Automotive-grade trench gate field-stop, 650 V, 120 A, low ... · 10 1 10 -1 10 0 10 1 10 2 C (pF)...

14
C(2, TAB) E(3) NG1E3C2T G(1) Features AEC-Q101 qualified 6 µs of short-circuit withstand time V CE(sat) = 1.65 V (typ.) @ I C = 120 A Tight parameter distribution Safer paralleling Positive V CE(sat) temperature coefficient Low thermal resistance Soft and very fast recovery antiparallel diode Maximum junction temperature: T J = 175 °C Applications Motor control UPS PFC General purpose inverters Description This device is an IGBT developed using an advanced proprietary trench gate field- stop structure. The device is part of the M series IGBTs, which represent an optimal balance between inverter system performance and efficiency where the low-loss and the short-circuit functionality is essential. Furthermore, the positive V CE(sat) temperature coefficient and the tight parameter distribution result in safer paralleling operation. Product status link STGYA120M65DF2AG Product summary Order code STGYA120M65DF2AG Marking G120M65DF2AG Package Max247 long leads Packing Tube Automotive-grade trench gate field-stop, 650 V, 120 A, low-loss, M series IGBT in a Max247 long leads package STGYA120M65DF2AG Datasheet DS11783 - Rev 4 - October 2019 For further information contact your local STMicroelectronics sales office. www.st.com

Transcript of Automotive-grade trench gate field-stop, 650 V, 120 A, low ... · 10 1 10 -1 10 0 10 1 10 2 C (pF)...

Page 1: Automotive-grade trench gate field-stop, 650 V, 120 A, low ... · 10 1 10 -1 10 0 10 1 10 2 C (pF) VCE (V) CIES COES CRES f = 1 MHz Figure 14. Gate charge vs gate-emitter voltage

C(2, TAB)

E(3)NG1E3C2T

G(1)

Features

• AEC-Q101 qualified • 6 µs of short-circuit withstand time• VCE(sat) = 1.65 V (typ.) @ IC = 120 A• Tight parameter distribution• Safer paralleling• Positive VCE(sat) temperature coefficient• Low thermal resistance• Soft and very fast recovery antiparallel diode• Maximum junction temperature: TJ = 175 °C

Applications• Motor control• UPS• PFC• General purpose inverters

DescriptionThis device is an IGBT developed using an advanced proprietary trench gate field-stop structure. The device is part of the M series IGBTs, which represent an optimalbalance between inverter system performance and efficiency where the low-loss andthe short-circuit functionality is essential. Furthermore, the positive VCE(sat)temperature coefficient and the tight parameter distribution result in safer parallelingoperation.

Product status link

STGYA120M65DF2AG

Product summary

Order code STGYA120M65DF2AG

Marking G120M65DF2AG

Package Max247 long leads

Packing Tube

Automotive-grade trench gate field-stop, 650 V, 120 A, low-loss, M series IGBT in a Max247 long leads package

STGYA120M65DF2AG

Datasheet

DS11783 - Rev 4 - October 2019For further information contact your local STMicroelectronics sales office.

www.st.com

Page 2: Automotive-grade trench gate field-stop, 650 V, 120 A, low ... · 10 1 10 -1 10 0 10 1 10 2 C (pF) VCE (V) CIES COES CRES f = 1 MHz Figure 14. Gate charge vs gate-emitter voltage

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol Parameter Value Unit

VCES Collector-emitter voltage (VGE = 0 V) 650 V

IC(1) Continuous collector current at TC = 25 °C 160A

IC Continuous collector current at TC = 100 °C 120

ICP(2) Pulsed collector current 360 A

VGE Gate-emitter voltage ±20 V

IF(1) Continuous forward current at TC = 25 °C 160A

IF Continuous forward current at TC = 100 °C 120

IFP(2) Pulsed forward current 360 A

PTOT Total power dissipation at TC = 25 °C 625 W

TSTG Storage temperature range -55 to 150°C

TJ Operating junction temperature range -55 to 175

1. Current level is limited by bond wires.2. Pulse width limited by maximum junction temperature.

Table 2. Thermal data

Symbol Parameter Value Unit

RthJC Thermal resistance junction-case IGBT 0.24

°C/WRthJC Thermal resistance junction-case diode 0.6

RthJA Thermal resistance junction-ambient 50

STGYA120M65DF2AGElectrical ratings

DS11783 - Rev 4 page 2/14

Page 3: Automotive-grade trench gate field-stop, 650 V, 120 A, low ... · 10 1 10 -1 10 0 10 1 10 2 C (pF) VCE (V) CIES COES CRES f = 1 MHz Figure 14. Gate charge vs gate-emitter voltage

