Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary*...

45
1 Australian Solar Energy Forecasting System Final report: project results and lessons learnt Lead organisation: Commonwealth Scientific and Industrial Research Organisation (CSIRO) Project commencement date: 7 th January 2013 Completion date: 30 th May 2016 Date published: Contact name: John Ward Title: Dr Email: [email protected] Phone: +61 2 4960 6072 Website: http://arena.gov.au/project/australian-solar-energy-forecasting-system-asefs-phase-1/

Transcript of Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary*...

Page 1: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

1  

Australian  Solar  Energy  Forecasting  System  

Final  report:  project  results  and  lessons  learnt  

Lead  organisation:   Commonwealth  Scientific  and  Industrial  Research  Organisation  (CSIRO)  

Project  commencement  date:     7th  January  2013   Completion  date:   30th  May  2016  

Date  published:  

Contact  name:    John Ward  

Title:  Dr  

Email:   [email protected]   Phone:   +61 2 4960 6072  

Website:   http://arena.gov.au/project/australian-solar-energy-forecasting-system-asefs-phase-1/

Page 2: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

 

2  

Table  of  Contents  Table  of  Contents  ..................................................................................................................................  2  

Executive  Summary  ...............................................................................................................................  3  

Project  Overview  ...................................................................................................................................  5  

Project  summary  ............................................................................................................................  5  

Project  scope  .................................................................................................................................  9  

Outcomes  ....................................................................................................................................  13  

Transferability  ..............................................................................................................................  39  

Conclusion  and  next  steps  ...........................................................................................................  39  

References  ...................................................................................................................................  41  

Lessons  Learnt  .....................................................................................................................................  42  

Lessons  Learnt  Report:  Delays  with  Solar  Flagship  program  .......................................................  42  

Lessons  Learnt  Report:  Unexpected  rapid  increase  in  rooftop  solar  installations  ......................  43  

Lessons  Learnt  Report:  Lack  of  solar  forecast  data  thorough  the  Researcher  Access  .................  44  

Lessons  Learnt  Report:  Delays  in  signing  the  agreement  between  CSIRO  and  NREL  ..................  45  

 

Page 3: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

 

3  

Executive  Summary  The  30-­‐month,  7.6  million,  project  Australian  Solar  Energy  Forecasting  System  (ASEFS)  addressed  the  issue  of  solar  power  integration  into  the  grid  by  means  of  a  two-­‐pronged  approach:  

1. The  development  of  an  operational  infrastructure  component,  also  referred  to  as  ASEFS,  and  to  be  installed  at,  and  operated  by,  the  Australian  Energy  Market  Operator  (AEMO)  

2. The  development  of  an  advanced  forecasting  research  program,  via  the  production  of  world  leading  solar  forecasting  techniques  and  tools  aimed  at  improving  the  forecasts  produced  by  the  operational  system  and  at  creating  national  capability  in  the  area  of  solar  irradiance  and  power  forecasting  

Solar  generating  capacity  in  the  National  Energy  Market  (NEM)  has  been  growing  to  an  estimated  installed  capacity  exceeding  4,000  MW,  particularly  with  the  proliferation  of  grid-­‐connected  roof-­‐top  PV,  as  well  as  the  more  recent  large  scale  solar  installation  at  Nyngam,  Broken  Hill  and  Royalla  (with  other  MW-­‐scale  plants  due  to  become  operational  in  the  near  term).  Solar  forecasting  is  therefore  essential  to  assist  with  the  provision  of  accurate  supply  and  demand  forecast  models  necessary  to  increase  commercial  viability  and  ensure  stability  of  the  electricity  grid.  

The  project,  co-­‐funded  by  the  Australian  Renewable  Energy  Agency  (ARENA),  was  coordinated  by  the  Commonwealth  Scientific  and  Industrial  Research  Organisation  (CSIRO).  The  development  of  the  operational  infrastructure  component  was  undertaken  by  Overspeed  GmbH,  a  company  involved  in  development  of  Australian  Wind  Energy  Forecasting  System  (AWEFS),  and  AEMO’s  Information  Management  and  Technology  (IMT)  department.  The  development  of  an  advanced  solar  forecasting  research  program  was  contributed  by  the  Bureau  of  Meteorology  (BoM),  the  University  of  New  South  Wales  (UNSW),  the  University  of  South  Australia  (UniSA),  the  US  Renewable  Energy  Laboratory  (NREL)  and  CSIRO  in  close  consultation  with  AEMO.    

The  state  of  solar  energy  forecasting  development  is  such  that  only  basic  techniques,  mostly  developed  overseas,  were  ready  for  implementation  in  an  operational  ASEFS.  Developed  around  such  basic  techniques,  the  ASEFS  project  successfully  installed  a  solar  forecasting  system,  also  called  ASEFS,  at  AEMO,  manager  of  the  NEM.  This  is  enabling  the  enhanced  integration  of  solar  energy  generation  at  all  time  scales,  from  5  mins  to  2  years,  into  the  national  grid  and  is  allowing  operators  of  larger  systems  to  participate  in  the  NEM.  This  system  has  been  configured  as  an  extension  to  AWEFS,  which  has  been  successfully  operating  within  AEMO  market  systems  since  2008.  Without  such  forecasting  systems  wind  and  solar  renewable  energy  generation  would  be  subject  to  increasing  levels  of  curtailment,  undermining  both  their  viability  and  their  significant  contribution  to  greenhouse  gas  reduction.  

Up  to  a  few  months  before  the  end  of  ASEFS,  June  2015,  none  of  the  large-­‐scale  solar  farms  (larger  than  30  MW)  were  actually  commissioned,  meaning  that  they  were  not  reporting  their  SCADA  data  and  as  a  consequence  no  solar  forecasting  was  available  for  such  planned  farms.  In  the  absence  of  registered  large-­‐scale  solar  generators  in  ASEFS,  the  solution  was  to  run  the  solar  forecasts  in  a  non-­‐production  environment  using  two  small-­‐scale  test  solar  farms  to  exercise  the  forecasting  models.  The  Black  Mountain  (Canberra)  and  the  Norwest  (Sydney)  test  solar  farms  replicated  (scaled)  fixed,  

Page 4: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  4    

non-­‐tracking  solar  generators  with  scaled  energy  conversion  models,  providing  scaled  “MW”  output  and  onsite  weather  data  to  ASEFS.  The  normalised  mean  accuracy  error  for  the  different  time  horizons  were  tested  against  the  required  system  specifications  and  the  results  were  within  the  ASEFS  agreed  accuracy  targets.  

One  of  the  key  outcomes  of  the  ASEFS  project  is  that  it  has  allowed  to  advance,  and  in  some  cases  to  create,  a  solid  knowledge  in  solar  forecasting  for  Australian  Institutions  as  well  as  NREL.  Strengthening  of  expertise  in  the  very  active  area  of  solar  forecasting  requires  further  long-­‐term  investments  without  which  Australia  will  not  be  competitive  in  supporting  the  solar  industry.  In  a  way,  this  has  happened  already  with  the  reliance  of  AEMO  on  the  services  of  Overspeed.  However,  there  are  many  other  commercial  applications  and  opportunities  which  the  Australian  research  community  could  tap  into  (e.g.  interactions  between  battery  storage  and  PV  panels)  and  for  which  the  acquired  expertise  could  be  gainfully  applied.  At  the  same  time,  large  gaps  in  funding  opportunities  could  lead  to  a  migration  of  expertise  into  other  areas  of  research/industry,  something  that  has  already  happened.  

Conversations  have  already  started  around  extending  the  R&D  work  developed  under  ASEFS  by  combining  the  various  techniques  which  have  thus  far  been  developed  in  isolation.  For  instance,  tracking  of  clouds  from  sky  cameras  and  satellite  could  be  merged  to  provide  a  more  comprehensive  picture  of  cloud  evolution.  Work  on  a  proposal  to  provide  advanced  solar  forecasting  solutions  to  the  solar  and  battery  storage  industries  is  underway.    

A  cost-­‐benefit  analysis  for  the  implementation  of  new  forecasting  improvements  in  AEMO  operational  system  could  not  be  carried  out  to  lack  of  solar  forecasting  data  produced  by  AEMO’s  ASEFS.  Despite  several  iterations  with  the  technical  people  involved  in  the  access  to  the  forecasting  data,  these  were  still  unavailable  at  the  time  of  completion  of  the  project.  To  the  best  of  our  knowledge,  this  difficulty  arose  from  the  fact  that  until  very  recently  no  solar  power  plant  larger  than  30  MW  was  operating.  And  although  ASEFS  has  been  implemented,  the  fact  that  it  has  been  tested  only  on  the  two  small  test  solar  farms  has  meant  that  ASEFS  could  not  run  on  the  AEMO’s  operational  machines.  Since  the  researchers  access  is  part  of  AEMO’s  ASEFS,  our  understanding  is  that  the  issue  of  making  solar  forecasting  data  available  will  continue  to  be  pursued  until  resolved.  

 

 

 

Page 5: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

 

5  

Project  Overview  

Project  summary    

The  30-­‐month,  7.6  million,  project  Australian  Solar  Energy  Forecasting  System  (ASEFS)  addressed  the  issue  of  solar  power  integration  into  the  grid  by  means  of  a  two-­‐pronged  approach:  

• The  development  of  an  operational  infrastructure  component,  also  referred  to  as  ASEFS,  and  to  be  installed  at,  and  operated  by,  the  Australian  Energy  Market  Operator  (AEMO)  

• The  development  of  an  advanced  forecasting  research  program,  aimed  at  improving  the  forecasts  produced  by  the  operational  system  and  at  creating  national  capability  in  the  area  of  solar  irradiance  and  power  forecasting  

The  project,  co-­‐funded  by  the  Australian  Renewable  Energy  Agency  (ARENA),  was  coordinated  by  the  Commonwealth  Scientific  and  Industrial  Research  Organisation  (CSIRO).  The  development  of  the  operational  infrastructure  component  was  undertaken  by  Overspeed  GmbH,  a  company  involved  in  development  of  Australian  Wind  Energy  Forecasting  System  (AWEFS),  and  AEMO’s  Information  Management  and  Technology  (IMT)  department.  The  development  of  an  advanced  solar  forecasting  research  program  was  contributed  by  the  Bureau  of  Meteorology  (BoM),  the  University  of  New  South  Wales  (UNSW),  the  University  of  South  Australia  (UniSA),  the  US  Renewable  Energy  Laboratory  (NREL)  and  CSIRO  in  close  consultation  with  AEMO.  The  project  structure  along  with  the  partners’  specific  tasks  are  illustrated  in  Figure  1.  

 

 Figure  1  –  ASEFS  project  structure.  NWP  stands  for  Numerical  Weather  Prediction,  PV  for  PhotoVoltaic,  ECM  for  energy  conversion  model,  and  CSP  for  Concentrating  Solar  Power.  

Page 6: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  6    

The  ASEFS  project  commenced  on  7th  January  2013.  Since  then  there  had  been  some  delays,  particularly  with  the  signing  of  the  agreement  between  CSIRO  and  NREL.  As  of  June  2014,  however,  NREL  consistently  contributed  to  ASEFS,  as  have  all  other  partners.  Due  to  these  delays,  the  project  finished  in  June  2015,  hence  six  months  later  than  originally  planned.  

ASEFS  successfully  installed  an  operational  system  to  predict  solar  power  at  the  AEMO.  ASEFS  is  enabling  the  enhanced  integration  of  solar  energy  generation  at  all  scales  into  the  national  grid  and  allows  operators  of  larger  systems  to  participate  in  the  National  Energy  Market  (NEM).  This  system  has  been  configured  as  an  extension  to  the  Australian  Wind  Energy  Forecasting  System  (AWEFS),  which  has  been  successfully  operating  within  AEMO  market  systems  since  2008.  Without  such  forecasting  systems  wind  and  solar  renewable  energy  generation  will  be  subject  to  increasing  levels  of  curtailment,  undermining  both  their  viability  and  their  significant  contribution  to  greenhouse  gas  reduction.  

This  ASEFS  operational  system  provides  an  operational  system  that  uses  basic  forecasting  techniques  to  cover  all  the  AEMO-­‐required  forecasting  timeframes,  which  range  from  five  minutes  to  two  years.  Also,  the  system  was  intended  to  cater  for  large-­‐scale  photovoltaic  and  solar-­‐thermal  plants  as  well  as  distributed  small-­‐scale  photovoltaic  systems.  In  the  lead-­‐up  to  the  AEMO  ASEFS  go-­‐live  in  May  2014,  AEMO  continuously  monitored  all  intending  large-­‐scale  solar  generators.  There  were  a  number  of  intending  solar  generators  that  were  due  to  be  commissioned  around  June  2014  (hence  the  planned  May  2014  go-­‐live),  but  the  change  in  policies  around  renewables  resulted  in  a  number  of  intending  solar  generators  to  be  delayed,  and  some  withdrawn.  Even  up  to  a  few  months  before  the  end  of  ASEFS  in  June  2015,  none  of  the  large-­‐scale  solar  farms  (larger  than  30  MW)  were  actually  commissioned,  meaning  that  they  were  not  reporting  their  SCADA  data  and  as  a  consequence  no  solar  forecasting  was  available  for  such  planned  farms.  

