Automatic Train Control System using Wireless Sensor Networks

68
Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References Automatic Train Control System for Railways using Wireless Sensor Network Prakhar Bansal 2011CS29 under the guidance of Prof. M.M. Gore Computer Science and Engineering Department Motilal Nehru National Institute of Technology Allahabad, Allahabad, India June 11, 2013 Prakhar Bansal, MNNIT Allahabad 1 / 66 Automatic Train Control System

description

Running trains using wireless sensors. For any communication, mail id - [email protected]

Transcript of Automatic Train Control System using Wireless Sensor Networks

Page 1: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Automatic Train Control System for Railwaysusing Wireless Sensor Network

Prakhar Bansal2011CS29

under the guidance of

Prof. M.M. Gore

Computer Science and Engineering DepartmentMotilal Nehru National Institute of Technology Allahabad,

Allahabad, India

June 11, 2013

Prakhar Bansal, MNNIT Allahabad 1 / 66

Automatic Train Control System

Page 2: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Table of Contents

1 Motivation

2 Introduction to Present Railway Signalling Architecture

3 Field Study

4 Thesis ContributionsProposed ArchitectureAlgorithms

5 Simulation ImplementationTinyOS, nesC and TOSSIMSensor Motes and Sensor BoardsRouting ProtocolsSimulation Experiences and Results

6 Conclusion and Future Work

7 References

Prakhar Bansal, MNNIT Allahabad 2 / 66

Automatic Train Control System

Page 3: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Table of Contents

1 Motivation

2 Introduction to Present Railway Signalling Architecture

3 Field Study

4 Thesis ContributionsProposed ArchitectureAlgorithms

5 Simulation ImplementationTinyOS, nesC and TOSSIMSensor Motes and Sensor BoardsRouting ProtocolsSimulation Experiences and Results

6 Conclusion and Future Work

7 References

Prakhar Bansal, MNNIT Allahabad 3 / 66

Automatic Train Control System

Page 4: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

MotivationWhy Railways?

Figure: i.) Railways as a Transportation ii.) Frequency of Rail Accidentsiii.) Need of Sustainable Transport Solution

Prakhar Bansal, MNNIT Allahabad 4 / 66

Automatic Train Control System

Page 5: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

MotivationRailways as a Transport

Railways as a Passenger Solution

44446 million passengers travel globally/year via railways [1].

6.8% people travel via rail all over the world [1].

24 million people/day travel via rail in India [2].

Japan, China and Russia has high passenger modal split of29%, 31.7% and 41.1% respectively [3].

Railways as a Carriage Solution

5439 mtk goods is carried via rail globally in 2011 [1].

IR carries 2.8 million tons of freight/day [4].

USA and Russia has rail freight modal share of 88.8% and67.9% respectively [5].

Prakhar Bansal, MNNIT Allahabad 5 / 66

Automatic Train Control System

Page 6: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

MotivationAccidents Rate

Old technology and manual signalling in most countries.

More than 1000 people die per year globally [6].

715 people die and 1118 injured in last 3 years in 49 accidentsin India [2].

Mostly accidents happen due to manual errors in signalling,lack of visibility, communication faults and derailments [5].

Trains usually run out of schedule and even get canceled inwinter season due to low visibility.

Prakhar Bansal, MNNIT Allahabad 6 / 66

Automatic Train Control System

Page 7: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

MotivationNeed for Sustainable Transport

Figure: (a) CO2 Emissions [7] Figure: (b) Energy Consumption [7]

Prakhar Bansal, MNNIT Allahabad 7 / 66

Automatic Train Control System

Page 8: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

MotivationNeed for Sustainable Transport

Table: CO2 Emissions [7]

Rail 48.8 gram/passenger/km

Roads 418 gram/passenger/km

Navigation 200 gram/passenger/km

Aviation 316 gram/passenger/km

Table: CO2 Emissions in India in the period 1998-2009 [8]

Rail 8 million tons

Roads 128 million tons

Navigation 18 million tons

Aviation 4 million tons

Prakhar Bansal, MNNIT Allahabad 8 / 66

Automatic Train Control System

Page 9: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Table of Contents

1 Motivation

2 Introduction to Present Railway Signalling Architecture

3 Field Study

4 Thesis ContributionsProposed ArchitectureAlgorithms

5 Simulation ImplementationTinyOS, nesC and TOSSIMSensor Motes and Sensor BoardsRouting ProtocolsSimulation Experiences and Results