2 Electrical characteristics

TC = 25 °C unless otherwise specified

Table 3. Static characteristics

Symbol Parameter Test conditions Min. Typ. Max. Unit

V(BR)CESCollector-emitter breakdownvoltage VGE = 0 V, IC = 250 µA 650 V

VCE(sat)Collector-emitter saturationvoltage

VGE = 15 V, IC = 120 A 1.65 2.15

VVGE = 15 V, IC = 120 A,TJ = 125 °C 1.95

VGE = 15 V, IC = 120 A,TJ = 175 °C 2.1

VF Forward on-voltage

IF = 120 A 1.9 2.6

VIF = 120 A, TJ = 125 °C 1.7

IF = 120 A, TJ = 175 °C 1.6

VGE(th) Gate threshold voltage VCE = VGE, IC = 2 mA 5 6 7 V

ICES Collector cut-off current VGE = 0 V, VCE = 650 V 100 µA

IGES Gate-emitter leakage current VCE = 0 V, VGE = ± 20 V ± 250 µA

Table 4. Dynamic characteristics

Symbol Parameter Test conditions Min. Typ. Max. Unit

Cies Input capacitance

VCE = 25 V, f = 1 MHz, VGE = 0 V

- 11000 -

pFCoes Output capacitance - 610 -

Cres Reverse transfer capacitance - 250 -

Qg Total gate charge VCC = 520 V, IC = 120 A,

VGE = 0 to 15 V

(see Figure 30. Gate charge testcircuit)

- 420 -

nCQge Gate-emitter charge - 90 -

Qgc Gate-collector charge - 160 -

STGYA120M65DF2AGElectrical characteristics

DS11783 - Rev 4 page 3/14

Page 4: Automotive-grade trench gate field-stop, 650 V, 120 A, low ... · 10 1 10 -1 10 0 10 1 10 2 C (pF) VCE (V) CIES COES CRES f = 1 MHz Figure 14. Gate charge vs gate-emitter voltage

Table 5. IGBT switching characteristics (inductive load)

Symbol Parameter Test conditions Min. Typ. Max. Unit

td(on) Turn-on delay time

VCE = 400 V, IC = 120 A,

VGE = 15 V, RG = 4.7 Ω

(see Figure 29. Test circuit forinductive load switching)

66 - ns

tr Current rise time 38 - ns

(di/dt)on Turn-on current slope 2500 - A/µs

td(off) Turn-off-delay time 185 - ns

tf Current fall time 85 - ns

Eon(1) Turn-on switching energy 1.8 - mJ

Eoff(2) Turn-off switching energy 4.41 - mJ

Ets Total switching energy 6.21 - mJ

td(on) Turn-on delay time

VCE = 400 V, IC = 120 A,

VGE = 15 V, RG = 4.7 Ω,

TJ = 175 °C

(see Figure 29. Test circuit forinductive load switching)

62 - ns

tr Current rise time 48 - ns

(di/dt)on Turn-on current slope 2016 - A/µs

td(off) Turn-off-delay time 187 - ns

tf Current fall time 164 - ns

Eon(1) Turn-on switching energy 4.4 - mJ

Eoff(2) Turn-off switching energy 6.0 - mJ

Ets Total switching energy 10.4 - mJ

tsc Short-circuit withstand time

VCC ≤ 400 V, VGE = 13 V,TJstart = 150 °C 10 -

µsVCC ≤ 400 V, VGE = 15 V,TJstart = 150 °C 6 -

1. Including the reverse recovery of the diode.2. Including the tail of the collector current.

Table 6. Diode switching characteristics (inductive load)

Symbol Parameter Test conditions Min. Typ. Max. Unit

trr Reverse recovery time

IF = 120 A, VR = 400 V,

VGE = 15 V, di/dt = 1000 A/µs

(see Figure 29. Test circuit forinductive load switching)

- 202 - ns

Qrr Reverse recovery charge - 2.9 - µC

Irrm Reverse recovery current - 32.5 - A

dIrr/dt Peak rate of fall of reverserecovery current during tb

- 500 - A/µs

Err Reverse recovery energy - 500 - µJ

trr Reverse recovery timeIF = 120 A, VR = 400 V,

VGE = 15 V, di/dt = 1000 A/μs,

TJ = 175 °C

(see Figure 29. Test circuit forinductive load switching)