In  the  absence  of  registered  large-­‐scale  solar  generators  in  ASEFS,  the  solution  was  to  run  the  solar  forecasts  in  a  non-­‐production  environment  using  two  small-­‐scale  test  solar  farms  to  exercise  the  forecasting  models.  The  Black  Mountain  (Canberra)  and  the  Norwest  (Sydney)  test  solar  farms  replicated  (scaled)  fixed,  non-­‐tracking  solar  generators  with  scaled  energy  conversion  models,  providing  scaled  “MW”  output  and  onsite  weather  data  to  ASEFS.  The  normalised  mean  accuracy  error  for  the  different  time  horizons  were  tested  against  the  required  system  specifications  and  the  results  were  within  the  ASEFS  agreed  accuracy  targets.  

However  from  an  operational  point  of  view,  without  any  registered  semi-­‐scheduled  generators  in  the  ASEFS,  the  system  is  restricted  in  the  following:  

• Ability  to  monitor  the  live  forecasting  performance  of  ASEFS  against  accuracy  targets  

• Availability  of  live,  large  scale  solar  generators  data  for  researcher  access  

AEMO  have  also  been  working  with  intending  solar  generators  to  see  if  there  is  interest  to  register  as  a  non-­‐scheduled  solar  generator  (i.e.  less  than  30MW  rating),  for  proof  of  concept  and  readiness  purposes.  

 

The  state  of  solar  energy  forecasting  development  is  such  that  only  basic  techniques,  mostly  developed  overseas,  are  ready  for  implementation  in  an  operational  ASEFS.  This  is  why  R&D  is  required  on  a  range  of  forecast  approaches  necessary  to  improve  on  these  basic  techniques  and  

Page 7: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  7    

satisfy  AEMO’s  (as  well  as  other  users)  full  requirements  for  such  a  system  in  the  longer  term.  Thus,  through  the  advanced  forecasting  research  program,  ASEFS  has  been  instrumental  in  advancing  the  development  of  leading-­‐edge  forecasting  technologies.  Such  technologies  range  from:  

• Improved  radiative-­‐transfer  modelling  for  NWP  –  including  cloud  schemes  and  aerosols  

• Short  term  satellite-­‐based  schemes  using  locally  available  real-­‐time  data,  combined  with  NWP  

• Short-­‐term  schemes  based  on  on-­‐site  and  peripheral  met  data  and  sky  camera  imaging  

• Improved  Concentrated  Solar  Thermal  (CST)  power  conversion  models  

• Basic  forecasting  schemes  based  on  more  complex  NWP  fields  (cloud  character,  synoptic  class)  

• Development  of  basic  intermittency  prediction  schemes  at  all  time  scales  

• Investigation  and  testing  of  distributed  PV  generation  data  sets,  upscaling-­‐schemes  for  distributed  PV,  testing  and  further  development  of  distributed  PV  power  prediction  techniques  

A  number  of  research  institutions  –  BoM,  UNSW,  UniSA,  NREL  and  CSIRO,  have  provided  technical  input  and  undertaken  research  and  development  on  enhancements  to  the  system.  Specifically,  the  involvement  of  NREL  has  helped  strengthened  collaboration  between  the  world’s  leading  Australian  and  US  researchers  in  the  solar  forecasting  area.    

It  should  be  noted  that  forecasting  solar  irradiance  and  solar  power  is  a  relatively  recent  research  area  and  one  which  is  receiving  a  lot  of  attention  internationally.  Furthermore,  solar  forecasting  is  a  very  challenging  area  of  research  and  application.  Specifically  the  representation  and  the  forecasting  of  cloud  movements  and  aerosols  concentrations,  which  are  key  to  the  proper  estimation  of  solar  irradiance  on  the  ground,  are  amongst  the  most  difficult  scientific  aspects  of  meteorology.  Nonetheless,  with  ASEFS  it  has  been  demonstrated  that  the  project  partnership  has  produced  very  promising  advances  in  this  area  of  science,  while  also  targeting  industry  requirements  and  applications.  Specific  findings  and  advances  are  documented  in  the  Outcomes  section.  

Those  techniques  developed  under  ASEFS  which  will  prove  to  provide  better  forecasts  than  the  current  basic  techniques  in  the  operational  ASEFS  system  could  be  incorporated  into  the  operational  system.  ASEFS  should  have  also  provided  researcher  access  to  allow  for  the  benchmarking,  by  Australian  institutions,  of  such  advanced  solar  forecasting  techniques  against  the  current  ASEFS  system.  However,  the  lack  of  operational  ASEFS  data  –  in  turn  due  to  the  lack  of  large-­‐scale  solar  generators  –  implied  that  researchers  could  not  access  the  ASEFS  system  directly  (as  done  with  AWEFS).  To  alleviate  the  lack  of  direct  connectivity,  AEMO  attempted  to  extract  solar  forecasting  data  from  the  test  system  so  that  ASEFS  partners  could  assess  their  developments  against  these  forecast  data.  This  task  however  proved  more  difficult  than  planned  and  ASEFS  data  had  not  be  released  at  the  time  of  completion  of  this  project.  Lack  of  ASEFS  data  also  implied  that  a  proper  cost-­‐benefit  analysis  for  the  implementation  of  new  forecasting  improvements  in  the  ASEFS  system  could  not  be  carried  out.  

 

Page 8: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  8    

An  important  component  of  ASEFS  has  also  been  that  of  stakeholder  engagement  as  a  way  to  ensure  relevance  and  quality  of  project  outputs.  One  such  mechanism  has  been  the  establishment  of  an  Industry  Advisory  Committee  whose  role  was  to:  

• Advise  on  requirements  and  issues  for  forecasting  of  solar  output  for  large  scale  solar  systems  for  both  short  (5  minutes  ahead)  and  long  term  (2  years  ahead)  time  scales    

• Establish  technical  standards  relating  to  solar  farms  • Agree  on  a  governance  for  release  of  data  to  research  organisations  • Discuss  the  progress  and  testing  of  ASEFS,  in  particular  the  testing  and  tuning  of  the  energy  

conversion  model  for  accuracy.  

The  committee,  chaired  by  AEMO,  met  on  two  occasions  and  was  participated  by  Clean  Energy  Council,  Sunpower  Corporation,  Energy  Network  Association,  Grid  Australia,  AEMO,  ARENA  and  CSIRO.  

In  addition,  in  collaboration  with  the  ARENA  co-­‐funded  project  Integrated  Solar  Radiation  Data  Sources  over  Australia,  ASEFS  organised  a  Solar  Resource  Assessment  &  Forecasting  Science  Day  in  Sydney  in  February  2014  to  discuss  progress  is  solar  resource  assessment  and  forecasting  both  from  an  academic  and  industry  perspectives.  The  event  was  very  well  received  by  the  over  fifty  attendees.  

Last  but  not  least,  ASEFS  partners  have  produced  more  than  10  scientific  publications  for  peer-­‐reviewed  journals  and  gave  over  50  presentations  at  various  public  events,  from  conferences  to  industry  meetings,  to  summer  schools,  to  ARENA  staff  meetings.  Details  of  publications  and  select  presentations  are  available  through  the  technical  milestone  reports.  

   

Page 9: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  9    

Project  scope  

Electricity  supply  systems  attempt  to  balance  supply  and  demand  requirements  at  time  scales  from  seconds  to  years.  Scheduling  of  generation  assets  is  made  against  forecast  demand.  Increasing  levels  of  non-­‐forecast  variable  renewable  generation  increases  the  uncertainty  in  supply  forecasts  leading  to  inefficient  generator  scheduling  and  potentially  resulting  in  system  contingency  services  failing  to  cope.  

Recent  developments  in  solar  power  generation  technology  and  costs,  renewable  energy  targets,  carbon  pricing  and  government  incentives  have  made  utility-­‐scale  solar  power  generation  a  credible  alternative  to  thermal  and  wind  generation  currently  deployed  in  the  NEM.  Subsidies  associated  with  programs  such  as  the  Solar  Flagships  are  expected  to  drive  investment  in  large-­‐scale  solar  generation  in  the  near  term.  Indeed,  the  main  driver  for  the  Australian  Solar  Energy  Forecasting  System  (ASEFS)  project  was  the  need  to  have  a  forecasting  system  in  place  in  time  for  the  commissioning  of  large-­‐scale  solar  farms.  At  the  time  of  planning  ASEFS  two  large-­‐scale  solar  plants,  supported  by  the  federal  Solar  Flagship  program,  were  due  to  be  commissioned  within  the  timeframe  of  development  of  ASFES.  Subsequently,  solar  generating  capacity  in  the  National  Energy  Market  (NEM)  has  been  largely-­‐unexpectedly  growing  to  an  estimated  installed  capacity  exceeding  4,000  MW,  particularly  with  the  proliferation  of  grid-­‐connected  roof-­‐top  PV  (see  Figure  2).  Solar  forecasting  is  therefore  essential  to  assist  with  the  balancing  of  supply  and  demand.    

Australia  has  a  system  where  the  market  system  is  coupled  to  the  physical  network  operation  at  the  5  minute  level.  The  Solar  Energy  Forecasting  Extension  to  AEMO  Australian  Wind  Energy  Forecasting  System  (AWEFS)  was  needed  for  the  same  reason  the  original  wind  forecasting  system  was  introduced,  namely  because  power  plants  larger  than  30  MW  are  required  to  participate  in  the  NEM.  Increasing  amounts  of  variable  renewable  energy  eventually  requires  unsustainable  amounts  of  expensive  spinning  reserve  and  frequency  control  services  as  well  as  threatening  system  security.  Accurate  forecasting  can  minimise  these  costs  and  maximise  the  amount  of  renewable  energy  which  can  be  hosted  in  the  electricity  system.  The  importance  of  this  issue  was  recognised  by  the  incorporation  of  a  forecasting  requirement  into  the  rules  for  the  connection  of  intermittent  renewable  generators  >30MW  nameplate  capacity  in  the  NEM.    

 Figure  2  –  Australian  PV  Institute  (APVI)  Solar  Map  (http://pv-­‐map.apvi.org.au  accessed  18  Jul  2015)  

Page 10: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  10    

In  recognition  of  the  potential  growth  of  the  solar  generation  industry  the  Department  of  Resources,  Energy  and  Tourism  funded  CSIRO  in  2011  to  undertake  a  feasibility  study  to  investigate  the  extension  of  the  AWEFS  system  to  solar  power  generation.  This  study  concluded  that  it  was  feasible  in  principle  to  extend  the  AWEFS  system  to  solar  but  that  there  needed  to  be  significant  development  of  some  key  components  (see  Figure  3).  

The  current  AWEFS  system  uses  two  weather  forecast  feeds  from  Numerical  Weather  Prediction  (NWP)  model  output  –  one  from  the  USA  and  the  other  from  Europe  –  to  drive  the  shorter-­‐term  forecasts.  It  employs  up  to  6  different  wind  power  forecasting  techniques  in  a  modular  arrangement  with  a  decision  engine  to  determine  the  most  suitable  combination  for  current  conditions  based  on  historical  performance.  These  modules  have  well-­‐established  performance  capabilities  and  most  importantly,  defined  uncertainties.  The  ASEFS  has  adopted  adopt  an  analogous  approach.  

 

 Figure  3  –  Proposed  solar  forecasting  system  in  addition,  and  in  parallel,  to  AWEFS  

While  a  key  objective  of  the  project  was  the  development  of  an  operational  solar  forecasting  system,  it  is  was  also  recognized  that  emphasis  should  be  placed  on  the  development  of  improved  forecasting  techniques,  therefore  requiring  extensive  research  work  which  would  also  lead  to  new  skills  and  possible  important  innovations  by  the  Australian  research  community.  Given  the  requirements  of  systems  such  as  AEMO’s  to  be  able  to  produce  forecasts  at  5-­‐minute  intervals,  and  up  to  2-­‐year  horizons  the  need  for  specialized  forecasting  tools  is  of  central  concern.  Considering  also  the  infancy  of  solar  forecasting  research,  ASEFS  provided  a  great  opportunity  for  the  Australian  research  community  to  acquire  new  skills  and  at  the  same  time  produce  some  great  innovations  with  strong  potential  for  commercialization  into  solar  industry  and  energy  markets  more  generally.  

To  exemplify  the  richness  and  complexity  of  approaches  adopted  to  predict  solar  irradiance  and  power,  Figure  4  shows  the  most  common  basic  elements.  All  given  modeling  steps  may  involve  physical  or  statistical  models  or  a  combination  of  both.  

