 99-113.

    [13] G. CORNUEJOLS, R. SRIDHARAN, J.M.THIZY 1991. A comparison of heuris-

    tics and relaxations for the Capacitated Plant Location Problem. European Journal

    of Operational Research, 50, 280-297.

    [14] A. KLOSE 2001. A Column Generation Procedure for the Capacitated Facility

    Location Problem. EURO XVIII conference on Operational Research, Erasmus

    University Rotterdam, July 9-11.

    20

  • 7/31/2019 Avella 05 - Bcp Cflp

    23/27

    [15] M. R. KORUPOLU, C. G. PLAXTON, R. RAJARAMAN 1998. Analysis of a

    Local Search Heuristic for Facility Location Problems, DIMACS Technical Report

    98-30.

    [16] J.M.Y. LEUNG, T.L. MAGNANTI 1989. Valid Inequalities and Facets of the Ca-

    pacitated Plant Location Problem. Mathematical Programming, 44, 271-291.

    [17] H. MARCHAND, L.A. WOLSEY 1999. The 0-1 knapsack problem with a single

    continuous variable. Mathematical Programming, 85, 15-33.

    [18] T. L. MAGNANTI, P. MIRCHANDANI, R. VACHANI 1993. The convex hull of

    two core capacitated network design problems. Mathematical Programming, 60,

    233-250.

    [19] F. ORTEGA, L. WOLSEY 2000. A Branch and Cut Algorithm for the Single

    Commodity Uncapacitated Fixed Charge Network Flow Problem. Networks 41,

    143-158.

    21

  • 7/31/2019 Avella 05 - Bcp Cflp

    24/27

    Name

    Ratio

    UBHeur

    UBHeur

    LP

    CPLEXroot

    LPCuts

    %

    Gap

    BLB

    BUB

    B&C&P

    B&C&P

    Tot.Time

    CPLEXTime

    Ti

    me(secs.)

    nodes

    Time(secs.)

    (secs.)

    (secs.)