- 320 - ns

Qrr Reverse recovery charge - 11.2 - µC

Irrm Reverse recovery current - 62 - A

dIrr/dt Peak rate of fall of reverserecovery current during tb

- 270 - A/µs

Err Reverse recovery energy - 1710 - µJ

STGYA120M65DF2AGElectrical characteristics

DS11783 - Rev 4 page 4/14

Page 5: Automotive-grade trench gate field-stop, 650 V, 120 A, low ... · 10 1 10 -1 10 0 10 1 10 2 C (pF) VCE (V) CIES COES CRES f = 1 MHz Figure 14. Gate charge vs gate-emitter voltage

2.1 Electrical characteristics (curves)

Figure 1. Power dissipation vs case temperature

-50 0 50 100 150 T C (°C)0

100

200

300

400

500

600

P TOT(W)

V GE ≥ 15 V, T J ≤ 175 °C

Figure 2. Collector current vs case temperature

IGBT150620161125CCT

160

120

80

40

0-50 0 50 100 150

IC (A)

TC (°C)

VGE ≥ 15 V, TJ ≤ 175 °C

Figure 3. Output characteristics (TJ = 25 °C)

IGBT150620161126OC25

120

80

40

00 1 2 3 4

IC (A)

VCE (V)

VGE = 15 V

9 V

11 V

13 V

7 V

Figure 4. Output characteristics (TJ = 175 °C)

IGBT150620161128OC175

120

80

40

00 1 2 3 4

IC (A)

VCE (V)

VGE = 15 V 11 V

13 V

9 V

7 V

Figure 5. VCE(sat) vs junction temperature

IGBT150620161129VCET

2.5

2.0

1.5

1.0-50 0 50 100 150

VCE(SAT) (V)

TJ (°C)

VGE = 15 V

IC = 120 A

IC = 60 A

IC = 160 A

Figure 6. VCE(sat) vs collector current

IGBT150620161130VCEC

2.5

2.0

1.5

1.0

0.50 40 80 120

VCE(SAT) (V)

IC (A)

VGE = 15 V

TJ = 175 °C

TJ = 25 °C

TJ = -40 °C

STGYA120M65DF2AGElectrical characteristics (curves)

DS11783 - Rev 4 page 5/14

Page 6: Automotive-grade trench gate field-stop, 650 V, 120 A, low ... · 10 1 10 -1 10 0 10 1 10 2 C (pF) VCE (V) CIES COES CRES f = 1 MHz Figure 14. Gate charge vs gate-emitter voltage

Figure 7. Collector current vs switching frequency

101 102

40

80

120

160

200

Rectangular current shape(duty cycle = 0.5, V CC = 400 V, R G = 4.7 Ω ,

V GE = 0/15 V , T J = 175 °C)

IC(A)

f (kHz)

T C = 80 ºC

T C = 100 ºC

40

0100

Figure 8. Forward bias safe operating area

VCE (V)

IC (A)

single pulse

102101100

100

101

102

10-1

tp = 10 µs

tp = 100 µs

tp = 1 mstp = 10 ms

, TC = 25 °CTJ≤ 175 °C, VGE = 15 V

Figure 9. Transfer characteristics

120

80

40

05 6 7 8 VGE (V)

VCE= 6 V

TJ = 25

°CTJ

IC(A)

= 175

Figure 10. Diode VF vs forward current

0 40 80 120 160 I F (A)0.0

0.4

0.8

1.2

1.6

2.0

V F(V)

T J = 175 °C

T J = 25 °C

T J = -40 °C

Figure 11. Normalized VGE(th) vs junction temperature

-50 0 50 100 150 T J (ºC)0.6

0.7

0.8

0.9

1.0

1.1

V GE(th) (norm.)

V CE = V GEI C = 2mA

Figure 12. Normalized V(BR)CES vs junction temperature

-50 0 50 100 150 T J (ºC)0.90

0.94

0.98

1.02

1.06

V (BR)CES (norm.)