Forecasting  surface  solar  irradiance  is  the  first  and  most  essential  step  in  most  PV  power  prediction  systems.  Depending  on  the  application  and  the  corresponding  requirements  with  respect  to  forecast  horizon  and  temporal  and  spatial  resolution,  different  models  and  data  sources  are  used  (see  Figure  5).  NWP  models  are  applied  to  derive  forecasts  of  several  days  ahead.  For  very  short-­‐term  horizons,  irradiance  forecasts  may  be  obtained  by  detection  and  extrapolation  of  cloud  motion,  based  on  satellite  images  for  forecasts  of  several  hours  ahead  and  on  ground-­‐based  sky  imagers  for  sub-­‐hourly  forecasts  with  a  very  high  spatial  and  temporal  resolution.  Measured  irradiance  data,  forming  the  

Page 11: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  11    

basic  input  to  time  series  models,  are  another  valuable  data  source  for  very  short-­‐term  forecasting  in  the  range  of  minutes  to  hours.  Furthermore,  measured  data  are  required  for  any  statistical  post-­‐processing  procedure,  applied  to  optimize  forecasts  derived  with  a  physical  model  for  a  given  location  (Lorenz  et  al.  2015).  

To  derive  PV  power  forecasts  from  the  predicted  global  horizontal  irradiance  different  approaches  may  be  applied.  Explicit  physical  modeling  involves  con-­‐  version  of  the  irradiance  from  the  horizontal  to  the  angle  of  tilt  of  the  module  plane,  followed  by  the  application  of  a  PV  simulation  model.  Here,  characteristics  of  the  PV  system  configuration  are  required  in  addition  to  the  meteorological  input  data,  implying  information  on  nominal  power,  tilt  and  orientation  of  a  PV  system  as  well  as  a  characterization  of  the  module  efficiency  in  dependence  of  irradiance  and  temperature.  Alternatively,  the  relation  between  PV  power  output  and  irradiance  forecasts  and  other  input  variables  may  be  established  on  the  basis  of  historical  datasets  of  measured  PV  power  with  statistical  or  learning  approaches.  In  practice,  often  both  approaches  are  combined  and  statistical  post-­‐processing  using  measured  PV  power  data  is  applied  to  improve  predictions  with  a  physical  model  (Lorenz  et  al.  2015).  

Although  the  conversion  from  solar  irradiance  into  solar  power  for  PV  systems  is  relatively  straightforward,  there  are  some  technical  aspects,  which  require  close  attention.  In  fact,  normally  measurements  and  predictions  of  solar  irradiance  are  given  on  a  plane  parallel  to  the  ground  –  the  global  horizontal  irradiance  (GHI)  –  in  practice  PV  systems  are  on  planes  other  than  the  horizontal  one.  So  unless  the  global  irradiance  on  the  PV  planed  is  directly  measured,  a  rotation  of  the  irradiance  signal  is  normally  required:  this  is  a  non-­‐trivial  transformation.  Moreover,  given  the  dependency  of  PV  panels  on  other  physical  variables,  particularly  temperature  but  also  dust,  these  quantities  need  to  be  measured  and  appropriately  modeled  in  the  solar  forecast  system.  

While  the  major  focus  of  the  ASEFS  project  is  on  providing  power  forecasts  for  PV  systems,  the  prediction  of  the  direct  beam  (or  direct  normal  irradiance,  DNI)  which  is  critical  for  Concentrating  Solar  Power  (CSP)  –  also  referred  to  as  Concentrated  Solar  Thermal  (CST)  –  systems  will  also  be  assessed.  In  fact,  DNI  is  also  an  essential  element  in  deriving  the  global  irradiance  component  on  PV  planes  when  only  GHI  is  available.  The  power  conversion  from  irradiance  (specifically  DNI)  to  electricity  in  the  case  of  CSP  is  much  more  complex  than  that  for  PV,  due  to  intermediate  conversion  steps  from  radiation  to  thermal  energy  to  electricity,  and  to  storage  mechanisms.  In  addition,  the  solar  receiver  can  be  highly  non-­‐linear,  and  this  relation  is  also  dependent  on  the  type  of  CSP  technology.  It  is  apparent  therefore  that  a  considerable  amount  of  research  needs  to  be  devoted  to  the  understanding  of  the  CSP,  and  to  a  lesser  extent  the  PV,  conversion  process  so  as  to  produce  the  most  accurate  solar  power  prediction  possible.  

 

Page 12: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  12    

 Figure  4  –  Overview  of  key  modelling  steps  in  PV  power  prediction  (from  Lorenz  et  al.  2015)  

 Figure  5  –  Solar  forecasting  techniques  for  different  timescales.  NWP  stands  for  Numerical  Weather  

Predictions;  SCADA  stands  for  supervisory  control  and  data  acquisition  

   

Page 13: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  13    

Outcomes  The  two  main  outcomes  of  ASEFS  are:  

1. The  development  of  an  operational  system,  with  architectural  extension  to  AWEFS  system,  installed  at  AEMO  and  able  to  provide  power  forecasting  capability  for  solar  power  plants  

2. A  range  of  R&D  activities  with  the  main  aim  to  improve  upon  the  basic  ASEFS  operational  system.  Such  R&D  activities  include:  

a. Improved  radiative-­‐transfer  modelling  for  NWP  –  including  cloud  schemes  and  aerosols  

b. Short  term  satellite-­‐based  schemes  using  locally  available  real-­‐time  data,  combined  with  NWP  

c. Short-­‐term  schemes  based  on  on-­‐site  and  peripheral  met  data  and  sky  camera  imaging  

d. Improved  CST  power  conversion  models  e. Basic  forecasting  schemes  based  on  more  complex  NWP  fields  (cloud  character,  

synoptic  class)  f. Development  of  basic  intermittency  prediction  schemes  at  all  time  scales  g. Investigation  and  testing  of  distributed  PV  generation  data  sets,  upscaling-­‐schemes  

for  distributed  PV,  testing  and  further  development  of  distributed  PV  power  prediction  techniques  

The  development  of  the  operational  ASEFS  In  terms  of  operational  forecasting  system,  AEMO  requires  solar  energy  forecasting  with  corresponding  uncertainties  at  three  timescales  to  match  their  scheduling  requirements:  

1. Short  time  frame  -­‐  5  minute  interval,  2  hour  horizon,  updated  every  5  minutes  (50%  probability  of  exceedance  required)  

2. Medium  time  frame  -­‐  30  minute  interval,  8  day  horizon,  updated  every  30  minutes  (10%,  50%,  90%  probability  of  exceedance)  

3. Long  time  frame  -­‐  30  minute  interval,  2  year  horizon,  updated  every  day  (10%,  50%,  90%  probability  of  exceedance)  

The  ASEFS  baseline  system  has  been  successfully  delivered,  installed  and  commissioned  into  the  live  market  system  at  AEMO.  The  ASEFS  has  been  developed  by  a  sub-­‐contractor,  the  German  company  Overspeed,  namely  the  company  which  developed  and  installed  AWEFS  at  AEMO.  The  ASEFS  was  live  in  the  AEMO  system  by  the  target  date  of  May  2014.  Performance  assessments  of  ASEFS  have  been  provided  at  the  6–month  and  11–month  mark  of  the  system  operation.  The  initial  performance  of  the  system  in  the  user–acceptance  testing  has  exceeded  the  requirements  outlined  in  the  system  specifications  (see  Table  1).    

In  the  absence  of  any  large  power  plants  connected  to  the  NEM,  the  ASEFS  system  has  been  developed  and  tested  using  a  series  of  smaller  PV  plants,  which  also  have  quality  meteorological  data  available  –  three  from  the  Canberra  CSIRO  network  and  one  installed  at  the  AEMO  operations  centre  in  North–western  (Norwest)  Sydney.  These  provided  10–second  data  feeds  to  Overspeed  in  Germany.  Two  NWP  model  feeds,  one  from  the  US  and  the  other  from  Europe  (as  with  AWEFS),  were  used  as  main  weather  predictors  to  the  ASEFS.  After  commissioning  the  live  ASEFS  at  AEMO,  

Page 14: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  14    

this  has  been  operating  with  the  two  SCADA  feeds  –  one  from  AEMO  and  one  from  the  main  CSIRO  solar  research  facility  at  Black  Mountain  in  Canberra.        

At  a  first  step  of  the  evaluation  process  the  performance  of  solar  generation  forecasts  have  been  evaluated  against  the  Solar  Generation  Accuracy  Targets  presented  in  Table  1.  This  Table  includes  targets  for  different  horizons  varying  from  5  min  ahead  to  6  days  ahead.  The  targets  refer  to  individual  solar  farms.  The  performance  of  the  forecasts  is  measured  by  the  Normalised  Mean  Absolute  Error  (NMAE)  measure.  If  the  performance  of  the  system  satisfies  all  the  targets  corresponding  to  a  specific  milestone  then  the  evaluation  process  is  completed.  

The  ASEFS  solution  has  been  operating  online  since  the  industry  go-­‐live  on  the  30  May  2014.  AEMO  has  been  continuously  monitoring  all  intending  large  scale  solar  generators  from  the  May  2014  go-­‐live  period  to  date.  There  were  a  number  of  intending  solar  generators  that  were  due  to  be  commissioned  around  June  2014  (hence  the  planned  May  2014  go-­‐live),  but  the  change  in  policies  around  renewables  resulted  in  a  number  of  intending  solar  generators  being  delayed,  and  some  withdrawn.  

As  such,  ASEFS  is  currently  operating  in  a  non-­‐production  environment  using  two  small  scale  test  solar  farms  to  exercise  its  forecasting  models:  

• CSIRO  –  Black  Mountain  (Canberra)  Solar  Facility  (1.5kW)    • AEMO  –  Norwest  Solar  Facility  (Sydney)  (1.5kW)    

Both  solar  facilities  meet  the  requirements  of  the  energy  conversion  model  (ECM)  and  relay  real-­‐time  output  and  weather  data  to  ASEFS  for  forecasting.  The  Norwest  and  Black  Mountain  test  solar  farms  replicate  (scaled)  fixed,  non-­‐tracking  solar  generators  with  scaled  energy  conversion  models,  providing  scaled  “MW”  output  and  onsite  weather  data  to  ASEFS.  The  normalised  mean  absolute  error  for  the  different  time  horizons  can  be  found  in  Table  2  and  Figure  6  for  Black  Mountain  found  in  Table  3  and  Figure  7  for  Norwest.  The  results  are  within  the  ASEFS  agreed  accuracy  targets,  also  indicated  as  dotted  lines  in  the  two  Figures.    

 

 

Table  1  –  ASEFS  target  specifications  in  terms  of  Normalised  Mean  Absolute  Error  (NMAE)    

Timeframe   GoLive+6months   GoLive+11m  

5  minutes  ahead   18.5%   17.6%  

1  hour  ahead   19.3%   18.3%  

4  hours  ahead   20.7%   19.7%  

12  hours  ahead   22.4%   21.3%  

24  hours  ahead   23.5%   22.3%  

40  hours  ahead   24.4%   23.2%  

6  days  ahead   27.2%   25.7%    

 

 

Page 15: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  15    

 

Table  2  –  Accuracy  in  terms  of  NMAE  for  the  Black  Mountain  Test  Systems  

  5  minutes  ahead  

1  hour  ahead  (60  min)  

4  hours  ahead  

(240  min)  

12  hours  ahead  

(720  min)  

24  hours  ahead  (1440  min)  

40  hours  ahead  (2400  min)  

6  days  ahead  (8640  min)  

Mar-­‐14   5.62%   6.45%   7.72%   8.34%   8.69%   9.19%   13.28%  

Apr-­‐14   5.13%   8.13%   10.00%   10.07%   10.42%   10.70%   13.56%  

May-­‐14   4.13%   6.36%   7.67%   7.68%   8.14%   8.28%   11.96%  

Jun-­‐14   4.65%   7.95%   9.80%   9.88%   10.14%   11.37%   13.66%  

Jul-­‐14   4.38%   7.10%   9.37%   9.19%   9.41%   9.44%   11.46%  

Aug-­‐14   5.74%   14.15%   15.84%   15.95%   15.70%   15.91%   16.26%  

Sep-­‐14   5.43%   9.49%   11.06%   11.37%   11.97%   12.04%   14.87%  

Oct-­‐14   3.91%   6.06%   7.65%   7.84%   8.15%   7.89%   9.92%  

Nov-­‐14   4.20%   4.76%   5.27%   5.37%   5.62%   5.66%   7.60%  

Dec-­‐14   5.59%   5.69%   6.42%   6.63%   6.73%   7.48%   8.38%  

Jan-­‐15   6.02%   5.45%   6.11%   5.92%   6.01%   6.14%   8.75%  

Feb-­‐15   6.40%   6.86%   7.99%   8.19%   8.20%   8.70%   9.97%  

Mar-­‐15   4.73%   5.25%   6.52%   6.77%   6.92%   6.89%   9.05%  

 

 

Table  3  –  Accuracy  in  terms  of  NMAE  for  the  Norwest  Test  Systems  

  5  minutes  ahead  

1  hour  ahead  (60  min)  

4  hours  ahead  

(240  min)  

12  hours  ahead  

(720  min)  

24  hours  ahead  (1440  min)  

40  hours  ahead  (2400  min)  

6  days  ahead  (8640  min)  

Mar-­‐14   5.99%   8.17%   9.32%   9.19%   9.38%   9.89%   15.02%  

Apr-­‐14   6.12%   6.85%   7.70%   8.22%   8.54%   9.17%   12.30%  

May-­‐14   5.32%   7.76%   8.50%   8.32%   8.45%   9.91%   11.11%  

Jun-­‐14   4.39%   7.03%   7.75%   7.53%   7.51%   8.49%   11.17%  

Jul-­‐14   3.44%   5.99%   6.41%   6.79%   7.24%   7.65%   9.75%  

Aug-­‐14   7.01%   7.87%   8.93%   9.37%   10.46%   10.30%   12.75%  

Sep-­‐14   7.69%   7.96%   8.87%   9.11%   9.27%   9.34%   13.73%  

Oct-­‐14   5.00%   7.24%   8.40%   8.60%   8.33%   9.03%   11.48%  

Nov-­‐14   5.83%   6.81%   8.46%   8.42%   8.54%   8.73%   11.17%  

Dec-­‐14   6.83%   7.15%   9.03%   9.07%   8.80%   9.00%   11.67%  

Jan-­‐15   5.75%   5.75%   6.84%   6.67%   7.28%   7.76%   12.22%  

Feb-­‐15   8.87%   9.35%   10.73%   10.79%   10.94%   11.04%   11.96%  

Mar-­‐15   6.66%   7.39%   8.31%   8.58%   8.90%   9.21%   12.14%  

 

Page 16: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  16    

 

 

 Figure  6  –  Black  Mountain  test  farm  forecast  performance  (in  terms  of  Normalized  Mean  Absolute  Error).  The  dotted  lines  are  the  corresponding  target  specifications  for  each  horizon  time.  