    I300-1

    5

    16350,6

    6

    13,1

    4

    16292

    16293,0

    9

    16296,4

    9

    7,6

    5

    16350,6

    6

    16350,6

    6

    374

    432,4

    3

    445,5

    5

    1019.2

    0

    I300-2

    5

    15948,4

    4

    30,5

    3

    15862,2

    1

    15886.0

    6

    15894,3

    9

    37,3

    2

    15948,4

    4

    15948,4

    4

    904

    873,7

    1

    904,4

    5

    1531,7

    0

    I300-3

    5

    15474,8

    4

    13,7

    7

    15414,9

    5

    15401,7

    1

    15438,7

    3

    39,7

    1

    15474,8

    4

    15474,8

    4

    248

    307,3

    6

    321,1

    3

    1168,0

    0

    I300-4

    5

    17989,9

    7

    16,3

    5

    17926

    17927,6

    9

    17938,3

    9

    19,3

    7

    17989,9

    7

    17989,9

    7

    534

    650,8

    6

    667,2

    1

    1367,0

    6

    I300-5

    5

    18037,6

    1

    17,6

    1

    17962,8

    17966,7

    3

    17982

    25,6

    7

    18037,6

    1

    18037,6

    1

    570

    850,1

    3

    867,7

    4

    1057,8

    4

    I300-6

    10

    11255,4

    8

    5,7

    3

    11177,5

    4

    11177,8

    4

    11209,5

    4

    43,4

    5

    11251,1

    9

    11251,1

    9

    310

    624,0

    5

    629,7

    8

    1150,4

    1

    I300-7

    10

    11393,2

    9

    8,6

    2

    11307,6

    1

    11308,6

    4

    11343,4

    4

    42,2

    11392,5

    2

    11392,5

    2

    464

    657,5

    2

    660,1

    4

    1689,5

    0

    I300-8

    10

    11377,3

    4

    7,5

    8

    11331,0

    9

    11333,1

    8

    11347,3

    1

    35,0

    7

    11377,3

    4

    11377,3

    4

    46

    120,5

    6

    128,1

    4

    559,3

    9

    I300-9

    10

    10980,0

    5

    8,2

    9

    10787,8

    1

    10790,3

    5

    10830,6

    47,4

    2

    10878,0

    5

    10878,0

    5

    198

    785,7

    7

    794,0

    6

    1437,8

    9

    I300-1

    0

    10

    11265,1

    3

    7,4

    2

    11174,3

    3

    11183,1

    8

    11208,8

    58,9

    8

    11232,7

    7

    11232,7

    7

    44

    152,9

    2

    160,3

    4

    558,9

    4

    I300-1

    1

    15

    10024,4

    7

    6,6

    4

    9977,1

    4

    9980,0

    5

    10003,4

    56,1

    1

    10023,9

    4

    10023,9

    4

    26

    90,7

    2

    97,3

    6

    268.7

    2

    I300-1

    2

    15

    9398,1

    9

    6,6

    1

    9300,6

    6

    9304,2

    1

    9312,0

    3

    31,6

    9336,6

    4

    9336,64

    82

    230,2

    5

    236,8

    6

    311.0

    8

    I300-1

    3

    15

    10107,9

    5

    6,5

    3

    9980,7

    3

    9981,7

    3

    10016,5

    0

    45,5

    4

    10058,4

    9

    10058,4

    9

    242

    157,0

    3

    202,5

    7

    699,2

    0

    I300-1

    4

    15

    9768,7

    2

    7,5

    5

    9669,6

    4

    9670,3

    2

    9688,5

    1

    63,5

    1

    9699,3

    5

    9699,35

    14

    331,6

    4

    339,1

    9

    481.9

    7

    I300-1

    5

    15

    9909,3

    5,6

    6

    9788,4

    9798,2

    1

    9823,1

    2

    64,5

    7

    9842,1

    7

    9842,17

    26

    131,0

    6

    136,7

    2

    253,8

    8

    I300-1

    6

    20

    9331,7

    7

    4,7

    9

    9096,0

    7

    9102,6

    5

    9145,0

    8

    78,1

    4

    9158,7

    9

    9158,79

    16

    120,0

    5

    124,1

    2

    239,0

    9

    I300-1

    7

    20

    9227,5

    6

    5,4

    8

    9133,8

    7

    9135,2

    1

    9148,7

    5

    39,3

    7

    9171,6

    7

    9171,67

    52

    313,5

    2

    319

    382,8

    9

    I300-1

    8

    20

    9584,0

    7

    5,2

    5

    9533,7

    1

    9535,8

    0

    9538,4

    9

    24,0

    4

    9553,5

    9

    9553,59

    18

    102,1

    4

    107,3

    9

    323.8

    9

    I300-1

    9

    20

    9111,4

    5,1

    4

    9013,6

    9016,5

    2

    9041,7

    9

    66,7

    4

    9053,7

    1

    9053,71

    28

    221,5

    3

    226,6

    7

    302,2

    1

    I300-2

    0

    20

    9068,4

    2

    4,9

    2

    9044,7

    5

    9044,8

    3

    9046,1

    9

    91,1

    4

    9046,3

    3

    9046,33

    8

    9,1

    9

    14,1

    1

    78.0

    6

    Table1:Computationalresultsfor

    testinstanceswith300facilitiesan

    d300clients

    22

  • 7/31/2019 Avella 05 - Bcp Cflp

    25/27

    Name

    Ratio

    UBHeur

    UBHeur

    LP

    CPLEXroot

    LPCuts

    %

    Gap

    BLB

    BUB

    B&C&P

    B&C&P

    Tot.Time

    CPLEXTime

    Ti

    me(secs.)

    nodes

    Time(secs.)

    (secs.)

    (secs.)