6 Conclusion and Future Work

7 References

Prakhar Bansal, MNNIT Allahabad 9 / 66

Automatic Train Control System

Page 10: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Present Railway Signalling Architecture

Figure: General Signalling Boards

Prakhar Bansal, MNNIT Allahabad 10 / 66

Automatic Train Control System

Page 11: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Present Railway Signalling Architecture

Figure: Color Light Signals

Prakhar Bansal, MNNIT Allahabad 11 / 66

Automatic Train Control System

Page 12: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Present Railway Signalling Architecture

Figure: Semaphore Signals

Prakhar Bansal, MNNIT Allahabad 12 / 66

Automatic Train Control System

Page 13: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Present Railway Signalling Architecture

Figure: Convergence and Divergence Signals

Prakhar Bansal, MNNIT Allahabad 13 / 66

Automatic Train Control System

Page 14: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Present Railway Signalling Architecture

Figure: Shunting and Repeater Signals

Prakhar Bansal, MNNIT Allahabad 14 / 66

Automatic Train Control System

Page 15: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Successfully Deployed WSN Projects

Smart-Grid Project [9]: entire process from generation,transmission, distribution of electricity to integration ofrenewable and alternative energy sources, is handled bywireless sensors.

Microsoft SensorMap [10]:

100s of mini weather stations deployed in schools throughoutSingapore.sensor grid, to automatically collect and aggregate the weatherdata in real time.studies correlation between the weather patterns and denguefever.

CodeBlue [11]: wireless sensors for medical care.

Ultra-wideband sensing and communication for biomedicalapplications [12].

Prakhar Bansal, MNNIT Allahabad 15 / 66

Automatic Train Control System

Page 16: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Table of Contents

1 Motivation

2 Introduction to Present Railway Signalling Architecture

3 Field Study

4 Thesis ContributionsProposed ArchitectureAlgorithms

5 Simulation ImplementationTinyOS, nesC and TOSSIMSensor Motes and Sensor BoardsRouting ProtocolsSimulation Experiences and Results

6 Conclusion and Future Work

7 References

Prakhar Bansal, MNNIT Allahabad 16 / 66

Automatic Train Control System

Page 17: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Field StudyInteraction with Senior Section Engineer, North Central Railways

Figure: Ghaziabad Train ControlRoom c©Indian Railways [13]

Figure: Typical Train Control Roomc©Indian Railways [13]

Prakhar Bansal, MNNIT Allahabad 17 / 66

Automatic Train Control System

Page 18: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Study Findings

Lots of mechanical equipments used [14].

Completely depends on manual expertise.

As traffic increasing, needs good computerized managingsolutions.

Route relay interlocking installed only on busy stations.

Prakhar Bansal, MNNIT Allahabad 18 / 66

Automatic Train Control System

Page 19: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

WSN Suitability to Railways

Huge scope of wsn in railways [15].

Think about station master itself getting incoming trainreadings via sensors.

No need for manual signalling.

Train itself asks for clearance to next block head, no need tostop and wait.

Accurate location information without GPS.

Prakhar Bansal, MNNIT Allahabad 19 / 66

Automatic Train Control System

Page 20: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Use of Self-recharging Batteries from Vibrations

Piezoelectric vibrational energy harvester (PZeh) are used.

Generates 40mW on an average with a peak operation of0.3W, when shaken gently.

Generates 280mW with a peak operation of 2.0W, whenshaken vigorously.

Micaz mote processor consumes 8mA in Active mode and<15µ A Sleep mode.

Micaz mote radio consumes 19.7mA in Receiving mode,17.4mA TX, 0dBm, 20µA Idle mode, voltage regular ON and1µA Sleep mode, voltage regulator OFF.