 

 

 Figure  7  –  As  in  Figure  6  but  for  the  Norwest  test  farm.  

 

 

Page 17: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  17    

R&D  activities  in  support  to  the  operational  ASEFS  The  R&D  component  of  ASEFS  has  produced  a  varied  and  rich  output.  This  output  has  been  documented  in  a  comprehensive  way  in  the  milestone  reports.  In  this  section  select  highlights  are  presented.    

Review  of  solar  forecasting  approaches  

One  of  the  first  tasks  in  ASEFS  was  to  review  existing  solar  forecasting  techniques.    

Forecasting  methods  can  be  broadly  characterized  as  physical  or  statistical.  The  physical  approach  uses  numerical  weather  prediction  and  PV  models  to  generate  solar  power  forecasts,  whereas  the  statistical  approach  relies  primarily  on  historical  data  to  train  models  (Pelland  et  al.,  2013).  In  the  literature,  researchers  have  developed  a  variety  of  methods  for  solar  power  forecasting,  such  as  the  use  of  NWP  models  (Marquez  and  Coimbra,  2011;  Mathiesen  and  Kleissl,  2011;  Chen  et  al.,  2011),  tracking  cloud  movements  from  satellite  images  (Perez  et  al,  2007),  and  tracking  cloud  movements  from  direct  ground  observations  with  sky  cameras  (Perez  et  al,  2007;  Chow  et  al.,  2011;  Marquez  and  Coimbra,  2013a).  NWP  models  are  the  most  popular  method  for  forecasting  solar  irradiance  several  hours  or  days  in  advance.  Mathiesen  and  Kleissl  (2011)  analyzed  the  global  horizontal  irradiance  in  the  continental  United  States  forecasted  by  three  popular  NWP  models:  the  North  American  Model,  the  Global  Forecast  System  (GFS),  and  the  European  Centre  for  Medium-­‐Range  Weather  Forecasts  (ECMWF).  Chen  et  al.  (2011)  developed  an  advanced  statistical  method  for  solar  power  forecasting  based  on  artificial  intelligence  techniques.  Crispim  et  al.  (2008)  used  total  sky  imagers  (TSI)  to  extract  cloud  features  using  a  radial  basis  function  neural  network  model  for  time  horizons  from  1  to  60  minutes.  Chow  et  al.  (2011)  also  used  TSI  to  forecast  short-­‐term  global  horizontal  irradiance.  The  results  suggested  that  TSI  was  useful  for  forecasting  time  horizons  up  to  15  to  25  minutes-­‐ahead.  Marquez  and  Coimbra  (2013a)  presented  a  method  using  TSI  images  to  forecast  1-­‐minute  averaged  direct  normal  irradiance  at  the  ground  level  for  time  horizons  between  3  and  15  minutes.  Loren  et  al.  (2007)  showed  that  cloud  movement–based  forecasts  likely  provide  better  results  than  NWP  forecasts  for  forecast  timescales  of  3  to  4  hours  or  less.  Beyond  that,  NWP  models  tend  to  perform  better.  A  brief  description  of  solar  forecasting  methods  is  summarized  in  Table  4.  

Table  4  –  Solar  forecasting  methodologies  

 Methods   Description  /  Comment   Forecast  

Horizons  

Physical  approach  

NWP  models  NWP  models  are  the  most  popular  method  for  

forecasting  solar  irradiance  more  than  6  hours  or  days  in  advance  

6  hours  to    days  ahead  

Total  Sky    Imagery  (TSI)  

Use  TSI  to  extract  cloud  features  or  to  forecast  short-­‐term  global  horizontal  irradiance    

0  to  2  hours  ahead  

Statistical  approach  

Statistical  methods  

Statistical  methods  were  developed  based  on  autoregressive  or  artificial  intelligence  techniques  

for  short-­‐term  forecasts    

0  to  6  hours  ahead  

Persistence  forecasts  

Persistence  of  cloudiness  performs  well  for  very  short-­‐term  forecasts    

0  to  4  hours  ahead  

Page 18: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  18    

Forecast  metrics  

An  assessment  of  various  forecast  metrics  was  also  carried  out.  These  can  be  broadly  divided  into  four  categories:  

1. Statistical  metrics  for  different  time  and  geographic  scales,  including  distributions  of  forecast  errors,  Pearson’s  correlation  coefficient,  (normalized)  root  mean  square  error  (RMSE),  (normalized)  fourth  root  mean  quartic  error  (4RMQE),  maximum  absolute  error  (MaxAE),  mean  absolute  error  (MAE),  mean  absolute  percentage  error  (MAPE),  mean  bias  error  (MBE),  Kolmogorov–Smirnov  test  integral  (KSI),  OVER,  skewness,  and  kurtosis  

2. Uncertainty  quantification  and  propagation  metrics,  including  standard  deviation  and  information  entropy  of  forecast  errors  

3. Ramp  characterization  metrics,  including  the  swinging  door  algorithm  signal  compression  

4. Economic  metrics,  including  non-­‐spinning  reserves  service  represented  by  95th  percentiles  of  forecast  errors.    

A  brief  description  of  each  metric  is  summarized  in  Table  5.  A  standardized  set  of  forecasting  metrics  was  established  based  on  multiple  discussions  with  various  system  operators  and  utilities  that  are  participating  in  the  solar  forecasting  research  effort  at  NREL.  The  Australian  Energy  Market  Operator  (AEMO)  is  procuring  solar  forecasts  from  commercial  vendors.  It  is  expected  that  such  standardized  metrics  that  are  considered  valuable  to  U.S.  operators  will  also  be  beneficial  to  AEMO  to  evaluate  the  value  of  solar  forecasting  in  its  operations.  

Assessment  of  GFS  solar  forecasts  

The  GFS,  one  of  the  two  weather  feeds  for  the  ASEFS  operational  model,  was  developed  by  the  National  Oceanic  and  Atmospheric  Administration  (NOAA)  and  provides  operational  global  weather  forecasts  up  to  196  hours  at  6  hourly  intervals.  The  model  is  initialized  every  6  hours,  so  a  new  set  of  forecasts  is  available  four  times  per  day:  0  UTC,  6  UTC,  12  UTC,  and  18  UTC.  The  Global  Data  Assimilation  System  (GDAS)  is  used  by  the  GFS  model  to  place  observations  into  a  gridded  model  space  for  the  purpose  of  initializing  weather  forecasts  with  observed  data.  GDAS  adds  the  following  types  of  observations  to  a  gridded,  3D,  model  space:  surface  observations,  balloon  data,  wind  profiler  data,  aircraft  reports,  buoy  observations,  radar  observations,  and  satellite  observations.  Gridded  GDAS  output  data  can  be  used  to  start  the  GFS  model.  The  GDAS  model  output  is  also  available  four  times  per  day  and  contains  forecasts  for  3  hours,  6  hours,  and  9  hours.  

As  part  of  ASEFS,  a  forecast  validation  for  solar  radiation  using  output  data  from  the  GFS  and  GDAS  model  forecasts  has  been  carried  out.  These  forecasts  are  compared  to  high-­‐quality  solar  radiation  data  available  every  minute  from  NOAA’s  Surface  Radiation  Budget  Network  (SURFRAD)  network  and  ground  data  from  nine  stations  maintained  by  the  Australian  Bureau  of  Meteorology  (BOM).  

The  verification  of  the  forecasts  was  conducted  using  ground  data  from  the  BOM  at  nine  sites  for  which  2011  data  was  avaialable:  Adelaide,  Alice  Springs,  Cocos  Island,  Darwin,  Melbourne,  Rockhampton,  Wagga  Wagga,  Broome,  and  Cape  Grim.  Scatter  plots  of  the  average  ground  station  data  and  the  GFS  forecast  are  shown  in  Figure  8  for  the  24-­‐hour  forecasts.  The  GFS  data  is  plotted  on  the  vertical  axis,  and  the  ground  station  data  is  plotted  along  the  horizontal  axis.  Notice  that  the  data  is  well  correlated  over  the  time  period  covered.  For  nearly  all  the  sites,  with  the  possible  

Page 19: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  19    

exception  of  Cocos  Island,  the  data  appears  to  have  correlated  well,  also  regardless  of  the  forecast  hour  (i.e.,  12-­‐hour,  24-­‐hour,  or  36-­‐hour  forecast;  only  24-­‐hour  forecast  is  shown).  

 

Table  5  –  Proposed  Metrics  for  Solar  Forecasting  

  Metric   Description/Comment  

Statistical  Metrics  

Distribution  of  forecast  errors  

Provides  a  visualization  of  the  full  range  of  forecast  errors  and  variability  of  solar  forecasts  at  multiple  

temporal  and  spatial  scales  

Pearson’s  correlation  coefficient  

Linear  correlation  between  forecasted  and  actual  solar  power  

RMSE  and  NRMSE  Suitable  for  evaluating  the  overall  accuracy  of  the  forecasts  while  penalizing  large  forecast  errors  in  a  

square  order  

RMQE  and  NRMQE  Suitable  for  evaluating  the  overall  accuracy  of  the  forecasts  while  penalizing  large  forecast  errors  in  a  

quartic  order  

MaxAE   Suitable  for  evaluating  the  largest  forecast  error  

MAE  and  MAPE   Suitable  for  evaluating  uniform  forecast  errors  

MBE   Suitable  for  assessing  forecast  bias  

KSI  or  KSIPer  Evaluates  the  statistical  similarity  between  the  

forecasted  and  actual  solar  power  

OVER  or  OVERPer  Characterizes  the  statistical  similarity  between  the  forecasted  and  actual  solar  power  on  large  forecast  

errors  

Skewness    Measures  the  asymmetry  of  the  distribution  of  forecast  errors;  a  positive  (or  negative)  skewness  

leads  to  an  overforecasting  (or  underforecasting)  tail  

Excess  kurtosis  

Measures  the  magnitude  of  the  peak  of  the  distribution  of  forecast  errors;  a  positive  (or  negative)  kurtosis  value  indicates  a  peaked  (or  flat)  distribution,  greater  or  less  than  that  of  the  normal  distribution  

Uncertainty  Quantification  

Metrics  

Rényi  entropy  Quantifies  the  uncertainty  of  a  forecast;  it  can  utilize  all  of  the  information  present  in  the  forecast  error  

distributions  

Standard  deviation   Quantifies  the  uncertainty  of  a  forecast  

Ramp  Characterization  

Metrics  

Swinging  door  algorithm  

Extracts  ramps  in  solar  power  output  by  identifying  the  start  and  end  points  of  each  ramp  

Economic  Metrics  

95th  percentile  of  forecast  errors  

Represents  the  amount  of  nonspinning  reserves  service  held  to  compensate  for  solar  power  forecast  

errors  

Page 20: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  20    

 

 

Figure  8  –  Twenty-­‐four-­‐hour  GFS  forecast  compared  to  station  data.  