    I500-1

    5

    26412,4

    1

    36,6

    26374,6

    1

    26374,8

    5

    26382,5

    2

    20,9

    26412,4

    1

    26412,4

    1

    458

    1267,4

    2

    1304,0

    2

    7924.8

    3

    I500-2

    5

    28144,8

    3

    109,3

    6

    28082,0

    1

    28082,1

    9

    28106,7

    7

    51,0

    1

    28130,7

    4

    28130,7

    4

    2144

    5106,7

    1

    5216,8

    7

    18621,5

    5

    I500-3

    5

    27915,1

    2

    80,1

    6

    27857,0

    5

    27857,0

    5

    27873,7

    2

    35,1

    2

    27904,5

    1

    27904,5

    1

    1114

    2595,6

    1

    2675,7

    7

    5277,4

    4

    I500-4

    5

    28159,0

    3

    128,2

    3

    28093,0

    8

    28095,7

    0

    28118,1

    2

    37,3

    8

    28159,0

    3

    28159,0

    3

    1332

    2548,8

    9

    2677,1

    2

    9524,7

    2

    I500-5

    5

    24702,7

    7

    136,1

    2

    24645,6

    3

    24645,8

    6

    24673,9

    5

    49,5

    6

    24702,7

    7

    24702,7

    7

    1872

    4715,6

    1

    4851,7

    3

    15085,5

    9

    I500-6

    10

    15756,8

    2

    13,7

    6

    15672,3

    6

    15674,7

    9

    15726,2

    5

    63,8

    1

    15756,8

    2

    15756,8

    2

    128

    844,2

    7

    858,0

    3

    6426,5

    9

    I500-7

    10

    16110,8

    22,4

    7

    16029,0

    1

    16030,0

    9

    16076,9

    4

    59,7

    1

    16109,2

    8

    16109,2

    8

    436

    2420,7

    7

    2443,2

    4

    8379.3

    0

    I500-8

    10

    16041,7

    3

    24,8

    5

    15969,9

    4

    15970,5

    7

    16011,2

    2

    57,5

    16041,7

    3

    16041,7

    3

    458

    3375,3

    1

    3300,1

    6

    9434,3

    3

    I500-9

    10

    16327,7

    1

    48,9

    5

    16237,4

    7

    16238,3

    3

    16265,1

    30,6

    1

    16327,7

    1

    16327,7

    1

    2076

    4277,3

    4326,2

    5

    28226,2

    8

    I500-1

    0

    10

    15815,1

    3

    19,3

    7

    15751,9

    1

    15752,0

    2

    15780,0

    1

    44,4

    5

    15815,1

    3

    15815,1

    3

    176

    1226,7

    8

    1246,1

    5

    4709,1

    9

    I500-1

    1

    15

    13442,9

    1

    17,7

    6

    13406,0

    1

    13406,2

    5

    13421,3

    3

    48,3

    1

    13437,7

    2

    13437,7

    2