Prakhar Bansal, MNNIT Allahabad 20 / 66

Automatic Train Control System

Page 21: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Table of Contents

1 Motivation

2 Introduction to Present Railway Signalling Architecture

3 Field Study

4 Thesis ContributionsProposed ArchitectureAlgorithms

5 Simulation ImplementationTinyOS, nesC and TOSSIMSensor Motes and Sensor BoardsRouting ProtocolsSimulation Experiences and Results

6 Conclusion and Future Work

7 References

Prakhar Bansal, MNNIT Allahabad 21 / 66

Automatic Train Control System

Page 22: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Table of Contents

1 Motivation

2 Introduction to Present Railway Signalling Architecture

3 Field Study

4 Thesis ContributionsProposed ArchitectureAlgorithms

5 Simulation ImplementationTinyOS, nesC and TOSSIMSensor Motes and Sensor BoardsRouting ProtocolsSimulation Experiences and Results

6 Conclusion and Future Work

7 References

Prakhar Bansal, MNNIT Allahabad 22 / 66

Automatic Train Control System

Page 23: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Proposed Architecture

Figure: Train Running Signalling using WSN

Prakhar Bansal, MNNIT Allahabad 23 / 66

Automatic Train Control System

Page 24: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Proposed Architecture

Figure: Convergence and Divergence using WSN

Prakhar Bansal, MNNIT Allahabad 24 / 66

Automatic Train Control System

Page 25: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Proposed Architecture

Figure: WSN based Interlocking

Prakhar Bansal, MNNIT Allahabad 25 / 66

Automatic Train Control System

Page 26: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Table of Contents

1 Motivation

2 Introduction to Present Railway Signalling Architecture

3 Field Study

4 Thesis ContributionsProposed ArchitectureAlgorithms

5 Simulation ImplementationTinyOS, nesC and TOSSIMSensor Motes and Sensor BoardsRouting ProtocolsSimulation Experiences and Results

6 Conclusion and Future Work

7 References

Prakhar Bansal, MNNIT Allahabad 26 / 66

Automatic Train Control System

Page 27: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Train Running Algorithms

Algorithms

Algorithm 1: Configuration Phase - Learning the BHs

Algorithm 2: Configuration Phase - Learning the CHs

Algorithm 3: Train Event Detection: Seeking Clearance byBHs

Algorithm 4: Data Aggregation and Forwarding: Data to CHs

Algorithm 5: Topology Updation and Maintenance

Prakhar Bansal, MNNIT Allahabad 27 / 66

Automatic Train Control System

Page 28: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Algorithm 1

Algorithm 1 Configuration Phase: Learning the BHs

BH/Station broadcasts a ‘configuration message’CM with aBHdistance = 1Ru is the set of nodes that receive the CM messagefor each u ∈ Ru do

i=0if BHdistanceu > BHdistanceCM and

firstsendingu[BhIDCM ]==true and isBH==false thennextbhu[i] ← BhIDCM

nexthopu[i] ← NIDCM

BHdistanceu ← BHdistanceCM + 1NIDCM ← TOS NODE IDBHdistanceCM ← BHdistanceunode u broadcast the modified CM msgfirstsendingu[BhIDCM ] ← falsei++

elsenode u discards the received CM message

end ifend for

Prakhar Bansal, MNNIT Allahabad 28 / 66

Automatic Train Control System

Page 29: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

After Algorithm 1

Figure: After Blockhead Configuration

Prakhar Bansal, MNNIT Allahabad 29 / 66

Automatic Train Control System

Page 30: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Algorithm 2

Algorithm 2 Configuration Phase: Learning the CHs

Clusterhead broadcasts a Clusterhead Declaration Message(CDM) with a TTL valueRu is the set of nodes that receive the CDM messagefor each u ∈ Ru doif TTL 6= 0 and u ∈ BH thenif CDM− > ID /∈ CHQueueu thenadd(CHQueueCH , CDM− > ID)TTL← TTL− 1node u broadcasts modified CDM message

end ifelse

node u discards the received CDM messageend if

end for

Prakhar Bansal, MNNIT Allahabad 30 / 66

Automatic Train Control System

Page 31: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

After Algorithm 2

Figure: After Clusterhead Configuration

Prakhar Bansal, MNNIT Allahabad 31 / 66

Automatic Train Control System

Page 32: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Algorithm 3

Algorithm 3 Train Event Detection and Seeking for Clearance

Ru is the set of nodes that detect trainfor each u ∈ Ru do

if TrainDetectedu == true and DoubleLane==true thenif flagu == 0 then

// critical sectionsend clearance signalflagu = 1

end ifelse

send wait signalend ifif TrainDetectedu == true and DoubleLane==false and

stationu == true thenif flagu == 0 and flagNextStationu == 0 then

// critical section

Prakhar Bansal, MNNIT Allahabad 32 / 66

Automatic Train Control System

Page 33: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Algorithm 3

Algorithm 3 Train Event Detection and Seeking for Clearance(cont.)

