Auxiallary functions and Chemical reaction equilibria

30
Auxiallary functions and Chemical reaction equilibria

Transcript of Auxiallary functions and Chemical reaction equilibria

Page 1: Auxiallary functions and Chemical reaction equilibria

Auxiallary functions and

Chemical reaction equilibria

Page 2: Auxiallary functions and Chemical reaction equilibria

The power of thermodynamics lies in the provision of the criteria for spontaneity within a

system

The practical usefulness of this power to predict the outcome of processes is determined

by the practicality of the equations of state of the system, or the relationships among the

state functions

The relationships among thermodynamic functions P, V, T, S, U, H, A and G are well

determined which makes it possible to predict the spontaneity of any process at certain

conditions

Recall that ๐‘‘๐‘ˆ = ๐‘‘๐‘„ โˆ’ ๐‘‘๐‘Š

For reversible processes the second law states that

๐‘‘๐‘† =๐‘‘๐‘„

๐‘‡or ๐‘‘๐‘„ = ๐‘‡๐‘‘๐‘†

And for mechanical work

๐‘‘๐‘Š = ๐‘ƒ๐‘‘๐‘‰

so

๐‘‘๐‘ˆ = ๐‘‡๐‘‘๐‘† โˆ’ ๐‘ƒ๐‘‘๐‘‰

Page 3: Auxiallary functions and Chemical reaction equilibria

๐‘‘๐‘ˆ = ๐‘‡๐‘‘๐‘† โˆ’ ๐‘ƒ๐‘‘๐‘‰

This equation relates the dependent variable U to independent variables S and V as result of

the combined statement of the first and second laws

Restrictions on the applicability of this realation are

โ€ข The system should be closed

โ€ข The work due to volume change is the only form of work

Hence the criterion for equilibrium for constant entropy and constant volume is dU= 0

Recall that at constant pressure H= U+PV

๐‘‘๐ป = ๐‘‘๐‘ˆ + ๐‘‘ ๐‘ƒ๐‘‰ = ๐‘‘๐‘ˆ + ๐‘ƒ๐‘‘๐‘‰ + ๐‘‰๐‘‘๐‘ƒ

Replacing the relation for dU,

๐‘‘๐ป = ๐‘‡๐‘‘๐‘† โˆ’ ๐‘ƒ๐‘‘๐‘‰ + ๐‘ƒ๐‘‘๐‘‰ + ๐‘‰๐‘‘๐‘ƒ๐‘‘๐ป = ๐‘‡๐‘‘๐‘† + ๐‘‰๐‘‘๐‘ƒ

Hence the criterion for equilibrium for constant entropy and constant pressure is

dH= 0

The same restrictions apply to the system as the relation for dU

Page 4: Auxiallary functions and Chemical reaction equilibria

Recall the general equation for Gibbs free energy:

๐บ = ๐ป โˆ’ ๐‘‡๐‘†๐‘‘๐บ = ๐‘‘๐ป โˆ’ ๐‘‡๐‘‘๐‘† โˆ’ ๐‘†๐‘‘๐‘‡

Replacing the relation for dH,

๐‘‘๐บ = ๐‘‡๐‘‘๐‘† + ๐‘‰๐‘‘๐‘ƒ โˆ’ ๐‘‡๐‘‘๐‘† โˆ’ ๐‘†๐‘‘๐‘‡๐‘‘๐บ = ๐‘‰๐‘‘๐‘ƒ โˆ’ ๐‘†๐‘‘๐‘‡

Hence the criterion for equilibrium for constant pressure and constant temperature is dG= 0

This property is very important in metallurgical applications because most processes occur

under constant temperature and pressure

A less useful relation is used for the Helmholtz energy A

๐ด = ๐‘ˆ โˆ’ ๐‘‡๐‘†๐‘‘๐ด = ๐‘‘๐‘ˆ โˆ’ ๐‘‡๐‘‘๐‘† โˆ’ ๐‘†๐‘‘๐‘‡

Replacing the relationship for dU,

๐‘‘๐ด = ๐‘‡๐‘‘๐‘† โˆ’ ๐‘ƒ๐‘‘๐‘‰ โˆ’ ๐‘‡๐‘‘๐‘† โˆ’ ๐‘†๐‘‘๐‘‡๐‘‘๐ด = โˆ’๐‘ƒ๐‘‘๐‘‰ โˆ’ ๐‘†๐‘‘๐‘‡