 

Improved  radiative-­‐transfer  modelling  for  NWP  

A  number  of  model  development  projects  have  been  conducted  under  this  task.  The  first  is  an  implementation  of  the  fast  surface  solar  radiation  scheme  (SUNFLUX)  into  the  ACCESS  NWP  model.  The  second  involved  testing  several  changes  to  the  model  physical  parameterization  schemes  in  the  ACCESS  NWP  models  to  evaluate  their  impact  on  the  surface  solar  radiation.  The  third  consisted  of  some  trials  testing  a  number  of  different  approximations  of  the  two-­‐stream  radiative  transport  scheme  at  the  heart  of  the  radiation  parameterization.  These  are  essentially  variants  of  the  

Page 21: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  21    

approximations  used  to  calculate  the  angular  mean  over  all  incident  and  scattering  angles  in  each  layer  of  the  atmosphere.    In  the  process  of  checking  the  results  of  the  two-­‐stream  variants  an  erroneous  assumption  in  the  formulation  used  to  derive  the  direct  solar  radiation  in  the  parameterization  scheme  was  uncovered  which  was  consistent  with  too  much  direct  beam  radiation.  A  new  version  of  the  ACCESS-­‐C  model  was  developed  with  this  assumption  corrected  and  a  number  of  monthly  forecasts  run  to  assess  whether  the  surface  radiation  verification  scores  improved  and  to  verify  the  standard  NWP  forecast  elements  to  ensure  no  degradation  in  the  results.  This  version  has  recently  been  applied  to  the  global  and  regional  models  for  short  test  periods  as  well  but  complete  results  are  not  yet  available.  

The  verification  of  the  ACCESS-­‐R  surface  solar  radiation  suggests  that  the  model  tends  to  over-­‐estimate  the  direct  component  and  underestimate  the  diffuse  component.  One  possible  cause  for  this  is  the  assumptions  built  into  the  radiative  transport  two-­‐stream  approximation.  There  are  a  large  number  of  possible  different  two  stream  schemes  available,  differentiated  by  their  different  assumptions  about  the  approximations  for  the  angular  integrations  required  for  a  full  (and  computationally  expensive)  radiative  transfer  calculation.  The  variant  selected  for  the  ACCESS  system  was  chosen  to  give  accurate  global  surface  and  top  of  atmosphere  radiative  fluxes  and  atmospheric  heating  rates.  The  Unified  Model  (UM)  on  which  ACCESS  is  based  has  a  number  of  two  stream  schemes  already  coded  in.  Figure  9  shows  a  comparison  of  the  diffuse  surface  radiation  from  a  number  of  these  for  clear  sky  and  ice  and  water  cloud  cases  (the  standard  UM  choice  is  the  one  on  the  far  right).  These  results  show  that  changing  the  two  stream  approximation  is  not  likely  to  increase  the  diffuse  component  substantially.  However,  in  investigating  these  alternatives  it  was  discovered  that  there  is  a  fundamental  problem  in  all  the  schemes  as  implemented  in  the  UM  radiative  transfer  parameterization  which  led  directly  to  the  experiments  described  below.  

 

 Figure  9  –  A  comparison  of  the  diffuse  surface  solar  radiation  from  the  different  possible  two-­‐stream  codes  implemented  in  the  ACCESS  system  for  a  number  of  idealised  cases  for  clear  sky  and  water  and  ice  cloud  

 

Short  term  satellite-­‐based  schemes  using  locally  available  real-­‐time  data,  combined    with  NWP  

Short-­‐term  forecasting  of  GHI  is  carried  out  as  a  two-­‐step  process.  

The  first  step  uses  the  HELIOSAT  approach  to  pre-­‐calculate  the  clear  sky  irradiance.  This  depends  on  Linke  Turbidity  values  used  in  the  clear  sky  model.  The  Linke  turbidity  factor  has  no  unit.  It  typically  

Page 22: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  22    

ranges  between  3  (clear  skies)  to  7  (heavily  polluted  skies).  The  Linke  turbidity  factor  refers  to  the  whole  solar  spectrum,  that  is,  spectrally  integrated  attenuation,  which  includes  presence  of  gaseous  water  vapour  and  aerosols.  

The  second  step  makes  use  of  MTSAT  images  to  calculate  the  ground  albedo  and  the  cloud  motion  vectors  (CMVs).  CMVs  are  turned  into  forecasts  by  advection  of  present  clouds  using  the  derived  CMVs  to  form  a  future  cloud  image.  The  forecasted  image  is  transformed  into  cloud  index  using  ground  albedo  determined  from  multiple  MTSAT  images.  The  cloud  transmission  attenuation  coefficient  (k*T)  is  approximated  from  the  cloud  index.    It  is  then  used  to  scale  the  pre-­‐calculated  clear  sky  irradiance  to  produce  GHI.  

The  derivation  process  of  CMVs  (shown  in  Figure  10)  involves  pre-­‐processing  3  successive  images  and  then  tracking  (maximum  cross  correlation)  the  tracers  (distinct  features)  both  forward  and  backward  in  time.  A  2D  field  (Latitude,  Longitude)  of  parameters  including  u  wind,  v  wind  and  quality  index  is  currently  produced  (Local  CMV  product).  The  CMV  algorithm  was  used  to  derive  displacement  vectors  using  special  case  study  data  obtained  from  BOM  at  10-­‐minute  intervals  over  Mildura  and  Mount  Gambier.    A  shorter  time  scale  reduces  errors  in  CMV  produced  from  changing  cloud  properties.  The  errors  in  observed  (MISR  mapped)  and  estimated  CMVs  for  the  two  sites  are  shown  in  the  Table  6.  

 

 

Figure  10  –  Derivation  process  of  CMVs  

 

 

Page 23: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  23    

Table  6  –  Comparison  of  CMV  product  

    RMSE  (m  s-­‐1)   MBE  (m  s-­‐1)   MAE  (m  s-­‐1)  

Mildura  

u-­‐component   15.8   -­‐0.2   10.7  

v-­‐component   12.6   0.7   7.7  

Speed   12.5   -­‐7.3   9.2  

Mount  Gambier  

u-­‐component   14.8   1.7   10.7  

v-­‐component   12.6   1.3   7.7  

Speed   11.3   -­‐5.1   9.2  

 

 

Short-­‐term  irradiance  forecasts  with  WRF  

The  Weather  Research  and  Forecasting  (WRF)  model  is  a  mesoscale  numerical  weather  prediction  system  with  immense  capabilities  in  atmospheric  research  and  operational  forecasting.  The  growing  interests  in  solar  irradiance  forecasting  for  the  management  and  operation  of  solar  power  systems  requires  WRF  solar  irradiance  forecasting  capabilities  to  be  also  explored  in  Australia.  Aerosols  play  a  major  role  in  attenuating  irradiance  during  clear-­‐sky  conditions.  Most  of  the  daily  variability  in  DNI  is  associated  with  clouds,  however  regions  where  aerosols  are  significant  may  also  account  for  the  observed  variability.  Australian  atmosphere  is  also  present  with  a  number  of  aerosol  sources  such  as  soil-­‐dust,  sea  salt,  biomass  burning,  and  secondary  organic  aerosols  and  sulphates,  which  can  affect  irradiance  forecasts  in  Australia.  WRF  was  used  with  aerosol  inputs  to  simulate  the  impacts  of  aerosols  at  various  sites  in  Australia  with  short-­‐term  DNI  forecasts.  The  RMSE  calculated  using  ground-­‐based  observed  and  WRF  predicted  GHI  and  DNI  over  a  24-­‐hour  period  is  shown  in  the  Table  7.  The  errors  in  GHI  are  reduced  at  two  sites  with  addition  of  aerosols,  whereas  DNI  errors  improve  at  only  one  site.  Notably,  the  Thomson-­‐aerosol  aware  scheme  simulates  the  aerosol  indirect  effects  relating  to  cloud  seeding,  thus  the  actual  dust  storm  is  not  simulated.  More  aerosol  data  from  satellites  and  ground  needs  to  be  assimilated  into  WRF  for  better  forecasts.  Also,  the  spin-­‐up  time  for  aerosols  and  clouds  needs  to  be  optimised.  

 

Table  7  –  Comparison  of  observed  and  WRF  predicted  DNI  and  GHI.  DNI  related  values  are  shaded  grey  

Sites   RMSE-­‐Aerosol  OFF  (Wm-­‐2)   RMSE-­‐Aerosol  ON  (Wm-­‐2)  

Rockhampton  143.50   108.42  

113.41   74.82  

Melbourne  380.51   398.48  

162.92   164.80  

Adelaide  275.18   311.64  

197.86   151.55  

 

Page 24: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  24    

Short-­‐term  schemes  based  on  on-­‐site  and  peripheral  met  data  and  sky  camera  imaging  

Research  into  short-­‐term  ground  based  solar  forecasting  as  part  of  the  ASEFS  project  has  developed:  

a) An  advanced  cloud  classification  model,  able  to  distinguish  between  areas  of  cloud  and  sky  in  a  sky-­‐image  using  inexpensive  off  the  shelf  camera  hardware  (‘skycams’);    

b) Algorithms  for  projecting  cloud  motion  vectors  across  a  calibrated  fisheye  lens  distortion  model  estimate  future  cloud  positions  and;  c)  a  model  that  can  warn  of  large  solar  ramp  events  up  to  30  minutes  in  the  future,  allowing  pre-­‐emptive  mitigating  actions  to  be  taken  

CSIRO  Energy  has  been  investigating  the  use  of  low-­‐cost  fisheye  sky  cameras  for  cloud  tracking,  ramp  prediction  and  solar  forecasting  for  several  years.  This  technology  has  been  improved  and  adapted  in  the  ASEFS  project  for  use  as  a  ‘smart  sensor’  which  can  be  deployed  to  key  locations,  such  as  large  solar  farms,  to  provide  signals  to  assist  with  very  short-­‐term  solar  forecasting.    The  aim  of  this  research  was  to  develop  software  that  can  use  whole-­‐sky  images  to  provide  a  forecast  signal  to  assist  in  prediction  of  solar  power  generation  at  5  minute  intervals,  up  to  20  minutes  ahead,  updated  every  30  seconds.  A  new  cloud  classification  model  which  is  able  to  classify  each  pixel  of  a  sky  image  as  cloud  or  sky  has  been  developed.  This  model  employs  a  new  hybrid  approach  which  uses  Random  Forests,  a  supervised  machine  learning  technique,  alongside  a  traditional  red-­‐blue  ratio  thresholding  approach.  This  combination  allows  for  much  improved  classification  in  dark  and  uniform  areas  where  there  is  little  texture  information,  and  better  performance  in  bright  areas  near  the  sun  

A  new  cloud  motion  vector  projection  algorithm  using  a  dense  optical  flow  technique  was  developed  for  ASEFS.  Cloud  motion  vectors  are  extracted  from  a  sequence  of  sky  images  taken  at  10-­‐second  intervals  and  a  calibrated  fisheye  lens  distortion  model  is  used  to  simulate  the  future  position  of  each  cloud  at  every  time-­‐step  into  the  future,  assuming  the  current  velocity  remains  constant.  The  three  figures  below  show  typical  examples  of  this  process,  forecasting  the  timing  of  a  shade  event  with  approaching  clouds.  These  examples  were  chosen  to  show  the  performance  of  the  system  in  several  typical  cloud  conditions  which  cause  intermittent  solar  generation  –  high  cirrus  cloud,  relatively  stable  /  low  advection  cumulus,  and  high  advection  (dissolution)  cumulus  clouds.  The  system  was  able  to  detect  the  upcoming  shade  events  more  than  10  minutes  in  advances  in  all  cases,  and  shade-­‐event  forecasts  were  all  forecast  on  or  prior  to  the  actual  event.  For  the  case  of  relatively  stable  /  low  advection  cumulus  Figure  11  shows  the  timing  of  a  forecast  cumulus  cloud  shading  event.  This  cloud  is  detected  9  minutes  in  advance.    In  this  example,  the  forecast  time  to  shading  is  lower  than  the  perfect  forecast  –  this  is  caused  by  a  small  cloud  that  preceded  the  main  cloud  bank  but  disappeared  2  minutes  before  the  actual  shade  event.  While  there  was  a  small  underestimate  of  the  event  time,  a  warning  of  the  event  was  still  given  9-­‐10  minutes  before  the  event.  

Overall,  research  highlights  for  the  sky  camera  imaging  work  include:  

• Development  of  a  novel  cloud  image  classification  system  that,  using  inexpensive  off  the  shelf  camera  hardware,  was  used  to  classify  a  1-­‐million  pixel  test  set  as  cloud  or  sky  correctly  for  97%  of  the  samples.    

• Tests  of  the  shade  event  timing  prediction  algorithms  found  them  to  accurately  forecast  future  events  for  periods  of  up  to  30  minutes  in  advance  for  slow  high  cloud  conditions,  while  giving  more  than  5  minutes  of  warning  for  fast  low  clouds.    

• Over  a  30  day  validation  period  of  highly  intermittent  cloud  conditions,  the  irradiance  ramp  warning  system  was  found  to  correctly  predict  99.96%  of  shading  events.  This  is  the  equivalent  of,  on  average,  only  missing  a  shade  event  once  every  42  days  of  operation.    

Page 25: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  25    

 

 Figure  11  –  Timing  of  a  forecast  cumulus  cloud  shading  event.  

 

Further  research  is  planned  that  will  extend  this  system  to  provide  probabilistic  ramp  magnitude  (as  well  as  timing)  forecasts  by  incorporating  additional  data  streams  about  cloud  opacity  from  satellite  and  LIDAR  data.    