send clearance signalflagu = 1flagNextStationu = 1

end ifelse

send wait signalend ifif TrainLeavesu == true and DoubleLane==true then

send clearance signal to neighboring BHend ifif TrainLeavesu == true and DoubleLane==false and

stationu == true thensend clearance signal to neighboring station

end ifend for

Prakhar Bansal, MNNIT Allahabad 33 / 66

Automatic Train Control System

Page 34: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Algorithm 4

Algorithm 4 Data Aggregation and Forwarding

Ru is the set of BH/Stationfor each u ∈ Ru do

Each BH/Station periodically sends the list of train to all CHsin the queue

Packet.msg ← TrainInfouadd(Packet.ID[ ], TOS NODE ID)//The BH/Station, when receives the list from other

BHs/Stations, it aggregates the data and then forwards itif Packet Received then

buffer=buffer∪PacketPacket ← bufferforwards Packet

end ifend for

Prakhar Bansal, MNNIT Allahabad 34 / 66

Automatic Train Control System

Page 35: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Algorithm 5

Algorithm 5 Topology Updation and Maintenance

if train list not received by CH or partial list is received thenrestart algorithm 1 and 2

end if

Prakhar Bansal, MNNIT Allahabad 35 / 66

Automatic Train Control System

Page 36: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Table of Contents

1 Motivation

2 Introduction to Present Railway Signalling Architecture

3 Field Study

4 Thesis ContributionsProposed ArchitectureAlgorithms

5 Simulation ImplementationTinyOS, nesC and TOSSIMSensor Motes and Sensor BoardsRouting ProtocolsSimulation Experiences and Results

6 Conclusion and Future Work

7 References

Prakhar Bansal, MNNIT Allahabad 36 / 66

Automatic Train Control System

Page 37: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Table of Contents

1 Motivation

2 Introduction to Present Railway Signalling Architecture

3 Field Study

4 Thesis ContributionsProposed ArchitectureAlgorithms

5 Simulation ImplementationTinyOS, nesC and TOSSIMSensor Motes and Sensor BoardsRouting ProtocolsSimulation Experiences and Results

6 Conclusion and Future Work

7 References

Prakhar Bansal, MNNIT Allahabad 37 / 66

Automatic Train Control System

Page 38: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

TinyOS, nesC and TOSSIMTinyOS

TinyOS

Free, open-source, BSD-licensed OS designed for low-powerembedded distributed wireless sensor devices [16].

Developed by University of California, Berkeley, Intel Researchand Crossbow Technology.

Designed to support the concurrency intensive operationsrequired by networked sensors with minimal hardwarerequirements.

Written in nesC programming language.

Prakhar Bansal, MNNIT Allahabad 38 / 66

Automatic Train Control System

Page 39: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

TinyOS, nesC and TOSSIMnesC and TOSSIM

nesC

Network embedded systems C, C optimized to supportcomponents and concurrency [17].Component based, event driven programming language usedto build application for TinyOS platform.Components are wired together to run applications onTinyOS.Programs = software components (connected statically viainterfaces).

TOSSIM

Simulates entire TinyOS applications [18].Replaces components with simulation implementations.2 interfaces: c++ and python.

Prakhar Bansal, MNNIT Allahabad 39 / 66

Automatic Train Control System

Page 40: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

TinyOS, nesC and TOSSIMnesC and TOSSIM

nesC

Network embedded systems C, C optimized to supportcomponents and concurrency [17].Component based, event driven programming language usedto build application for TinyOS platform.Components are wired together to run applications onTinyOS.Programs = software components (connected statically viainterfaces).

TOSSIM

Simulates entire TinyOS applications [18].Replaces components with simulation implementations.2 interfaces: c++ and python.