Hence the criterion for spontaneity for constant volume and temperature is dA= 0

Page 5: Auxiallary functions and Chemical reaction equilibria

Useful relationships between the partial derivatives of U, H, G, and A result in valuable

simplifications in thermodynamic equations

๐‘‘๐บ = ๐‘‰๐‘‘๐‘ƒ โˆ’ ๐‘†๐‘‘๐‘‡

๐‘‘๐บ =๐œ•๐บ

๐œ•๐‘ƒ๐‘‡

๐‘‘๐‘ƒ +๐œ•๐บ

๐œ•๐‘‡๐‘ƒ

๐‘‘๐‘‡

๐‘‘๐ป = ๐‘‡๐‘‘๐‘† + ๐‘‰๐‘‘๐‘ƒ

๐‘‘๐ป =๐œ•๐ป

๐œ•๐‘†๐‘ƒ

๐‘‘๐‘† +๐œ•๐ป

๐œ•๐‘ƒ๐‘†

๐‘‘๐‘ƒ

๐‘‘๐‘ˆ = ๐‘‡๐‘‘๐‘† โˆ’ ๐‘ƒ๐‘‘๐‘‰

๐‘‘๐‘ˆ =๐œ•๐‘ˆ

๐œ•๐‘†๐‘‰

๐‘‘๐‘† +๐œ•๐‘ˆ

๐œ•๐‘‰๐‘†

๐‘‘๐‘‰

๐‘‘๐ด = โˆ’๐‘ƒ๐‘‘๐‘‰ โˆ’ ๐‘†๐‘‘๐‘‡

๐‘‘๐ด =๐œ•๐ด

๐œ•๐‘‰๐‘‡

๐‘‘๐‘‰ +๐œ•๐ด

๐œ•๐‘‡๐‘‰

๐‘‘๐‘‡

๐‘‡ =๐œ•๐ป

๐œ•๐‘†๐‘ƒ

=๐œ•๐‘ˆ

๐œ•๐‘†๐‘‰

๐‘ƒ = โˆ’๐œ•๐‘ˆ

๐œ•๐‘‰๐‘†

= โˆ’๐œ•๐ด

๐œ•๐‘‰๐‘‡

๐‘‰ =๐œ•๐บ

๐œ•๐‘ƒ๐‘‡

=๐œ•๐ป

๐œ•๐‘ƒ๐‘†

โˆ’๐‘† =๐œ•๐บ

๐œ•๐‘‡๐‘ƒ

=๐œ•๐ด

๐œ•๐‘‡๐‘‰

๐œ•๐บ

๐œ•๐‘ƒ๐‘‡

= ๐‘‰,๐œ•๐บ

๐œ•๐‘‡๐‘ƒ

= โˆ’๐‘†

๐œ•๐ป

๐œ•๐‘†๐‘ƒ

= ๐‘‡,๐œ•๐ป

๐œ•๐‘ƒ๐‘†

= ๐‘‰

๐œ•๐‘ˆ

๐œ•๐‘†๐‘‰

= ๐‘‡,๐œ•๐‘ˆ

๐œ•๐‘‰๐‘†

= โˆ’๐‘ƒ

๐œ•๐ด

๐œ•๐‘‰๐‘‡

= โˆ’๐‘ƒ,๐œ•๐ด

๐œ•๐‘‡๐‘‰

= โˆ’๐‘†

Page 6: Auxiallary functions and Chemical reaction equilibria

Other useful relationships called Maxwell Equations derive from the complete differentials

of the state functions by virtue of the exact differential function:

๐‘‘๐บ = ๐‘‰๐‘‘๐‘ƒ โˆ’ ๐‘†๐‘‘๐‘‡๐œ•๐‘‰

๐œ•๐‘‡๐‘ƒ

= โˆ’๐œ•๐‘†

๐œ•๐‘ƒ๐‘‡

๐‘‘๐ป = ๐‘‡๐‘‘๐‘† + ๐‘‰๐‘‘๐‘ƒ๐œ•๐‘‡

๐œ•๐‘ƒ๐‘†

=๐œ•๐‘‰

๐œ•๐‘†๐‘ƒ

๐‘‘๐‘ˆ = ๐‘‡๐‘‘๐‘† โˆ’ ๐‘ƒ๐‘‘๐‘‰๐œ•๐‘‡

๐œ•๐‘‰๐‘†

= โˆ’๐œ•๐‘ƒ

๐œ•๐‘†๐‘‡

๐‘‘๐ด = โˆ’๐‘ƒ๐‘‘๐‘‰ โˆ’ ๐‘†๐‘‘๐‘‡๐œ•๐‘ƒ

๐œ•๐‘‡๐‘‰

=๐œ•๐‘†

๐œ•๐‘‰๐‘‡

The value of Maxwell equations lies in the fact that they contain many experimentally

measurable quantities

Other equations may be developed for the changes in thermodynamic quantities that are