    48

    243,5

    3

    261,2

    9

    1292,3

    7

    I500-1

    2

    15

    14698,0

    3

    33,7

    1

    14610,1

    14610,5

    2

    14651,3

    63,4

    6

    14675,0

    2

    14675,0

    2

    152

    1018,9

    7

    1052,6

    8

    3401,3

    9

    I500-1

    3

    15

    13667,2

    3

    12,7

    1

    13631,3

    5

    13631,3

    8

    13640,2

    7

    25,5

    6

    13666,2

    5

    13666,2

    5

    78

    398,5

    6

    411,2

    7

    2732,6

    4

    I500-1

    4

    15

    13595,1

    21,7

    4

    13514,9

    3

    13516,2

    5

    13542,5

    3

    42,4

    1

    13580,0

    1

    13580,0

    1

    130

    1486,0

    6

    1507,8

    3909,2

    3

    I500-1

    5

    15

    13930,6

    8

    35,6

    6

    13833,4

    2

    13834,1

    9

    13858,2

    9

    39,2

    6

    13896,7

    6

    13896,7

    6

    104

    351,0

    6

    386,7

    2

    4954,7

    2

    I500-1

    6

    20

    12786,2

    9

    8,5

    9

    12492,6

    8

    12493,6

    4

    12552,6

    65,2

    7

    12584,4

    9

    12584,4

    9

    140

    921,8

    6

    930,4

    5

    2503,0

    6

    I500-1

    7

    20

    13347,4

    17,3

    8

    13290,2

    6

    13291,3

    1

    13323,1

    57,4

    7

    13347,4

    13347,4

    80

    775,6

    4

    793,0

    2

    1972,2

    3

    I500-1

    8

    20

    12831,1

    2

    14,3

    8

    12780,1

    6

    12780,7

    5

    12810,1

    58,7

    5

    12831,1

    2

    12831,1

    2

    66

    407,6

    1

    421,9

    9

    1241,2

    2

    I500-1

    9

    20

    13489,6

    1

    14,4

    1

    13450,6

    3

    13451,7

    2

    13469,2

    9

    47,8

    7

    13489,6

    1

    13489,6

    1

    62

    334,4

    7

    348,8

    8

    1635,1

    1

    I500-2

    0

    20

    12342,2

    6

    14,7

    5

    12312,4

    6

    12311,5

    1

    12326,9

    4

    48,5

    9

    12342,2

    6

    12342,2

    6

    24

    257,6

    6

    272,4

    1

    1267,2

    7

    Table2:Computationalresultsfor

    testinstanceswith500facilitiesan

    d500clients

    23

  • 7/31/2019 Avella 05 - Bcp Cflp

    26/27

    Name

    Ratio

    UBHeur

    UBHeur

    LP

    LPCu

    ts

    %

    Gap

    BLB

    BUB

    B

    &C&P

    B&C&P

    Tot.Time

    Time(secs.)

    nodes

    Time(secs.)

    (secs.)