Prakhar Bansal, MNNIT Allahabad 39 / 66

Automatic Train Control System

Page 41: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Table of Contents

1 Motivation

2 Introduction to Present Railway Signalling Architecture

3 Field Study

4 Thesis ContributionsProposed ArchitectureAlgorithms

5 Simulation ImplementationTinyOS, nesC and TOSSIMSensor Motes and Sensor BoardsRouting ProtocolsSimulation Experiences and Results

6 Conclusion and Future Work

7 References

Prakhar Bansal, MNNIT Allahabad 40 / 66

Automatic Train Control System

Page 42: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Sensor Motes and Sensor BoardsMICAz Mote

Figure: MICAz Sensor Mote c©Crossbow Technology, USA [19]

Prakhar Bansal, MNNIT Allahabad 41 / 66

Automatic Train Control System

Page 43: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Sensor Motes and Sensor BoardsMICAz Mote

2.4 GHz mote for enabling low-power wireless sensor networks.

IEEE 802.15.4 compliant Radio frequency transceiver.

Radio, resistant to RF interference and provides inherent datasecurity.

Atmel128L, low power microcontroller.

51-pin expansion connector.

High speed (250 Kbps), hardware security (AES-128).

Prakhar Bansal, MNNIT Allahabad 42 / 66

Automatic Train Control System

Page 44: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Sensor Motes and Sensor BoardsSensor Boards

MTS400CA

Acceleration: dual-axis acceleration sensor.Atmospheric pressure: barometric pressure sensor.Light: ambient light sensor.Humidity and temperature: relative humidity and temperaturesensor.

MDA100CB

Light: light sensor and photocell.92 unconnected soldering points.51-pin connector.

Prakhar Bansal, MNNIT Allahabad 43 / 66

Automatic Train Control System

Page 45: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Table of Contents

1 Motivation

2 Introduction to Present Railway Signalling Architecture

3 Field Study

4 Thesis ContributionsProposed ArchitectureAlgorithms

5 Simulation ImplementationTinyOS, nesC and TOSSIMSensor Motes and Sensor BoardsRouting ProtocolsSimulation Experiences and Results

6 Conclusion and Future Work

7 References

Prakhar Bansal, MNNIT Allahabad 44 / 66

Automatic Train Control System

Page 46: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Routing Protocols

Collection Tree Protocol

Collecting data from motes.One or more collection trees is built, each of which is rootedtowards the specified destination.When a node has data which needs to be collected, it sendsthe data up the tree, and it forwards collection data thatother nodes send to it after aggregating, or suppressingredundant transmissions.

Prakhar Bansal, MNNIT Allahabad 45 / 66

Automatic Train Control System

Page 47: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Routing Protocols

Dissemination

It is used to maintain consistency across the network.The dissemination service tells nodes when the value changes,and exchanges packets so it will reach eventual consistencyacross the network.

Blip

BLIP, the Berkeley Low-power IP stack, is an implementationin TinyOS of a number of IP-based protocols.Internet of things.

Prakhar Bansal, MNNIT Allahabad 46 / 66

Automatic Train Control System

Page 48: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Routing Protocols

Dissemination

It is used to maintain consistency across the network.The dissemination service tells nodes when the value changes,and exchanges packets so it will reach eventual consistencyacross the network.

Blip

BLIP, the Berkeley Low-power IP stack, is an implementationin TinyOS of a number of IP-based protocols.Internet of things.

Prakhar Bansal, MNNIT Allahabad 46 / 66

Automatic Train Control System

Page 49: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Routing Protocols

Tymo

TYMO is the implementation on TinyOS of the DYMO[Dynamic MANET On-demand] protocol, a point-to-pointrouting protocol for MANET.TYMO, packet format is changed and implemented on top ofthe Active Message stack of TinyOS.Reactive protocol, DYMO does not explicitly store thenetwork topology.Nodes compute a unicast route towards the desireddestination only when needed using RREQ and RREP packets.