difficult to measure experimentally by the use of Maxwell equations

๐›ฝ๐‘‰ =๐œ•๐‘‰

๐œ•๐‘‡๐‘ƒ

= โˆ’๐œ•๐‘†

๐œ•๐‘ƒ๐‘‡

๐œ…๐‘‰ =๐œ•๐‘‰

๐œ•๐‘ƒ๐‘‡

=๐œ•๐‘‰

๐œ•๐‘‡๐‘ƒ

๐œ•๐‘‡

๐œ•๐‘ƒ๐‘‰

=๐œ•๐‘‰

๐œ•๐‘‡๐‘ƒ

๐œ•๐‘‰

๐œ•๐‘†๐‘‡

๐ถ๐‘ƒ =๐œ•๐ป

๐œ•๐‘‡๐‘ƒ

Page 7: Auxiallary functions and Chemical reaction equilibria

Example โ€“ Develop a relationship for the variation of enthalpy with pressure for isothermal

processes as function of ฮฒ, T and V and show that the enthalpy change with P for ideal

gases is 0

๐œ•๐ป

๐œ•๐‘ƒ๐‘‡

=

Since ๐‘‘๐ป = ๐‘‡๐‘‘๐‘† + ๐‘‰๐‘‘๐‘ƒ๐œ•๐ป

๐œ•๐‘ƒ๐‘‡

= ๐‘‡๐œ•๐‘†

๐œ•๐‘ƒ๐‘‡

+ ๐‘‰๐œ•๐‘ƒ

๐œ•๐‘ƒ๐‘‡

= ๐‘‡๐œ•๐‘†

๐œ•๐‘ƒ๐‘‡

+ ๐‘‰

๐œ•๐ป

๐œ•๐‘ƒ๐‘‡

= โˆ’๐‘‡๐›ฝ๐‘‰ + ๐‘‰

since

For ideal gases

๐œ•๐ป

๐œ•๐‘ƒ๐‘‡

= โˆ’๐‘‡๐œ•๐‘‰

๐œ•๐‘‡๐‘ƒ

+ ๐‘‰ = โˆ’๐‘‡๐‘…

๐‘ƒ+ ๐‘‰ = โˆ’๐‘‰ + ๐‘‰ = 0

โˆ’๐œ•๐‘†

๐œ•๐‘ƒ๐‘‡

=๐œ•๐‘‰

๐œ•๐‘‡๐‘ƒ

= ๐›ฝ๐‘‰

Page 8: Auxiallary functions and Chemical reaction equilibria

Example - Estimate the change in enthalpy and entropy when liquid ammonia at 273 K is

compressed from its saturation pressure of 381 kPa to 1200 kPa. For saturated liquid

ammonia at 273 K, take volume and expansivity coefficient as V= 1.551*10-3 m3/kg, and ฮฒ=

2.095*10-3 /K

โˆ’๐œ•๐‘†

๐œ•๐‘ƒ๐‘‡

=๐œ•๐‘‰

๐œ•๐‘‡๐‘ƒ

= ๐›ฝ๐‘‰

Page 9: Auxiallary functions and Chemical reaction equilibria

Example โ€“ Normal boiling point for Mg is 1393 K. By using entropy concept calculate whether

the evaporation is spontaneous or not at 1400 K under 20 atm pressure

Hint: Separate the process at 1400 K and 20 atm into reversible steps to bring to 1 atm

CP(Mg(l))= 31.0 J/mole.K

CP(Mg(g))= 20.8 J/mole.K

ฮ”HV= 131859 J/mole

๐‘€๐‘”(๐‘™, 1400 ๐พ, 20 ๐‘Ž๐‘ก๐‘š) ๐‘€๐‘”(๐‘”, 1400 ๐พ, 20 ๐‘Ž๐‘ก๐‘š)

๐›ฝ๐‘‰ =๐œ•๐‘‰

๐œ•๐‘‡๐‘ƒ

= โˆ’๐œ•๐‘†

๐œ•๐‘ƒ๐‘‡

Page 10: Auxiallary functions and Chemical reaction equilibria

Chemical reaction equilibria in metallurgical processes and the conditions that

maintain equilibrium are important to obtain maximum efficiency from production

processes

For example, steel production takes place in a blast furnace that is aimed to

collect liquid iron, slag and flue gases formed as a result of reaction with C and CO

The liquid phases iron and slag in the blast furnace consist of solutions of Fe, C, Si,

Mn, P and SiO2, Al2O3, CaO, FeO respectively

Flue gases typically contain CO, CO2 and N2 as main components

Iron oxide is reduced by CO to metallic iron while impurities in liquid iron are

subjected to reaction with gaseous oxygen in converting stage

Page 11: Auxiallary functions and Chemical reaction equilibria

Consider a general reaction in equilibrium:

๐‘Ž๐ด + ๐‘๐ต ๐‘๐ถ + ๐‘‘๐ท

The general criterion for equilibrium under constant T and P is โˆ†๐บ = 0

โˆ†๐บ = ๐บ๐‘๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘ก๐‘  โˆ’ ๐บ๐‘Ÿ๐‘’๐‘Ž๐‘๐‘ก๐‘Ž๐‘›๐‘ก๐‘ 