    I700-1

    5

    36908,5

    8

    162,2

    2

    36839,9

    6

    36859,4

    9

    28,4

    6

    36905,9

    3

    36905,9

    3

    1600

    9874,7

    4

    10036,1

    9

    I700-2

    5

    34311,7

    1

    188,4

    4

    34250,1

    6

    34274,8

    7

    40,1

    5

    34311,7

    1

    34311,7

    1

    3820

    14823,7

    8

    15012,2

    2

    I700-3

    5

    34294,6

    3

    195,1

    4

    34253,7

    3

    34267,2

    6

    33,0

    8

    34294,6

    3

    34294,6

    3

    1036

    2748,2

    2

    2943,3

    6

    I700-4

    5

    380

    90,9

    263,2

    3

    38029,8

    7

    38046,5

    7

    27,3

    6

    38090,9

    38090,9

    2400

    8703,5

    6

    8966,7

    9

    I700-5

    5

    378

    02,1

    309,9

    9

    37741,1

    2

    37759,6

    5

    30,3

    9

    37802,1

    37802,1

    3112

    15369,7

    3

    15679,7

    2

    I700-6

    10

    19927,3

    4

    50,7

    9

    19821,9

    7

    19854,3

    8

    36,5

    4

    19910,6

    7

    19910,6

    7

    3368

    23088,9

    4

    23139,7

    3

    I700-7

    10

    212

    97,3

    49,7

    8

    21195,9

    3

    21233,1

    5

    36,7

    2

    21297,3

    21297,3

    1808

    17096,0

    6

    17145,8

    4

    I700-8

    10

    20678,8

    7

    44,0

    9

    20592,1

    8

    20621,6

    5

    43,4

    8

    20659,9

    6

    20659,9

    6

    410

    5495,9

    2

    5540,0

    1

    I700-9

    10

    20990,2

    7

    86,3

    20894,1

    9

    20920,6

    9

    30,9

    3

    20979,8

    8

    20979,8

    8

    1638

    18050,7

    5

    18137,0

    5

    I700-1

    0

    10

    22

    060

    49,5

    1

    21960,8

    8

    22015,4

    8

    57,7

    6

    22055,4

    1

    22055,4

    1

    1872

    27235,6

    1

    27285,1

    2

    I700-1

    1

    15

    17164,3

    1

    22,9

    9

    17005,2

    4

    17056,5

    6

    44,6

    6

    17120,1

    5

    17120,1

    5

    5022

    64296,5

    3

    64319,5

    2

    I700-1

    2

    15

    18130,4

    5

    33,0

    1

    18048,2

    18080,8

    6

    39,7

    2

    18130,4

    2

    18130,4

    2

    262

    4459,7

    4492,7

    1

    I700-1

    3

    15

    17239,9

    6

    53,4

    4

    17163,1

    5

    17201,3

    2

    49,6

    9

    17239,9

    6

    17239,9

    6

    394

    3068,0

    8

    3121,5

    2

    I700-1

    4

    15

    17337,6

    3

    32,4

    7

    17247,1

    6

    17279,1

    4

    35,3

    5

    17337,6

    3

    17337,6

    3

    578

    10716,7

    5

    10749,2

    2

    I700-1

    5

    15

    18145,4

    9

    44,6

    9

    18069,7

    9

    18097,2

    7

    36,3

    18145,4

    9

    18145,4

    9

    192

    4885,2

    5

    4929,9

    4

    I700-1

    6

    20

    16000,0

    3

    16,0

    8

    15945,2

    8

    15988,4

    2

    78,7

    9

    16000,0

    3

    16000,0

    3

    24

    802,9

    7

    819,0

    5

    I700-1

    7

    20

    16172,7

    4

    15,9

    1

    16132,8

    3

    16145,9

    9

    33,8

    8

    16171,6

    7

    16171,6

    7

    54

    1292,1

    9

    1308,1

    I700-1

    8

    20

    164

    14,8

    14,4

    16350,5

    16384,2

    6

    52,5

    16414,8

    16414,8

    66

    1673,5

    9

    1687,9

    9

    I700-1

    9

    20

    16366,7

    8

    20,3

    4

    16321,9

    1

    16346,3

    8

    54,5

    4

    16366,7

    8

    16366,7

    8

    94

    1483,7

    4

    1504,0

    8

    I700-2

    0

    20

    15434,2

    1

    19,1

    4

    15369,6

    6

    15404,4

    2

    53,8

    5

    15434,2

    1

    15434,2

    1

    64

    2007,5

    2026,6

    4

    Table3:Computationalresultsfor

    testinstanceswith700facilitiesan

    d700clients

    24

  • 7/31/2019 Avella 05 - Bcp Cflp

    27/27

    Name

    Ratio

    UB

    Heur

    UBHeur

    LP

    LPCuts

    %

    Gap

    BLB

    BUB

    B

    &C&P

    B&C&P

    Tot.Time

    Time(secs.)

    nodes

    Time(secs.)

    (secs.)