Prakhar Bansal, MNNIT Allahabad 47 / 66

Automatic Train Control System

Page 50: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Table of Contents

1 Motivation

2 Introduction to Present Railway Signalling Architecture

3 Field Study

4 Thesis ContributionsProposed ArchitectureAlgorithms

5 Simulation ImplementationTinyOS, nesC and TOSSIMSensor Motes and Sensor BoardsRouting ProtocolsSimulation Experiences and Results

6 Conclusion and Future Work

7 References

Prakhar Bansal, MNNIT Allahabad 48 / 66

Automatic Train Control System

Page 51: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Simulation ExperiencesInitial Design I

Figure: Initial Design with 1000 NodesPrakhar Bansal, MNNIT Allahabad 49 / 66

Automatic Train Control System

Page 52: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Simulation ExperiencesInitial Design II

Figure: Design with Clearance Points along Stations but not alongJunctions with 100 Nodes

Prakhar Bansal, MNNIT Allahabad 50 / 66

Automatic Train Control System

Page 53: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Simulation ExperiencesDesign with BHs but not Intermediate Nodes

Figure: Introduction to Block System with 100 NodesPrakhar Bansal, MNNIT Allahabad 51 / 66

Automatic Train Control System

Page 54: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Simulation ExperiencesDesign with BHs with Intermediate Nodes

Figure: Revised Block System Architecture with 115 NodesPrakhar Bansal, MNNIT Allahabad 52 / 66

Automatic Train Control System

Page 55: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Simulation ExperiencesFinal Architecture: BHs + CHs + Intermediate Motes

Figure: Present Architecture with 125 NodesPrakhar Bansal, MNNIT Allahabad 53 / 66

Automatic Train Control System

Page 56: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Simulation ExperiencesTopology Framework with respect to Allahabad Junction

Figure: Topology Framework with respect to Allahabad Junction

Prakhar Bansal, MNNIT Allahabad 54 / 66

Automatic Train Control System

Page 57: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Simulation ExperiencesTopology Framework with respect to Allahabad Junction

Figure: Topology Framework with respect to Allahabad Junction

Prakhar Bansal, MNNIT Allahabad 55 / 66

Automatic Train Control System

Page 58: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Simulation Experiences and ResultsResults with Variable Number of Nodes

Figure: (a) Energy Consumptionwith Variable Number of Nodes

Figure: (b) Success Rate withVariable Number of Nodes

Prakhar Bansal, MNNIT Allahabad 56 / 66

Automatic Train Control System

Page 59: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Simulation Experiences and ResultsResults with Variable Frequency of Trains across Allahabad Junction

Figure: (a) Energy Consumptionwith Variable Frequency of Trainsacross Allahabad Junction

Figure: (b) Success Rate withVariable Frequency of Trains acrossAllahabad Junction

Prakhar Bansal, MNNIT Allahabad 57 / 66

Automatic Train Control System

Page 60: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Simulation Experiences and ResultsDiscussions

In our work we used the energy model where the radiodissipates energy E = 50 nJ/bit to run the transmitter orreceiver circuitry and εamp = 100 pJ/bit/m2 for the transmitamplifier to achieve an acceptable SNR [20].

Simulation maximum duration is 10000 seconds and it runs 8rounds/set of nodes.

Topology is generated randomly in each run when doingsimulation for variable number of nodes and it is fixed forsimulation across Allahabad junction.

The success rate is currently decreasing as the number ofpackets increase in the network. This is due to collisions ofmessages. This needs to be improved.

Prakhar Bansal, MNNIT Allahabad 58 / 66

Automatic Train Control System

Page 61: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Table of Contents

1 Motivation

2 Introduction to Present Railway Signalling Architecture

3 Field Study

4 Thesis ContributionsProposed ArchitectureAlgorithms

5 Simulation ImplementationTinyOS, nesC and TOSSIMSensor Motes and Sensor BoardsRouting ProtocolsSimulation Experiences and Results

6 Conclusion and Future Work

7 References

Prakhar Bansal, MNNIT Allahabad 59 / 66

Automatic Train Control System

Page 62: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Conclusion

This could be a revolution in railway technology.

Trains can run efficiently and accurately as any error can beeasily detected.

Trains can run in low visibility as sensors would take care ofthis.

Prakhar Bansal, MNNIT Allahabad 60 / 66

Automatic Train Control System

Page 63: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Future Work

Integration with Internet of things evolution using Blipeffectively.

Security as false messages can be spread by attackers;authenticity and confidentiality could be introduced usingcryptographic solutions.