= ๐‘๐บ๐ถ + ๐‘‘๐บ๐ท โˆ’ ๐‘Ž๐บ๐ด โˆ’ ๐‘๐บ๐ต

The complete differential of G in terms of T and P is

Consider the reaction in a mixture of ideal gases at constant temperature

The change in Gibbs free energy of each ideal gas component as a function of its

pressure is given as๐œ•๐บ๐‘–

๐œ•๐‘ƒ๐‘–= ๐‘‰๐‘–

๐‘‘๐บ๐‘– =๐‘…๐‘‡๐‘‘๐‘ƒ๐‘–

๐‘ƒ๐‘–

๐‘‘๐บ = ๐‘‰๐‘‘๐‘ƒ โˆ’ ๐‘†๐‘‘๐‘‡

๐‘‘๐บ =๐œ•๐บ

๐œ•๐‘ƒ๐‘‡

๐‘‘๐‘ƒ +๐œ•๐บ

๐œ•๐‘‡๐‘ƒ

๐‘‘๐‘‡

Page 12: Auxiallary functions and Chemical reaction equilibria

๐‘‘๐บ๐‘– = ๐‘…๐‘‡๐‘‘๐‘ƒ๐‘–

๐‘ƒ๐‘–

๐บ๐‘– = ๐บ๐‘–๐‘œ + ๐‘…๐‘‡ ln

๐‘ƒ๐‘–

๐‘ƒ๐‘–๐‘œ

The change in free energy of the system at constant temperature is the

sum of the free energy change of its components

๐‘›๐บ = ๐‘›๐‘–๐บ๐‘–

Since mole number and pressure of ideal gases are proportional, ni /Pi is

constant and since the total pressure of the system is constant, ๐‘‘๐‘ƒ๐‘– = 0

๐‘‘ ๐‘›๐บ = ๐‘›๐‘– ๐‘‘๐บ๐‘– + ๐บ๐‘– ๐‘‘๐‘›๐‘–

โˆ† ๐‘›๐บ = ๐‘…๐‘‡๐‘›๐‘–

๐‘ƒ๐‘–๐‘‘๐‘ƒ๐‘– + ๐บ๐‘– ๐‘‘๐‘›๐‘–

โˆ†๐บ = ๐บ๐‘– ๐‘‘๐‘›๐‘–

Page 13: Auxiallary functions and Chemical reaction equilibria

In the case of system equilibrium

The stoichiometric coefficients a, b, c, d of each component in the ideal gas

mixture can be used to represent ๐‘‘๐‘›๐‘–:

๐‘๐บ๐ถ๐‘œ + ๐‘‘๐บ๐ท

๐‘œ โˆ’ ๐‘Ž๐บ๐ด๐‘œ โˆ’ ๐‘๐บ๐ต

๐‘œ + ๐‘…๐‘‡ ln๐‘ƒ๐ถ๐‘ +๐‘…๐‘‡ ln๐‘ƒ๐ท

๐‘‘ +๐‘…๐‘‡ ln๐‘ƒ๐ดโˆ’๐‘Ž +๐‘…๐‘‡ ln๐‘ƒ๐ต

โˆ’๐‘ = 0

where โˆ†๐บ๐‘œ = ๐‘๐บ๐ถ๐‘œ + ๐‘‘๐บ๐ท

๐‘œ โˆ’ ๐‘Ž๐บ๐ด๐‘œ โˆ’ ๐‘๐บ๐ต

๐‘œ

Absolute Gibbs free energy is computed for gas phases as:

๐บ๐‘– = ๐บ๐‘–๐‘œ + ๐‘…๐‘‡ ln๐‘ƒ๐‘–

โˆ†๐บ = ๐บ๐‘–๐‘œ ๐‘‘๐‘›๐‘– + ๐‘…๐‘‡ ln(๐‘ƒ๐‘–)๐‘‘๐‘›๐‘–

โˆ†๐บ = ๐บ๐‘– ๐‘‘๐‘›๐‘– = 0

โˆ†๐บ๐‘œ + ๐‘…๐‘‡ ln๐‘ƒ๐ถ

๐‘๐‘ƒ๐ท๐‘‘

๐‘ƒ๐ด๐‘Ž๐‘ƒ๐ต

๐‘ = 0

Page 14: Auxiallary functions and Chemical reaction equilibria

The equation for gas phases can be written as

โˆ†๐บ = โˆ†๐บ๐‘œ + ๐‘…๐‘‡ ln๐‘ƒ๐ถ

๐‘๐‘ƒ๐ท๐‘‘

๐‘ƒ๐ด๐‘Ž๐‘ƒ๐ต

๐‘ = โˆ†๐บ๐‘œ + ๐‘…๐‘‡ ln๐‘„๐‘…

QR is called the reaction quotient

QR = K when โˆ†๐บ = 0

โˆ†๐บ = 0 = โˆ†๐บ๐‘œ + ๐‘…๐‘‡ ln๐พ

โˆ†๐บ๐‘œ is readily given in literature for most compounds at STP

Page 15: Auxiallary functions and Chemical reaction equilibria

The relationship between DGo and K at 298 K

Example - Estimate DGo for the decomposition of NO2 at 25oC

At 25oC and 1.00 atmosphere pressure, K =4.3x10-13

FO

RW

AR

D R

EA

CT

ION

RE

VE

RS

E R

EA

CT

ION

Page 16: Auxiallary functions and Chemical reaction equilibria

โˆ†๐บ = ๐‘…๐‘‡ ln๐‘„๐‘… โˆ’ ๐‘…๐‘‡ ln๐พ = ๐‘…๐‘‡ ln๐‘„๐‘…

๐พ

โˆ†๐บ can be calculated for any temperature, since โˆ†๐บ๐‘œ = โˆ†๐ป๐‘œ โˆ’ ๐‘‡โˆ†๐‘†๐‘œ

โˆ†๐บ = โˆ†๐ป๐‘œ298 +

298

๐‘‡

โˆ†๐ถ๐‘ƒ๐‘‘๐‘‡ โˆ’ ๐‘‡ โˆ†๐‘†๐‘œ298 +

298

๐‘‡ โˆ†๐ถ๐‘ƒ๐‘‘๐‘‡

๐‘‡

where ๐ถ๐‘ƒ = ๐‘Ž + ๐‘๐‘‡ +๐‘

๐‘‡2

and โˆ†๐ถ๐‘ƒ= โˆ†๐‘Ž + โˆ†๐‘๐‘‡ +๐‘

๐‘‡2 where โˆ†๐‘Ž, ๐‘, ๐‘ = โˆ†๐‘Ž, ๐‘, ๐‘๐‘๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘ก๐‘  โˆ’ โˆ†๐‘Ž, ๐‘, ๐‘๐‘Ÿ๐‘’๐‘Ž๐‘๐‘ก๐‘Ž๐‘›๐‘ก๐‘ 

โˆ†๐บ๐‘œ is the free energy change that would accompany the conversion of reactants,

initially present in their standard states, to products in their standard states

DG is the free energy change for other temperatures and pressures

Page 17: Auxiallary functions and Chemical reaction equilibria

โˆ†๐บ = ๐‘…๐‘‡ ln๐‘„๐‘… โˆ’ ๐‘…๐‘‡ ln๐พ = ๐‘…๐‘‡ ln๐‘„๐‘…

๐พ

DG has a very large positive or negative value if QR and K are very different

The reaction releases or absorbs a large amount of free energy

DG has a very small positive or negative value if QR and K are close

The reaction releases or absorbs a small amount of free energy

Page 18: Auxiallary functions and Chemical reaction equilibria

Example -The equilibrium constant at different temperatures for the following

reaction is given:

SO3(g) = SO2(g) + ยฝ O2(g)

K= 0.146 @ 900K

K= 0.516 @ 1000K

K= 1.45 @ 1100K

Estimate the enthalpy change of the reaction at 1000K and the equilibrium

composition at the same temperature

Page 19: Auxiallary functions and Chemical reaction equilibria

Example - Consider the equilibria in which two salts dissolve in water to form aqueous

solutions of ions:

NaCl(s)Na+(aq) + Cl-(aq) ฮ”Hยฐsoln(NaCl)= 3.6 kJ/mol, ฮ”Sยฐsoln(NaCl)= 43.2 J/mol.K

AgCl(s)Ag+(aq) + Cl-(aq) ฮ”Hยฐsoln(AgCl)= 65.7 kJ/mol, ฮ”Sยฐsoln(NaCl)= 34.3 J/mol.K

a) Calculate the value of ฮ”Gยฐ at 298 K for each of the reactions. How will ฮ”Gยฐ for the solution process of NaCl

and AgCl change with increasing T? What effect should this change have on the solubility of the salts?

b) Is the difference between two free energies primarily due to the enthalpy term or the entropy term of the

standard free-energy change?

c) Use the values of ฮ”Gยฐ to calculate the K values for the two salts at 298 K

d) Sodium chloride is considered a soluble salt, whereas silver chloride is considered insoluble. Are these

descriptions consistent with the answers to part c?

e)How will ฮ”Gยฐ for the solution process of these salts change with increasing T? What effect should this change

have on the solubility of the salts?