I C = 250µA

STGYA120M65DF2AGElectrical characteristics (curves)

DS11783 - Rev 4 page 6/14

Page 7: Automotive-grade trench gate field-stop, 650 V, 120 A, low ... · 10 1 10 -1 10 0 10 1 10 2 C (pF) VCE (V) CIES COES CRES f = 1 MHz Figure 14. Gate charge vs gate-emitter voltage

Figure 13. Capacitance variations

GADG300920191055CVR

10 4

10 3

10 2

10 1

10 -1 10 0 10 1 10 2

C (pF)

VCE (V)

CIES

COES

CRES

f = 1 MHz

Figure 14. Gate charge vs gate-emitter voltage

0 100 200 300 400 Q g (nC)0

5

10

15

V GE(V)

V CC = 520 V, I C = 120A, I G = 10 mA

Figure 15. Switching energy vs collector current

0 50 100 150 200 I C (A)0

4

8

12

16

20

24

E on

E tot

E off

VCC= 400 V, RG= 4.7Ω,VGE= 15 V,TJ= 175 °C

E (mJ)

Figure 16. Switching energy vs gate resistance

0 5 10 15 20 R G ( Ω )0

4

8

12

16

E tot

E off

E on

VCC= 400 V, IC= 120 A,VGE= 15 V,TJ= 175 °C

E(mJ)

Figure 17. Switching energy vs temperature

0 50 100 150 T J (ºC)0

3

6

9

E on

E off

E tot

VCC= 400 V, IC= 120 A, RG =4.7Ω,VGE= 15 V

E(mJ)

Figure 18. Switching energy vs collector emitter voltage

150 250 350 450 V CE (V)0

4

8

12

E off

E on

E tot

IC= 120 A, RG= 4.7Ω,VGE= 15 V,TJ= 175 °C

E(mJ)

STGYA120M65DF2AGElectrical characteristics (curves)

DS11783 - Rev 4 page 7/14

Page 8: Automotive-grade trench gate field-stop, 650 V, 120 A, low ... · 10 1 10 -1 10 0 10 1 10 2 C (pF) VCE (V) CIES COES CRES f = 1 MHz Figure 14. Gate charge vs gate-emitter voltage

Figure 19. Short circuit time and current vs VGE

8 10 12 14 V GE (V)4

8

12

16

t SC(µs)

200

300

400

500t SC

Isc(A)

I SC

V CC ≤ 400 V, T J ≤ 150 °C

Figure 20. Switching times vs collector current

40 80 120 160 200 240 I C (A)

t d(off)

t f

t d(on)

t r

102

1010

VCC= 400 V, VGE= 15 V, RG= 4.7 Ω, TJ= 175 °C

t(ns)

Figure 21. Switching times vs gate resistance

6 12 18 R G ( Ω )

102

101

t(ns)

V CC = 400 V, V GE = 15 V, I c = 120 A , T J = 175 °C

t f

t d(on)

t r

0

t d(off)

Figure 22. Reverse recovery current vs diode currentslope

800 1200 1600 2000 2400 di/dt (A/µs)60

70

80

90

VCC= 400 V, VGE= 15 V, IF= 120 A,TJ= 175 °C

Irrm

(A)

Figure 23. Reverse recovery time vs diode current slope

800 1200 1600 2000 2400 di/dt (A/µs)240

260

280

300

320

VCC= 400 V, VGE= 15 V, IF= 120 A, TJ= 175 °C

trr

(ns)

Figure 24. Reverse recovery charge vs diode currentslope

800 1200 1600 2000 2400 di/dt (A/µs)11.0

11.5

12.0

12.5

VCC= 400 V, VGE= 15 V, IF= 120A,TJ= 175 °C

Qrr(μC)

STGYA120M65DF2AGElectrical characteristics (curves)

DS11783 - Rev 4 page 8/14

Page 9: Automotive-grade trench gate field-stop, 650 V, 120 A, low ... · 10 1 10 -1 10 0 10 1 10 2 C (pF) VCE (V) CIES COES CRES f = 1 MHz Figure 14. Gate charge vs gate-emitter voltage

Figure 25. Reverse recovery energy vs diode current slope

800 1200 1600 2000 2400 di/dt (A/µs)1.0

1.2

1.4

1.6

VCC= 400 V, VGE= 15 V, IF= 120 A,TJ= 175 °C

Err

(mJ)

Figure 26. Thermal impedance for IGBT

MAX247LL_ZthJC

10 -1

10 -210 -5 10 -4 10 -3 10 -2 10 -1

K

t p (s)

Figure 27. Thermal impedance for diode

STGYA120M65DF2AGElectrical characteristics (curves)