The  skycam  forecasting  system  developed  in  this  project  is  currently  being  trialled  by  CSIRO  in  the  lab  and  in  small  scale  in  the  field  in  conjunction  with  commercial  partners,  and  is  at  a  sufficient  readiness  level  that  the  system  could  be  quickly  made  operational  at  key  locations  on  the  national  energy  grid,  such  as  in  large  solar  fields;  helping  to  mitigate  the  effects  of  solar  intermittency  in  Australia’s  renewable  generation  mix  

Options  for  integration  of  skycam-­‐based  forecast  into  the  operational  ASEFS  system  include:  

1. Cloud  presence  warnings.  Providing  a  consistent  real-­‐time  measurement  of  current  and  historical  whole-­‐sky  cloud  amount  (in  oktas  or  percentage  of  sky)  as  an  additional  input  parameter  to  the  existing  statistical  short-­‐term  solar  forecasting  models  in  ASEFS  to  improve  their  performance.  This  would  require  a  skycam  and  embedded  PC  with  data  connection  to  be  installed  at  participating  solar  farms.  

2. Ramp  event  warnings.  Providing  forecasts/warnings  of  when  ramp  events  will  occur.  This  would  employ  the  ramp-­‐event  forecast  described  earlier  to  provide  advance  warning  of  large  ramp  events  in  solar  power  output  from  a  farm  to  be  provided  up  to  15  minutes  in  advance  of  the  event,  allowing  the  5-­‐minute  power  forecasts  to  be  adjusted  accordingly.  This  would  provide  timing  information  on  when  these  events  would  occur,  but  not  the  magnitude  of  the  decrease  in  power  output.  This  option  would  require  a  skycam  and  embedded  PC  with  data  connection  to  be  installed  at  participating  solar  farms.  

3. Ramp  event  and  magnitude  warnings.  Providing  forecasts/warnings  of  when  ramp  events  and  their  magnitude.  This  will  provide  the  forecast  data  as  in  option  2,  but  also  supplying  a  probabilistic  bound  of  the  magnitude  of  the  change  in  global  horizontal  irradiance,  which  can  be  used  to  estimate  the  level  of  generated  solar  power.  Further  research  into  forecasting  ramp  magnitude  in  addition  to  the  ramp  timing  forecast  system  developed  to  date  will  be  needed  to  supply  these  forecasts  

Page 26: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  26    

The  algorithms  and  software  to  realise  options  1  and  2  exist,  and  could  be  deployed  as  part  of  a  trial  in  a  follow  up  of  ASEFS.  The  software  for  these  options  is  currently  being  trialled  by  CSIRO  and  is  estimated  to  be  at  a  Technology  Readiness  Level  (TRL)  of  5-­‐6  at  the  time  of  writing.  Option  3  needs  further  research  into  forecasting  local  cloud  optical  depth  metrics,  which  will  allow  predictions  of  cloud  opacity  and  therefore  irradiance  decrease  from  particular  cloud  layers  during  a  ramp  event.  Currently,  cloud  optical  depth  information  is  difficult  to  determine  using  ground-­‐based  cameras  alone,  because  cloud  brightness  is  dependent  on  cloud  composition  and  thickness,  which  is  not  easily  measureable  using  a  single  sky  camera.  Additional  data  streams  from  LIDAR  ceilometers  and  satellite  measurements  have  been  investigated  as  a  means  of  providing  the  required  measurements  to  augment  the  existing  ramp  timing  forecast  system.  

CSIRO  is  currently  constructing  two  city-­‐wide  networks  of  sky  cameras  and  irradiance  monitoring  stations  around  Newcastle  and  Canberra.  The  capability  this  network  will  allow  the  forecasting  system  developed  to  be  extended  to  tackle  distributed  solar  power  forecasting  in  Australia.  There  is  an  existing  and  growing  need  to  provide  predictions  and  warnings  of  sharp  changes  in  rooftop  solar  generation  in  Australian  cities,  and  the  forecasting  techniques  developed  in  ASEFS  phase  1  are  equally  applicable  to  this  problem,  though  a  range  of  practical  and  research  challenges  remain  to  be  tackled.  

In  summary,  we  have  developed  a  novel  ground-­‐based  camera  solar  forecasting  system,  capable  of  providing  localised,  high  temporal  resolution  forecasts  and  warnings  of  cloud  shade  events  up  to  30  minutes  before  the  event.  An  accurate  cloud/sky  classification  model  was  developed  that  can  be  trained  on  a  sequence  of  sample  images  and  will  correctly  differentiate  cloud  from  sky  in  an  image  with  an  accuracy  of  97%.  A  ramp  event  warning  system  was  developed  that  detected  99.96%  of  the  ramps  in  a  30  day  validation  sequence  of  10  second  sky  images  in  a  variety  of  intermittent  conditions,  this  equates  to  a  mean  time  between  missed  ramp  forecasts  of  around  42  days.  

This  system  is  currently  being  trialled  in  the  lab  and  in  the  field  in  small  scale,  and  could  be  quickly  made  operational  at  key  solar  generation  sites,  such  as  large  solar  farms,  for  detecting  ramp  events  in  time  to  take  mitigating  actions  at  the  farm  or  in  the  energy  market.    

Further  research  could  adapt  these  forecasting  algorithms  to  incorporate  additional  data  streams  for  improvements  in  forecasting  the  size  of  ramp  events,  and  for  generating  wide-­‐area  solar  forecasts  for  distributed  solar  power  application  

CST  power  conversion  models  

A  study  to  focus  on  the  application  of  forecasts  to  concentrated  solar  thermal  (CST)  power  plants  was  conducted.  This  study  examined  the  value  of  forecasting  CST  plant  output.    CST  power  plants  generate  electricity  by  reflecting  sunlight  over  a  wide  area  onto  a  small  absorber  to  create  a  lot  of  heat.  This  heat  is  used  to  drive  a  steam  turbine  and  generate  electricity.  An  advantage  of  CST  power  plants  over  PV  power  plants  is  that  the  heat  can  be  stored  to  generate  electricity  later,  such  as  after  sunset.  Currently,  heat  storage  is  cheaper  and  more  efficient  than  battery  storage.  

The  strength  of  sunlight  changes  as  the  sun  moves  across  the  sky  and  when  clouds  cover  the  sun.  This  will  affect  the  amount  of  electricity  that  can  be  generated.  The  strength  of  sunlight,  and  hence  the  amount  of  electricity  that  can  be  generated,  can  be  predicted  by  using  forecast  methods.  There  are  different  methods  that  can  be  used  to  forecast  available  sunlight  for  generating  electricity.  The  methods  can  be  similar  or  different  to  one  another  by  how  they  forecast  sunlight,  how  often  they  

Page 27: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  27    

can  produce  the  forecast  and  how  far  ahead  the  forecast  covers.  CST  plant  output  forecasts  would  be  of  interest  to  a  CST  plant  operator  for  financial  reasons  and  of  interest  to  the  AEMO  for  network  reliability  reasons.  Both  perspectives  were  considered  in  this  study  through  the  use  of  financial  value  metrics  and  network  reliability  metrics.  

The  value  of  forecast  information  was  evaluated  by  using  a  CST  plant  model  and  a  network  model.  The  value  to  a  CST  plant  owner  was  found  by  calculating  how  much  money  would  be  earned  by  using  a  forecast  method  (Figure  12).  The  value  to  AEMO  was  found  by  calculating  numbers  that  describe  network  reliability.  The  scope  of  the  study  included  3  forecast  methods  and  5  different  sizes  for  each  of  the  CST  plant  solar  field  and  storage  components.  The  CST  plant  model  was  designed  to  resemble  Andasol-­‐1.  The  network  model  was  created  from  a  selection  of  generators  from  the  Victoria  region  of  the  NEM.  DNI  data  measured  at  Mildura  airport  in  Victoria  and  electricity  demand  data  for  running  simulations  were  obtained  for  1  June  to  30  November  2005.  The  evaluation  was  conducted  for  a  range  of  solar  field  and  thermal  energy  storage  (TES)  sizes.  

Results  showed  that  from  the  perspective  of  a  CST  plant  operator,  a  forecast  method  with  lower  mean  absolute  error  (MAE)  or  root  mean  square  error  (RMSE)  is  likely  to  be  more  valuable.  If  two  forecast  methods  have  similar  MAE  and  RMSE,  then  the  value  of  the  forecast  will  depend  on  the  mean  bias  error  (MBE)  and  the  size  of  the  solar  field  and  TES.  A  forecast  method  with  negative  MBE  is  likely  more  valuable  for  a  CST  plant  with  a  small  solar  field  or  large  TES.  In  contrast,  a  forecast  method  with  a  positive  MBE  is  likely  more  valuable  for  a  CST  plant  with  a  large  solar  field  or  small  TES.  From  the  perspective  of  AEMO,  a  forecast  method  with  lower  MAE  and  RMSE  is  also  more  valuable.  However,  if  the  MAE  and  RMSE  are  similar  then  the  forecast  method  with  the  lower  or  negative  MBE  is  likely  to  be  more  valuable  regardless  of  solar  field  and  TES  sizes.  

The  central  conclusion  of  this  study  is  that  the  most  valuable  type  of  forecast  may  be  the  same  for  both  AEMO  and  the  operator  of  a  CST  plant  with  a  small  solar  multiple  or  many  hours  of  storage.  To  encourage  CST  plant  operators  to  decide  CST  plant  operation  based  on  forecasts  that  are  also  beneficial  to  network  reliability,  AEMO  may  consider  setting  requirements  for  the  design  of  CST  plants  that  want  to  connect  to  the  NEM.  

 

Figure  12  –  Summary  of  method  to  calculate  financial  value  of  DNI  forecast  method.  

Page 28: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  28    

Basic  forecasting  schemes  based  on  more  complex  NWP  fields  (cloud  character,    synoptic  class)  

Short-­‐term  forecasting  of  solar  irradiance  and  associated  PV  power  production  is  a  key  issue  for  the  effective  management  of  solar  PV  power  installations.  In  particular,  the  ability  to  accurately  forecast  the  timing  and  magnitude  of  ramp-­‐down  events  caused  by  passing  cloud  cover  can  be  of  great  benefit  for  smoothing  the  output  to  the  grid  and  for  taking  optimum  advantage  of  energy  storage  systems.  Recent  research  into  the  use  of  sky  cameras  has  led  to  advances  in  forecasting  the  timing  of  ramp-­‐down  or  ramp-­‐up  events  within  the  next  20  minutes,  but  these  methods  do  not  provide  information  about  the  magnitude  of  these  events.  Forecasts  of  the  magnitude  of  ramp-­‐down  events,  or  equivalently  the  attenuation  of  irradiance  during  these  events,  are  required  in  order  to  translate  the  forecasts  into  their  effect  on  PV  power  output.  

Current  methods  employed  by  ASEFS  for  short  timescales  of  up  to  30  minutes  use  statistical  techniques  such  as  autoregressive  integrated  moving  average  (ARIMA)  models,  which  are  based  on  past  values  of  the  quantity  being  forecast.  In  the  case  of  forecasting  solar  energy,  there  is  potential  to  improve  upon  the  forecasting  skill  of  these  statistical  methods  by  incorporating  information  on  clouds.    

Two  sources  of  local,  real-­‐time  cloud  information  are  explored  in  this  work.  A  laser  ceilometer  has  the  potential  to  provide  some  information  on  the  height  and  density  of  clouds,  which  is  related  to  attenuation  of  irradiance.  The  ceilometer  returns  data  on  the  vertical  profile  of  aerosol  concentration,  based  on  the  timing  of  scattered  light  received  back  at  the  lidar  from  laser  pulses  sent  vertically  through  the  atmosphere.    

The  other  available  source  of  cloud  information  is  provided  by  a  sky  camera  (‘skycam’)  whose  images  are  processed  by  classifying  clouds  and  projecting  their  movement  in  order  to  forecast  the  fraction  of  cloud  covering  the  sun  (West  et  al,  2014).  

This  study  assessed  the  potential  value  of  these  data  sources  for  forecasting  solar  irradiance,  including  predicting  the  attenuation  of  irradiance  in  ramp  events  caused  by  clouds.  

Table  8  shows  the  error  statistics  for  a  selection  of  models,  and  a  range  of  lead  times  from  10  to  30  minutes.  The  results  are  compared  with  a  persistence  forecast  which  uses  past  values  of  the  clear-­‐sky  index  itself,  filtered  to  average  only  over  cloudy  periods  within  the  hour  up  to  the  lead  time  ahead  of  the  forecast  time.  Although  reasonably  good  predictions  were  made  using  backscatter  data,  the  results  show  that  better  results  can  be  obtained  using  the  persistence  forecast.  

Analysis  of  data  from  a  ceilometer  at  CSIRO’s  Solar  lab  in  Canberra  has  shown  that  there  is  a  clear  and  reasonably  strong  relationship  between  backscatter  data  from  the  ceilometer  and  the  GHI  clear-­‐sky  index.  Knowledge  of  the  GHI  clear-­‐sky  index  is  an  important  step  in  determining  the  reduction  in  PV  power  output  due  to  clouds.  Predictive  models  of  clear-­‐sky  index,  using  backscatter  intensities  during  previous  cloudy  periods  and  split  into  four  height  bands,  have  been  shown  to  have  useful  skill  in  forecasting  the  attenuation  of  global  irradiance  due  to  clouds.  