Page 20: Auxiallary functions and Chemical reaction equilibria

Effect of pressure on equilibrium

Although equilibrium constant is independent of pressure, Le Chetelierโ€™s principle

states that an increase in total pressure at constant temperature will shift the

equilibrium in the direction which decreases the number of moles of gaseous

species in the system

๐พ =๐‘ƒ๐ถ

๐‘๐‘ƒ๐ท๐‘‘

๐‘ƒ๐ด๐‘Ž๐‘ƒ๐ต

๐‘ =(๐‘‹๐ถ๐‘ƒ)๐‘(๐‘‹๐ท๐‘ƒ)๐‘‘

(๐‘‹๐ด๐‘ƒ)๐‘Ž(๐‘‹๐ต๐‘ƒ)๐‘

K is not affected by changes in pressure, but consists of two terms; KX and P:

๐พ = ๐พ๐‘‹๐‘ƒ(๐‘+๐‘‘โˆ’๐‘Žโˆ’๐‘)

Change in pressure may have effect on KX, quotient of mole fractions depending on

the values of a, b, c, and d

If

c+d>a+b, increasing pressure decreases KX, reaction shifts towards reactants

c+d=a+b, pressure does not affect KX

c+d<a+b, KX is proportional to pressure, reaction shifts towards products with

increasing KX

Page 21: Auxiallary functions and Chemical reaction equilibria

Effect of temperature on equilibrium

At equilibrium, โˆ†๐บ๐‘œ = โˆ’๐‘…๐‘‡ ln๐พ

โˆ†๐บ๐‘œ = โˆ†๐ป๐‘œ + ๐‘‡๐œ•โˆ†๐บ๐‘œ

๐œ•๐‘‡๐‘ƒ

โˆ’๐‘…๐‘‡ ln๐พ = โˆ†๐ป๐‘œ โˆ’ ๐‘‡๐œ• ๐‘…๐‘‡ ln๐พ

๐œ•๐‘‡๐‘ƒ

๐œ• ln๐พ

๐œ•๐‘‡=

โˆ†๐ป๐‘œ

๐‘…๐‘‡2

๐œ• ln๐พ

๐œ• 1 ๐‘‡

= โˆ’โˆ†๐ป๐‘œ

๐‘…

For the case ofโˆ†๐ป๐‘œ > 0, temperature increase shifts the reaction towards products

For the case ofโˆ†๐ป๐‘œ < 0, temperature increase shifts the reaction towards reactants

Vanโ€™t Hoff equation

Slope>0

Slope<0

exothermic

endothermic

ln K

1/T

Page 22: Auxiallary functions and Chemical reaction equilibria

๐œ• ln๐พ

๐œ• 1 ๐‘‡

= โˆ’โˆ†๐ป๐‘œ

๐‘…

Page 23: Auxiallary functions and Chemical reaction equilibria

Recall that โˆ†๐บ = โˆ†๐ป โˆ’ ๐‘‡โˆ†๐‘†

๐บ๐‘œ = ๐ป๐‘œ + ๐‘‡๐œ•๐บ๐‘œ

๐œ•๐‘‡ ๐‘ƒSince

๐œ•๐บ๐‘œ

๐œ•๐‘‡ ๐‘ƒ= โˆ’๐‘†,

Multiplying both sides by dT and dividing by T2,

๐บ๐‘œ๐‘‘๐‘‡

๐‘‡2 =๐ป๐‘œ๐‘‘๐‘‡

๐‘‡2 + ๐‘‡๐œ•๐บ๐‘œ

๐‘‡2๐‘ƒ

๐ป๐‘œ๐‘‘๐‘‡

๐‘‡2 =๐บ๐‘œ๐‘‘๐‘‡

๐‘‡2 โˆ’๐‘‡๐‘‘๐บ๐‘œ

๐‘‡2 = โˆ’๐‘‘๐บ๐‘œ

๐‘‡,

โˆ†๐ป๐‘œ

๐‘‡2 =โˆ’๐‘‘

โˆ†๐บ๐‘œ

๐‘‡

๐‘‘๐‘‡

Gibbs-

Helmholtz

Eqn

Example โ€“ Determine the heat exchange between system and surroundings for the

following reaction in order to keep the temperature of the system constant at 1300 K

๐‘ƒ4 ๐‘” 2๐‘ƒ2 ๐‘”

โˆ†๐บ๐‘œ = โˆ’225000 + 18.2๐‘‡๐‘™๐‘›๐‘‡ โˆ’ 50.1๐‘‡

Page 24: Auxiallary functions and Chemical reaction equilibria

Oxygen pressure dependence of spontaneity of oxidation reactions

The spontaneity of any process at constant T and P is dependent on the change in the Gibbs free

energy of the system:

โˆ†๐บ = โˆ†๐บ๐‘œ + ๐‘…๐‘‡ ln๐‘„

โˆ†๐บ can be calculated for any temperature since

โˆ†๐บ๐‘œ = โˆ†๐ป๐‘œ โˆ’ ๐‘‡โˆ†๐‘†๐‘œ

โˆ†๐บ = โˆ†๐ป๐‘œ298 +

298

๐‘‡

โˆ†๐ถ๐‘ƒ๐‘‘๐‘‡ โˆ’ ๐‘‡ โˆ†๐‘†๐‘œ298 +

298

๐‘‡ โˆ†๐ถ๐‘ƒ๐‘‘๐‘‡

๐‘‡

where ๐ถ๐‘ƒ = ๐‘Ž + ๐‘๐‘‡ +๐‘

๐‘‡2

and โˆ†๐ถ๐‘ƒ= โˆ†๐‘Ž + โˆ†๐‘๐‘‡ +๐‘

๐‘‡2 where โˆ†๐‘Ž, ๐‘, ๐‘ = โˆ†๐‘Ž, ๐‘, ๐‘๐‘๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘ก๐‘  โˆ’ โˆ†๐‘Ž, ๐‘, ๐‘๐‘Ÿ๐‘’๐‘Ž๐‘๐‘ก๐‘Ž๐‘›๐‘ก๐‘ 

โˆ†๐บ = โˆ†๐ป๐‘œ298 +

298

๐‘‡

โˆ†๐‘Ž + โˆ†๐‘๐‘‡ + โˆ†๐‘๐‘‡2 ๐‘‘๐‘‡ โˆ’ ๐‘‡ โˆ†๐‘†๐‘œ

298 + 298

๐‘‡ โˆ†๐‘Ž + โˆ†๐‘๐‘‡ + โˆ†๐‘๐‘‡2 ๐‘‘๐‘‡

๐‘‡

Plotting the โˆ†๐บ๐‘œ values of similar oxidation reactions as a function of T and comparing their

relative reactivities would be useful for engineering complex systems like furnace charge, if it

was possible to express โˆ†๐บ๐‘œ of any reaction by a simple 2-term fit such as

โˆ†๐บ๐‘œ = ๐ด + ๐ต๐‘‡

Page 25: Auxiallary functions and Chemical reaction equilibria

The following grouping lead to a condensed representation of โˆ†Go which can further

be simplified

โˆ†๐บ = โˆ†๐ป๐‘œ298 + โˆ†๐‘Ž๐‘‡ +

โˆ†๐‘๐‘‡2

2โˆ’ โˆ†๐‘

๐‘‡ โˆ’ ๐‘‡ โˆ†๐‘†๐‘œ298 + โˆ†๐‘Ž ln๐‘‡ + โˆ†๐‘๐‘‡ โˆ’ โˆ†๐‘

2๐‘‡2

Replacement of the upper and the lower limits yields

โˆ†๐บ = 0 = โˆ†๐บ๐‘œ โˆ’ ๐ผ๐‘œ + ๐ผ1๐‘‡ โˆ’ โˆ†๐‘Ž๐‘‡ ln๐‘‡ โˆ’โˆ†๐‘

2๐‘‡2 โˆ’

โˆ†๐‘

2๐‘‡

where ๐ผ๐‘œ = โˆ†๐ป๐‘œ298 โˆ’ โˆ†๐‘Ž298 +

โˆ†๐‘2982

2โˆ’ โˆ†๐‘

298

๐ผ1 = โˆ†๐‘Ž โˆ’ โˆ†๐‘†๐‘œ298 + โˆ†๐‘Ž ln 298 + โˆ†๐‘298 โˆ’ โˆ†๐‘

2 โˆ— 2982

Tabulated thermochemical data such as โˆ†๐ป๐‘œ298, โˆ†๐‘†๐‘œ

298, โˆ†๐ถ๐‘ƒ for a specific reaction are

replaced into the general equation for โˆ†๐บ๐‘œ to obtain the variation of the spontaneity

with temperature

Alternatively experimental variation of โˆ†๐บ๐‘œwith T can be calculated from the

measured oxygen partial pressure ๐‘ƒ๐‘‚2(๐‘’๐‘ž๐‘š) that is in equilibrium with a metal and

metal oxide using equation:

โˆ†๐บ๐‘œ = ๐‘…๐‘‡ ln๐‘ƒ๐‘‚2(๐‘’๐‘ž๐‘š)

T

298

T

298

Page 26: Auxiallary functions and Chemical reaction equilibria

Ellingham diagram

Page 27: Auxiallary functions and Chemical reaction equilibria

Example - Will the reaction

4Cu(l) + O2(g) = 2Cu2O(s)

go spontaneously to the right or to the left at 1500K when oxygen pressure is 0.01 atm?