    I1000-1

    5

    49537,2

    780,2

    9

    49459,6

    7

    49476,1

    9

    32,9

    5

    49509,8

    1

    49509,8

    1

    7608

    60122,6

    9

    60902,9

    8

    I1000-2

    5

    506

    92,4

    8

    1042,1

    1

    50626,8

    8

    50641,7

    4

    24,0

    9

    50688,5

    7

    50688,5

    7

    8042

    71738,0

    6

    72780,1

    7

    I1000-3

    5

    472

    04,2

    4

    429,1

    9

    47153,1

    5

    47166,6

    1

    27,2

    47202,6

    4

    47202,6

    4

    3454

    29870,6

    4

    30299,8

    3

    I1000-4

    5

    488

    71,0

    6

    1359,4

    2

    48807,6

    8

    48822,7

    2

    24,7

    1

    48868,5

    4

    48868,5

    4

    5250

    42581,9

    6

    43941,3

    8

    I1000-5

    5

    50753,6

    594,0

    3

    50704,3

    8

    50719,7

    6

    38,5

    6

    50743,5

    4

    50743,5

    4

    782

    7430,6

    5

    8024,6

    8

    I1000-6

    10

    278

    43,6

    4

    403,7

    3

    27736,3

    2777

    2,7

    41,5

    8

    27823,8

    4

    27823,8

    4

    3214

    70700,4

    4

    71104,1

    7

    I1000-7

    10

    272

    64,7

    7

    436,9

    1

    27162,1

    8

    27189,6

    7

    30,5

    27252,3

    2

    27252,3

    2

    4172

    71356,3

    8

    71793,2

    9

    I1000-8

    10

    273

    75,3

    7

    285,4

    4

    27253,5

    3

    27289,8

    2

    29,7

    8

    27369,0

    4

    27375,3

    7

    6386

    100000

    100285,4

    I1000-9

    10

    268

    88,1

    2

    381,5

    7

    26755,2

    2

    26802,0

    6

    45,9

    8

    26857,0

    9

    26857,0

    9

    4978

    71681,7

    2

    72063,2

    9

    I1000-1

    0

    10

    272

    41,2

    6

    155

    27106,9

    5

    27140,0

    8

    41,3

    9

    27186,9

    9

    27186,9

    9

    1564

    40634,6

    3

    40789,6

    3

    I1000-1

    1

    15

    221

    80,3

    3

    445,8

    2

    22070,4

    22103,3

    4

    29,9

    6

    22158,5

    2

    22180,3

    3

    4928

    100000

    100445,8

    I1000-1

    2

    15

    221

    60,3

    9

    405,2

    6

    22054,7

    6

    22089,2

    1

    32,6

    1

    22145,9

    6

    22160,3

    9

    5270

    100000

    100405,3

    I1000-1

    3

    15

    226

    57,0

    9

    228,8

    6

    22552,1

    3

    22590,9

    1

    36,9

    5

    22657,0

    9

    22657,0

    9

    1962

    80693,0

    3

    80921,8

    9

    I1000-1

    4

    15

    223

    27,6

    2

    242,5

    8

    22241,7

    6

    22260,6

    2

    26,8

    5

    22312,0

    1

    22312,0

    1

    2086

    51850,2

    5

    52092,8

    3

    I1000-1

    5

    15

    22648,5

    2

    171,6

    4

    2523,3

    6

    22558,3

    4

    32,9

    8

    22629,4

    4

    22629,4

    4

    2914

    85618,5

    2

    85790,1

    6

    I1000-1

    6

    20

    213

    31,8

    1

    119,0

    4

    21258,7

    7

    21279,0

    2

    27,7

    2

    21331,8

    1

    21331,8

    1

    1000

    30657,8

    30776,8

    4

    I1000-1

    7

    20

    211

    88,8

    9

    79,0

    9

    21153,1

    2

    21176,0

    4

    64,0

    8

    21188,8

    9

    21188,8

    9

    72

    3403,0

    8

    3482,1

    7

    I1000-1

    8

    20

    207

    13,4

    4

    48,1

    2

    20658,4

    2068

    2,9

    44,5

    2

    20713,4

    3

    20713,4

    3

    106

    3222,2

    4

    3270,3

    6

    I1000-1

    9

    20

    205

    37,4

    5

    44,1

    1

    20470,1

    1

    20504,4

    2

    50,9

    5

    20537,4

    5

    20537,4

    5

    300

    10417,0

    9

    10461,2

    I1000-2

    0

    20

    215

    60,8

    6

    102,8

    4

    21496,8

    9

    21512

    23,6

    2

    21560,8

    6

    21560,8

    6

    784

    18619,6

    9

    18722,5

    3

    Table4:Computationalresultsfortestinstanceswith1000facilitiesan

    d1000clients