However,  results  have  shown  that  backscatter  data  does  not  add  forecasting  skill  to  that  which  can  be  achieved  using  past  values  of  the  predictand,  clear-­‐sky  index.  Forecasts  of  the  fraction  of  the  sun  covered  by  cloud  obtained  through  analysis  of  skycam  images  do,  however,  add  some  skill.  These  forecasts  provide  extra  information  by  estimating  when  clouds  will  pass  over  the  sun  and  cause  potentially  rapid  ramps  in  the  solar  irradiance  and  power  output.  However,  the  uncertainty  of  these  forecasts  limits  their  usefulness,  and  model  results  showed  only  a  3%  reduction  in  error  due  to  their  

Page 29: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  29    

introduction  as  predictors.  There  is  uncertainty  both  in  the  timing  of  cloud  passing  the  sun  estimated  by  cloud  motion  vectors,  as  well  as  the  forward  path  of  clouds.  Further  uncertainty  is  caused  by  the  inability  to  predict  clouds  when  they  develop  or  dissipate  near  to  the  sun.  Another  complicating  factor  is  that  clouds  can  sometimes  enhance  global  irradiance  by  increasing  diffuse  irradiance  due  to  reflectivity  especially  when  thin,  bright  clouds  pass  close  to  or  partially  over  the  sun.  The  skycam  forecasting  is  unable  to  distinguish  between  different  types  of  cloud.  

It  has  been  noted  that  the  ceilometer  is  limited  to  providing  information  on  clouds  which  are  vertically  above  the  instrument.  The  possibility  of  incorporating  knowledge  from  the  skycam  motion  vectors  of  the  position  in  the  sky  and  direction  and  speed  of  movement  of  clouds  which  are  set  to  intersect  the  sun  could  be  investigated.  This  could  enable  ceilometer  data  for  the  most  relevant  area  of  cloud  to  be  used  for  forecasting  whenever  possible.  

This  work  has  so  far  only  considered  a  co-­‐located  ceilometer  and  irradiance  forecast  site.  An  option  for  further  work  would  be  to  investigate  remote  positioning  of  one  or  more  ceilometers  in  order  for  them  to  be  able  to  anticipate  more  frequently  the  clouds  which  are  due  to  intercept  the  sun.  This  would  consider  the  prevailing  direction  of  cloud  ramp  events,  and  would  make  use  of  other  sites  in  the  Canberra  solar  monitoring  network.  

 

Table  8  –  Error  statistics  for  a  selection  of  predictive  models  of  GHI  clear-­‐sky  index  

Model   Lead  time  (mins)   Predictors   RMSE   MAE   Bias   Correlation  

Persistence   10   CI   0.158   0.119   -­‐0.007   0.69  

Decision  Tree   10   Backscatter   0.194   0.157   0.001   0.40  

Random  Forest   10   Backscatter   0.188   0.153   -­‐0.007   0.46  

Persistence   20   CI   0.172   0.130   -­‐0.005   0.63  

Decision  Tree   20   Backscatter   0.194   0.157   -­‐0.002   0.40  

Random  Forest   20   Backscatter   0.191   0.154   -­‐0.008   0.44  

Persistence   30   CI   0.184   0.139   -­‐0.002   0.58  

Decision  Tree   30   Backscatter   0.197   0.160   -­‐0.001   0.37  

Random  Forest   30   Backscatter   0.193   0.157   -­‐0.010   0.42  

 

 

 

Development  of  basic  intermittency  prediction  schemes  at  all  time  scales  

Solar  irradiance  received  at  or  near  ground  is  highly  variable  in  nature,  which  in  turn  leads  to  the  variability  of  the  power  out  of  solar  PV.  Given  the  trend  of  the  increasing  grid  penetration  of  solar  power,  this  has  significant  impacts  on  the  operation  of  power  systems  across  a  range  of  time  scales.    At  the  time  scale  of  seconds,  solar  variability  can  influence  the  resulting  power  quality  (e.g.  voltage  flicker  and  power  frequency  fluctuations);  at  minutes,  regulation  needs  to  balance  the  random  variations  in  total  power  generation;  at  the  scale  of  minutes  to  hours,  actions  need  to  be  taken  to  

Page 30: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  30    

follow  the  changes  in  load  within  the  day;  finally  at  hours  to  days,  power  units  need  to  be  scheduled  in  advance  for  maintenance  and/or  to  meet  individual  load  requests.  

To  alleviate  the  adverse  effects  of  solar  variability  on  power  stability,  developments  in  forecasting  solar  irradiance  and  solar  power  output  have  been  proliferating.  The  appropriate  forecasting  techniques  depend  on  the  forecast  horizon.  For  day  ahead  forecasts,  numerical  weather  prediction  (NWP)  is  the  best  tool  despite  there  are  significant  biases  associated  with  its  irradiance  estimates.  Despite  the  intense  research  attention  on  solar  irradiance  forecasting,  there  are  not  enough  research  efforts  devoted  directly  to  the  quantification  and  prediction  of  temporal  solar  variability.  

Using  GHI  time  series,  a  simple  and  robust  metric  (called  daily  variability  index,  or  DVI)  to  quantify  the  daily  variability  of  solar  irradiance  was  adopted.  One-­‐minute  GHI  time  series  measured  by  the  Bureau  of  Meteorology  at  Wagga-­‐Wagga  is  used  and  the  DVI  series  is  calculated  correspondingly.  Random  forest  and  multiple  linear  regression,  which  respectively  represent  techniques  of  nonlinear  and  linear  regression,  are  used  to  build  empirical  models  between  DVI  and  large-­‐scale  meteorological  fields,  such  as  cloud  cover,  wind  velocity  and  boundary-­‐layer  characteristics.  And  their  corresponding  performances  are  compared  to  reveal  the  differences  of  performance  using  linear  and  nonlinear  approaches.  

Sample  data  are  extracted  for  the  nearest  grid  point  of  the  Wagga  Wagga  site  for  the  two  NWP  models.    Using  the  year  of  2012  as  the  training  period  and  the  year  of  2013  as  the  test  period,  the  DVI  is  forecasted  by  the  two  NWP  models,  respectively.  The  main  results  are  demonstrated  in  Figure  13.    As  shown  in  the  left  column,  both  GFS  and  CCAM  (the  CSIRO’s  Conformal  Cubical  Atmospheric  Model)  forecast  the  3  hour  averaged  GHI  well  evidenced  by  the  small  value  of  MAE.    In  terms  of  DVI  forecasting  (the  middle  column),  CCAM  performs  slightly  better  than  GFS  as  reflected  by  the  comparison  of  the  metrics.    In  addition,  it  is  only  slightly  worse  to  use  CCAM  forecast  than  to  use  the  ERA-­‐Interim  reanalysis  data.    Note  that  in  making  the  plots  in  Figure  13,  another  machine  learning  technique,  gradient  boosting,  is  used  instead  of  random  forest  as  gradient  boosting  normally  results  in  similar  or  better  performance  than  random  forests  for  regression  problems.  

Regarding  the  implementation  of  the  DVI  model  (presumably  using  gradient  boosting),  it  only  requires  available  NWP  variables  at  the  nearest  grid  point  for  each  solar  farm  to  be  forecasted.    The  resulting  performance  of  the  model  will  vary  from  site  to  site  and  is  commensurate  with  the  length  of  the  available  training  data.    With  an  approximately  2  years  training  period  and  240  predictors  from  the  CCAM  model  for  a  single  site,  the  training  phase  takes  about  3  seconds  on  a  2.2GHz  Intel  i7  MacBook  Pro.    With  a  longer  training  period  and  more  sites  to  apply,  the  computing  time  will  add  up  accordingly.    As  such,  it  is  recommended  to  use  extra  computing  resource  for  the  training  phase  of  this  module.    The  computation  time  of  the  operational  phase  is  small  and  extra  computing  source  is  not  needed.  

 

Page 31: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  31    

 

 

Figure  13  –  Performance  of  the  GFS  model  (top  row)  and  the  CCAM  model  (bottom  row)  for  3  hour  average  GHI  (left),  DVI  forecasting  (middle),  and  relative  influence  of  predictors  (right)  at  Wagga  Wagga  

 

Probabilistic  forecasting  and  participation  in  GEFCom2014  solar  power  forecasting  

Having  demonstrated  the  performance  of  using  NWP  models  to  forecast  DVI,  it  is  beneficial  to  add  the  information  of  error  distribution  to  the  deterministic  forecast.    This  is  tackled  by  identifying  similar  situations  in  the  past  and  using  them  to  form  the  error  distribution,  i.e.,  the  analogue  approach.    More  specifically,  the  basic  steps  are:  

1. First  use  gradient  boosting  to  perform  the  deterministic  forecast.  

2. Then  estimate  the  probabilistic  distribution  of  the  forecast  error,  i.e.  the  observed  DVI  minus  the  deterministic  forecast:  for  each  point  in  the  test  dataset,  find  the  nearest  k  points  in  the  training  dataset  based  on  the  deterministic  forecast  values,  and  use  them  to  form  the  PDF  of  the  error  for  the  point.  

Figure  14  demonstrates  the  main  results  using  the  analogue  approach.    The  left  plot  illustrates  the  positive  correlation  between  the  amplitude  of  error  and  the  forecasted  DVI  value.    The  right  plot  depicts  the  range  of  the  probabilistic  forecast  of  DVI  superimposed  by  the  observation  time  series  for  January  2013.    It  is  shown  that  the  observation  time  series  falls  in  the  0.1-­‐0.9  quantile  probabilistic  forecasts  for  most  of  the  period.  

The  proposed  approach  for  solar  variability  forecasting  has  been  adapted  in  our  participation  in  the  solar  track  of  Global  Energy  Forecasting  Competition  2014  (GEFCom2014).    The  main  task  of  the  competition  is  to  forecast  the  solar  power  generation  of  three  farms  using  the  output  of  ECMWF  and  historical  training  data.  Our  team  ranked  first  among  more  than  250  participants  all  over  the  world.    

 

Page 32: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  32    

 

Figure  14  –  The  relationship  between  the  amplitude  of  the  error  of  DVI  modelling  and  the  modelled  DVI  (left);  Forecasted  DVI  quantiles  (0.1,  0.2,  …  ,0.9)  for  a  sample  period  of  one  month  (right)  

 

Investigation  and  testing  of  distributed  PV  generation  data  sets,  upscaling-­‐schemes    for  distributed  PV,  testing  and  further  development  of  distributed  PV  power  prediction  techniques  

Installations  of  residential  solar  PV  panels  have  grown  rapidly  in  several  countries,  mainly  spurred  by  government  incentives,  increasing  energy  prices  and  reductions  in  the  cost  of  solar  power.  Latest  estimates  indicate  about  4  GW  in  installed  small  scale  PV  power  for  Australia.  With  progressively  lower  PV  production  costs  and  improving  system  quality  and  reliability,  growth  in  installations  in  the  near  future  is  projected  to  be  even  stronger.  

Prediction  of  solar  radiation  and  PV-­‐produced  power  at  the  residential  and  business  level  is  therefore  key  to  allowing  a  smoother  integration  of  power  into  the  electricity  grid.  Ideally,  one  would  collect  all  of  the  relevant  variables  from  each  individual  installation  to  accurately  describe  the  specific  system  parameters  and  hence  attempt  a  detailed  solar  power  prediction  for  each  system.  However,  this  would  clearly  be  a  very  expensive,  time  consuming  and  essentially  impractical  approach  since  PV  installations  are  characterized  by  a  variety  of  features:  i)  PV  technology,  ii)  inverter  type  and  technology,  iii)  panel  orientation  (including  accounting  for  tracking  devices),  iv)  amount  of  shading  (which  can  depend  on  variables  such  as  solar  zenith  angle,  but  also  on  the  changing  nature  of  obstructions),  v)  efficiency  of  the  PV  panels  (dependent  on  the  type  of  installations,  whether  free  standing  or  roof  integrated  systems,  as  well  as  on  weather  conditions,  such  as  air  temperature  and  wind  speed).  

It  is  apparent  therefore  that  a  deterministic  approach  to  urban  or  regional  PV  power  forecasting  is  impractical.  Practical  approaches  to  predicting  solar  power  at  increasing  level  of  approximation  are  therefore  sought.  Such  approaches  by  necessity  will  have  to  consider  PV  system  aggregation  to  differing  degrees.  Sometimes  these  approaches  are  called  upscaling:  prediction  is  derived  for  a  small  sample  of  PV  systems,  which  is  then  used  to  infer  the  behavior  of  analogous  PV  systems  over  a  broader  area.    

In  this  work,  we  start  from  the  underlying  assumption  that,  because  the  ultimate  driver  of  PV  systems  and  their  outputs  is  global  irradiance,  accurate  meteorological  observations  are  key  to  accurate  power  predictions.  At  the  same  time,  and  with  the  view  to  limit  the  amount  and  cost  of  instrumentation  required  for  accurate  forecasts,  we  also  assess  the  type  and  number  of  

Page 33: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  33    

meteorological  observations  required  to  achieve  accurate  forecasts.  The  irradiance  forecasts  are  then  used  to  produce  power  forecasts  for  a  target  (generic)  system.  