Cu(s) S298=33.36 J/molK, Cp=22.65+0.00628T J/molK ฮ”Hm= 13000 J/mole at 1356K

Cu(l) Cp= 31.40 J/molK

Cu2O(s) H298=-167440 J/mol S298=93.14 J/molK, Cp=83.6 J/molK

O2(g) S298=205.11 J/molK, Cp=33.44 J/molK

Page 28: Auxiallary functions and Chemical reaction equilibria

Determining the composition of reaction system under equilibrium

Consider the reacting A, B to produce C and D

๐พ =๐‘ƒ๐ถ

๐‘๐‘ƒ๐ท๐‘‘

๐‘ƒ๐ด๐‘Ž๐‘ƒ๐ต

๐‘

The partial pressures of the components are expressed as a function of the total P:

๐‘ƒ๐ด =๐‘›๐ด. ๐‘ƒ

๐‘›๐ด + ๐‘›๐ต + ๐‘›๐ถ + ๐‘›๐ท

where ๐‘›๐ด is the mole number of A under equilibrium

Equilibrium constant can be represented as

๐พ =๐‘›๐ถ

๐‘๐‘›๐ท๐‘‘

๐‘›๐ด๐‘Ž๐‘›๐ต

๐‘ โˆ—๐‘ƒ

๐‘›๐ด + ๐‘›๐ต + ๐‘›๐ถ + ๐‘›๐ท

๐‘+๐‘‘ โˆ’(๐‘Ž+๐‘)

๐‘Ž๐ด(๐‘”) + ๐‘๐ต(๐‘”) ๐‘๐ถ(๐‘”) + ๐‘‘๐ท(๐‘”)

Page 29: Auxiallary functions and Chemical reaction equilibria

Suppose the reaction reaches equilibrium after a while and x moles of A is

converted to products

Then

๐‘›๐ด =Moles of unreacted A = 1 โˆ’ ๐‘ฅ ๐‘Ž๐‘›๐ต = Moles of unreacted B = 1 โˆ’ ๐‘ฅ ๐‘๐‘›๐ถ = Moles of formed C = ๐‘ฅ. ๐‘๐‘›๐ท = Moles of formed D = ๐‘ฅ. ๐‘‘

and

๐พ =(๐‘ฅ. ๐‘)๐‘(๐‘ฅ. ๐‘‘)๐‘‘

๐‘Ž โˆ’ ๐‘Ž๐‘ฅ ๐‘Ž(๐‘ โˆ’ ๐‘๐‘ฅ)๐‘โˆ—

๐‘ƒ

1 โˆ’ ๐‘ฅ ๐‘Ž + ๐‘ + ๐‘ฅ ๐‘ + ๐‘‘

๐‘+๐‘‘ โˆ’(๐‘Ž+๐‘)

If equilibrium temperature and the standard free energy change at that

temperature are given, the fraction x can be conveniently determined since

โˆ†๐บ = โˆ†๐บ๐‘œ + ๐‘…๐‘‡๐‘’๐‘ž๐‘š ln๐พ = 0

โˆ†๐บ๐‘œ = โˆ’๐‘…๐‘‡๐‘’๐‘ž๐‘š ln(๐‘ฅ. ๐‘)๐‘(๐‘ฅ. ๐‘‘)๐‘‘

๐‘Ž โˆ’ ๐‘Ž๐‘ฅ ๐‘Ž(๐‘ โˆ’ ๐‘๐‘ฅ)๐‘โˆ—

๐‘ƒ

1 โˆ’ ๐‘ฅ ๐‘Ž + ๐‘ + ๐‘ฅ ๐‘ + ๐‘‘

๐‘+๐‘‘ โˆ’(๐‘Ž+๐‘)

Page 30: Auxiallary functions and Chemical reaction equilibria

Example โ€“ Determine the equilibrium composition of the system when 1 mole of P4

reacts to form P2 at 1300 K

โˆ†๐บ๐‘œ = โˆ’225000 + 18.2๐‘‡๐‘™๐‘›๐‘‡ โˆ’ 50.1๐‘‡ ๐‘ƒ4 ๐‘” 2๐‘ƒ2 ๐‘”

โˆ†๐บ๐‘œ = โˆ’๐‘…๐‘‡๐‘’๐‘ž๐‘š ln(๐‘ฅ. ๐‘)๐‘(๐‘ฅ. ๐‘‘)๐‘‘

๐‘Ž โˆ’ ๐‘Ž๐‘ฅ ๐‘Ž(๐‘ โˆ’ ๐‘๐‘ฅ)๐‘โˆ—

๐‘ƒ

1 โˆ’ ๐‘ฅ ๐‘Ž + ๐‘ + ๐‘ฅ ๐‘ + ๐‘‘

๐‘+๐‘‘ โˆ’(๐‘Ž+๐‘)