DS11783 - Rev 4 page 9/14

Page 10: Automotive-grade trench gate field-stop, 650 V, 120 A, low ... · 10 1 10 -1 10 0 10 1 10 2 C (pF) VCE (V) CIES COES CRES f = 1 MHz Figure 14. Gate charge vs gate-emitter voltage

3 Test circuits

Figure 28. Test circuit for inductive load switching

A AC

E

G

B

RG+

-

G

C 3.3µF

1000µF

L=100 µH

VCC

E

D.U.T

B

AM01504v1

Figure 29. Gate charge test circuit

AM01505v1

k

k

k

k

k

k

Figure 30. Switching waveform

AM01506v1

90%

10%

90%

10%

VG

VCE

IC td(on)

ton

tr(Ion)

td(off)

toff

tf

tr(Voff)

tcross

90%

10%

Figure 31. Diode reverse recovery waveform

t

GADG180720171418SA

10%

VRRM

dv/dt

di/dt

IRRM

IF

trr

ts tf

Qrr

IRRM

STGYA120M65DF2AGTest circuits

DS11783 - Rev 4 page 10/14

Page 11: Automotive-grade trench gate field-stop, 650 V, 120 A, low ... · 10 1 10 -1 10 0 10 1 10 2 C (pF) VCE (V) CIES COES CRES f = 1 MHz Figure 14. Gate charge vs gate-emitter voltage

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,depending on their level of environmental compliance. ECOPACK specifications, grade definitions and productstatus are available at: www.st.com. ECOPACK is an ST trademark.

4.1 Max247 long leads package information

Figure 32. Max247 long leads package outline

DM00176969_rev_1

Section C-C, D-D, E-E

STGYA120M65DF2AGPackage information

DS11783 - Rev 4 page 11/14

Page 12: Automotive-grade trench gate field-stop, 650 V, 120 A, low ... · 10 1 10 -1 10 0 10 1 10 2 C (pF) VCE (V) CIES COES CRES f = 1 MHz Figure 14. Gate charge vs gate-emitter voltage

Table 7. Max247 long leads package mechanical data

Dim.mm

Min. Typ. Max.

A 4.90 5.00 5.10

A1 2.31 2.41 2.51

A2 1.90 2.00 2.10

a 0 0.15

a' 0 0.15

b 1.16 1.26

b1 1.15 1.20 1.22

b2 1.96 2.06

b3 1.95 2.00 2.02

b4 2.96 3.06

b5 2.95 3.00 3.02

b6 2.25

b7 3.25

c 0.59 0.66

c1 0.58 0.60 0.62

D 20.90 21.00 21.10

D1 16.25 16.55 16.85

D2 1.05 1.17 1.35

D3 0.75 1.00 1.25

E 15.70 15.80 15.90

E1 13.10 13.26 13.50

E3 1.35 1.45 1.55

e 5.34 5.44 5.54

L 19.80 19.92 20.10

L1 4.30

M 0.70 1.30

P 2.40 2.50 2.60

R 1.90 2.00 2.10

T 9.80 10.20

U 6.00 6.40

STGYA120M65DF2AGMax247 long leads package information

DS11783 - Rev 4 page 12/14

Page 13: Automotive-grade trench gate field-stop, 650 V, 120 A, low ... · 10 1 10 -1 10 0 10 1 10 2 C (pF) VCE (V) CIES COES CRES f = 1 MHz Figure 14. Gate charge vs gate-emitter voltage

Revision history

Table 8. Document revision history

Date Revision Changes

12-Aug-2016 1 First release.

12-Dec-2016 2Document status promoted from preliminary to production data.

Minor text changes.

24-Aug-2017 3

Updated features and title in cover page.

Updated Table 4: "Static characteristics".

Minor text changes.

08-Oct-2019 4

Updated Table 4. Dynamic characteristics.

Updated Figure 9. Forward bias safe operating area andFigure 14. Capacitance variations.

Minor text changes

STGYA120M65DF2AG

DS11783 - Rev 4 page 13/14

Page 14: Automotive-grade trench gate field-stop, 650 V, 120 A, low ... · 10 1 10 -1 10 0 10 1 10 2 C (pF) VCE (V) CIES COES CRES f = 1 MHz Figure 14. Gate charge vs gate-emitter voltage

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to STproducts and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. STproducts are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design ofPurchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or servicenames are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics – All rights reserved

STGYA120M65DF2AG

DS11783 - Rev 4 page 14/14