Prakhar Bansal, MNNIT Allahabad 61 / 66

Automatic Train Control System

Page 64: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Table of Contents

1 Motivation

2 Introduction to Present Railway Signalling Architecture

3 Field Study

4 Thesis ContributionsProposed ArchitectureAlgorithms

5 Simulation ImplementationTinyOS, nesC and TOSSIMSensor Motes and Sensor BoardsRouting ProtocolsSimulation Experiences and Results

6 Conclusion and Future Work

7 References

Prakhar Bansal, MNNIT Allahabad 62 / 66

Automatic Train Control System

Page 65: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

References I

World Bank Data. http://data.worldbank.org/indicator/IS.RRS.TOTL.KM.

[Online; last accessed June 10, 2013].

Anil Kakodkar, E. Sreedharan, N.Vedachalam, “Report of High Level Safety Review Committee,” Ministry

of Railways, Government of India, February, 2012.

Hiroumi Soejima, “Railway Technology in Japan Challenges and Strategies,” Japan Railway and Transport

Review, September, 2003.

Pawan Bansal, “Speech by Railway Minister,” Ministry of Railways, Government of India, February, 2012.

Sam Pitroda, Deepak Parekh and M.S. Verma, “Report of the Expert Group for Modernizaion of Indian

Railways,” Ministry of Railways, Government of India, February 2012.

Amitabh Agarwal, “Human Interface in Railway Safety? A New Dimension,” Ministry of Railways,

Government of India, 2007.

Jean-Pierre Loubinoux, “Keeping Climate Change Solutions on Track The Role of Rail,” International Union

of Railways, March 2012.

Tan Yigitcanlar, Lawrence Fabian and Eddo Coiacetto, “Challenges to Urban Transport Sustainability and

Smart Transport in a Tourist City: The Gold Coast, Australia,” The Open Transportation Journal, 2008.

Murtala Aminu Bamanga, “Wireless Sensor Network Applications in Smart Grid,” University of sussex, 2012.

Prakhar Bansal, MNNIT Allahabad 63 / 66

Automatic Train Control System

Page 66: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

References II

Suman Nath, Jie Liu, and Feng Zhao, “SensorMap for Wide-Area Sensor Webs.”

http://atom.research.microsoft.com/sensewebv3/sensormap/.[Online; last accessed on June 10, 2013].

Matt Welsh, “CodeBlue: A Wireless Sensor Network for Medical Care and Disaster Response,” Harvard

University, 2005.

“Ultra-wideband Sensing and Communication for Biomedical Applications.”

http://www.sussex.ac.uk/crg/projects/wsn/uwbsens/, University of Sussex.[Online; last accessed June 10, 2013].

Karan Desai, “Akamai Technologies, Inc..” http://www.quora.com/India/

How-does-the-inside-of-control-room-of-Indian-railways-look-like-How-do-the-guys-in-the-control-room-communicate-with-the-engine-driver/.

[Online; last accessed on June 10, 2013].

Mr. Alok Sehgal. Senior section engineer, North Central Railways, Allahabad railway station.

Yamato Fukuta, “Possibility of Sensor Network Applying for Railway Signal System,” IEEE conference, 2008.

P. Levis and D. Gay, TinyOS Programming.

New York, NY, USA: Cambridge University Press, 1st ed., 2009.

David Gay, Philip Levis, Matt Welsh and David Culler, “The nesC Language: A Holistic Approach to

Networked Embedded Systems,” 2002.

Prakhar Bansal, MNNIT Allahabad 64 / 66

Automatic Train Control System

Page 67: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

References III

P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: accurate and scalable simulation of entire tinyos

applications,” in Proceedings of the 1st international conference on Embedded networked sensor systems,SenSys ’03, (New York, NY, USA), pp. 126–137, ACM, 2003.

Crossbow Technology, “Micaz Specification.”

www.openautomation.net/uploadsproductos/micaz_datasheet.pdf.[Online; last accessed June 10, 2013].

Leandro Aparecido Villas, Azzedine Boukerche and Heitor Soares Ramos,, “DRINA: A Lightweight and

Reliable Routing Approach for In-Network Aggregation in Wireless Sensor Networks,” vol. 62, IEEETransactions on Computers, April 2013.

Prakhar Bansal, MNNIT Allahabad 65 / 66

Automatic Train Control System

Page 68: Automatic Train Control System using Wireless Sensor Networks

Outline Motivation Present Signalling Field Study Thesis Contributions Simulation Conclusion References

Thankyou

Questions Please.

Prakhar Bansal, MNNIT Allahabad 66 / 66

Automatic Train Control System