This  work  relies  on  a  number  of  high-­‐frequency  monitoring  stations  installed,  and  regularly  maintained,  around  Canberra  (Figure  15).  Specifically  we  use  measurements  from  two  stations  to  produce  forecasts  for  a,  third,  target  station,  for  which  we  have  all  measurements.  Where  the  geometry  of  the  PV  system  is  known,  as  in  our  case,  we  derive  the  global  irradiance  on  the  PV  plane  by  means  of  statistical  relationship  between  the  three  irradiance  components  (global,  diffuse  and  direct).  In  the  absence  of  PV  system  specifications,  one  would  need  to  make  standard  assumptions  about  system  performance,  tilt  and  orientation  angles.  

The  prediction  lead  (or  horizon)  time  extends  from  5  minute  to  3  hours  ahead.  Such  time  frames  are  particularly  useful  for  regulation  reserves,  and  enhanced  system  reliability  and  security  and,  potentially,  for  load  shifting,  at  the  high-­‐end  of  this  horizon  time.  At  these  lead  times,  it  is  generally  accepted  that  statistical  techniques  offer  the  most  appropriate  and  practical  approach.  

Figure  16  shows  the  forecast  results  of  the  PV  power  prediction.  When  local  data  are  not  used/available,  the  approach  presented  in  this  section  provides  an  improvement  with  respect  to  using  GHI  at  short  lead  times  (under  30  minutes).  This  is  valid  for  both  winter  and  summer.  

In  this  study  we  used  observations  from  an  urban  solar  network  based  in  Canberra,  Australia,  with  the  aim  to  predict  both  solar  irradiance  and  solar  power  at  a  (generic)  target  station.  Our  target  station,  Namadgi  School,  is  located  in  between,  and  at  a  few  tens  of  kilometres  from,  two  other  monitoring  stations,  Black  Mountain  and  Wombat  Hill.  All  three  stations,  therefore  including  Namadgi  School,  have  been  collecting  meteorological  and  power  observations:  this  allows  us  to  assess  the  predictions  performance  at  the  target  station.  The  sensitivity  of  two  statistical  methods,  random  forest  and  multi-­‐linear,  for  i)  different  meteorological  and  power  variables  as  predictors,  ii)  different  combinations  of  stations,  iii)  winter  and  summer  seasons  and  iv)  different  sky  conditions,  is  an  integral  part  of  this  work.  

A  number  of  variables  observed  at  our  monitoring  stations  were  selected  as  our  predictors  for  the  GHI  predictors  –  two  global  irradiances  (GHI  and  on  the  plane  of  the  PV  panels),  temperature,  pressure  and  humidity.  Clear  sky  radiation  was  also  used  as  an  additional  predictor.  Aside  from  the  importance  of  historical  values  of  GHI,  the  other  important  predictors  are  air  temperature  and  humidity  in  summer  and  pressure  and  humidity  in  winter.  As  a  benchmark  for  the  GHI  prediction,  a  modified  (or  gap)  persistence,  whereby  GHI  values  were  simply  modified  by  adding  the  next  time  step  increment  provided  by  the  diurnal  cycle  (clear  sky  radiation),  was  used.    

Compared  to  when  only  data  from  the  two  stations,  Black  Mountain  and  Wombat  Hill,  are  used  for  GHI  prediction,  gap  persistence  yields  better  results  up  to  about  15  minutes  ahead  in  summer.  However,  this  clearly  implies  availability  of  data  at  the  target  station.  Of  the  two  statistical  models,  random  forest  is  more  skilful  than  the  linear  method  in  summer.  In  winter,  the  performance  of  the  two  statistical  methods  is  reversed  compared  to  summer,  with  the  multi-­‐linear  method  superior  to  random  forest.  The  fact  that  the  performance  of  these  two  methods  displays  a  strong  seasonality  is  a  reflection  of  the  prevalent  climate  conditions  in  Canberra  in  the  two  seasons.  In  winter,  when  clear  sky  conditions  dominate,  solar  irradiance  is  better  predicted  by  a  less  elaborate  multi-­‐linear  method,  whereas  in  variable,  non-­‐linear,  summer  conditions  the  random  forest  method  captures  better  the  GHI  variability.  

Page 34: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  34    

 Figure  15  –  Map  of  Canberra  with  the  position  and  names  of  our  five  monitoring  stations.  Highlighted  with  circles  are  the  three  stations  used  for  our  solar  forecasting  algorithms,  with  Namadgi  School  taken  as  the  target  station.  

 

 

Figure  16  –  rMAE  of  modified  Power  predictions  based  on  the  conversion  presented  in  Section  5  and  using  data  from  different  stations  (a)  in  summer  (Method:  Random  Forest;  Predictors:  SP-­‐Solar,  PV  panel  temperature,  Absolute  Humidity);  (b)  in  winter  (Method:  Multi-­‐Linear;  Predictors:  SP-­‐Solar,  PV  panel  temperature,  Absolute  Humidity).  

0 50 100 150

0.1

0.2

0.3

0.4

0.5

(a)

Lead time (minutes)

r MAE

BM, NS & WHBM & WHWH & NSWHBM & NSBM

0 50 100 150

0.1

0.2

0.3

0.4

0.5

(b)

Lead time (minutes)

r MAE

●●

●●

●●

●●

Page 35: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  35    

For  power  output  prediction,  geometry  and  other  specifications  of  the  PV  systems  also  play  important  roles,  particularly  at  short  lead  times.  This  is  because  the  local  real-­‐time  tilted  solar  irradiance  is  roughly  proportional  to  the  real-­‐time  power  output  from  solar  panels  (regardless  of  the  negative  efficiency  effect  due  to  increasing  solar  panel  temperature).  However,  as  the  lead-­‐time  becomes  longer,  the  positive  effect  of  tilted  solar  irradiance  as  a  predictor  diminishes.  Thus  choosing  GHI  as  a  predictor  instead  of  the  solar  irradiance  on  tilted  surface  when  local  data  is  not  used  seems  to  be  acceptable  as  GHI  is  less  site-­‐specific.  As  for  other  variables  such  as  solar  panels  temperature,  which  in  principle  is  an  important  variable  as  it  influences  the  solar  panels  efficiency,  in  practice  it  did  not  make  a  marked  impact  in  the  power  prediction  skill.    

In  terms  of  the  relative  importance  of  stations,  Black  Mountain  typically  has  a  larger  impact  on  the  skill  of  GHI  than  Wombat  Hill.  However,  for  power  prediction  in  summer  the  reverse  seems  to  be  true.  In  general,  using  both  stations  yields  better  results  than  using  either.  

In  terms  of  predicting  power  output  for  a  single  site,  global  irradiance  on  tilted  surface  should  be  selected  as  a  predictor  if  available.  However,  as  this  variable  is  site-­‐specific,  we  demonstrated  that  by  deriving  it  via  a  GHI  conversion,  with  GHI  observations  at  remote  sites,  a  satisfactory  prediction  skill  is  obtained.  Also,  the  prediction  skill  is  higher  under  high  clear-­‐sky  index  conditions.  This  is  especially  the  case  in  winter.  

Possible  future  developments  of  this  work,  aimed  at  improving  the  prediction  skill,  may  be:  

• The  use  of  a  predictor  obtained  from  sky  camera  images;  this  would  be  most  useful  to  improve  predictions  at  the  short  range,  up  to  about  20-­‐30  minutes;  

• The  use  of  a  number  of  predictors  from  Numerical  Weather  Prediction  output;  these  would  be  useful  to  improve  the  longer  range,  say  2-­‐3  hours  (and  beyond),  prediction  skill.  

 

Skill  of  direct  solar  radiation  predicted  by  the  ECMWF  global  atmospheric  model  over  Australia  

The  need  for  deriving  or  predicting  direct  solar  radiation  is  a  burgeoning  topic  of  research.  For  instance,  electricity  production  from  CSP,  for  which  direct  solar  radiation  is  a  critical  input,  is  steadily  increasing.  However,  to  date  most  studies  have  targeted  global  solar  irradiance,  namely  the  sum  of  the  two  separate  components:  direct  solar  radiation  (or  direct  beam,  or,  more  formally,  direct  irradiance)  and  diffuse  radiation.  Deficiencies  in  the  representation  of  cloud  cover,  a  notoriously  difficult  variable  to  simulate,  are  present  at  varying  degrees  in  all  weather  models.  Uncertainty  in  the  modelled  cloud  cover  is  what  makes  solar  radiation  difficult  to  predict  even  a  few  hours  ahead.  Under  clear  sky  conditions,  however,  NWP  models  can  simulate  solar  radiation  reasonably  well.  The  direct  solar  radiation  component  produced  by  the  ECMWF  model  is  the  focus  of  our  investigation,  including  its  dependency  on  different  cloud  cover  conditions.  

Even  when  direct  beam  forecast  is  considered  this  variable  is  derived  from  the  global  irradiance  rather  than  being  directly  computed  by  the  meteorological  model.  The  reason  direct  beam  has  not  been  readily  available  is  possibly  due  to  the  fact  that  only  recently  has  the  CSP  industry  started  to  advocate  for  improved  direct  beam  products.  As  a  consequence  meteorological  models  were  not  programmed  to  output  this  variable,  even  if  it  is  routinely  internally  computed.  With  this  study  direct  beam  predicted  by  two  versions  of  the  ECMWF  model  is  compared  to  solar  observations  collected  at  four  ground  stations  in  Australia.  The  stations  were  chosen  for  their  different  climatic  conditions.    

Page 36: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  36    

In  this  study  the  performance  of  direct  irradiance  forecast  by  a  widely  used  NWP  model,  the  ECMWF  model,  has  been  assessed  against  high-­‐quality  ground  station  observations  over  Australia.  Three-­‐hourly  average  forecasts  out  to  five  days  (120  hours)  have  been  evaluated  using  standard  statistical  measures,  the  relative  mean  absolute  error  (rMAE)  and  the  linear  correlation  coefficient,  averaged  over  all  sky  conditions  as  well  as  separated  into  a  number  of  clear  sky  index  categories.  

Two  versions  of  the  model,  developed  a  few  years  apart,  have  been  assessed.  Both  versions  represent  reasonably  well  the  monthly  mean  value  of  DHI  and  GHI.  By  applying  a  relatively  simple  bias  correction  approach,  based  on  average  errors  over  a  limited  numbers  of  clear  sky  index  and  solar  zenith  angle  categories,  their  performance  can  be  markedly  enhanced.  The  improvement  in  rMAE  and  correlation  coefficient  due  to  the  bias  correction  is  at  least  an  order  of  magnitude  larger  than  the  difference  between  the  two  model  versions.  Specifically,  rMAEs  for  DHI  are  reduced  by  at  least  10%  for  most  of  the  lead  times  after  bias  correction,  reaching  values  of  around  10-­‐15%  on  average.  Improvements  in  correlation  are  even  more  marked,  with  increases  of  up  to  0.5  after  bias  correction,  reaching  average  values  of  around  0.9  for  all  four  stations.  

It  is  worth  noting  that  while  aerosols  are  likely  to  be  responsible  for  a  portion  of  the  surface  radiation  errors,  the  fact  that  the  two  model  versions  adopt  the  same  monthly  mean  aerosol  climatology,  and  that  the  removal  of  the  bias  is  essentially  independent  of  the  aerosols,  indicate  that  other  factors,  particularly  cloud  cover,  are  likely  to  play  a  dominant  role  in  the  model  bias.    

There  appears  to  be  a  distinct  dependency  of  the  forecast  performance  on  their  background  climatic  conditions.  In  particular,  Wagga  Wagga  and  Broome,  which  are  characterized  by  predominantly  low-­‐cloud  cover  to  clear-­‐sky  conditions,  also  reasonably  well  captured  by  the  model,  are  the  locations  displaying  the  overall  best  performance.  For  Adelaide  and  Rockhampton  where  cloudier  conditions  are  more  prevalent,  and  for  which  the  model  is  less  skilful  at  capturing  these  varying  conditions,  there  is  more  room  for  model  improvement.    

The  ECMWF  forecast  has  also  been  tested  in  an  operational-­‐type  setting,  by  targeting  three  quantiles,  forecast  smaller  than  the  25%  of  its  distribution,  larger  than  50%  and  larger  than  75%  (Figure  17).  While  the  bias  correction  applied  to  half  of  the  data  set  improves  the  scores  only  marginally  over  the  remaining  half,  the  forecast  especially  for  the  higher  two  quantiles  (>  50%  and  >  75%)  display  values  which  could  potentially  be  considered  for  operational  use.  Moreover,  it  was  shown  that  by  applying  the  bias  correction  to  the  whole  period,  so  as  to  mimic  a  longer  temporal  coverage,  the  score  could  potentially  be  markedly  improved.  

The  results  of  our  analyses  provide  an  indication  of  the  potential  practical  use  of  direct  irradiance  forecast  for  solar  power  operations,  especially  for  concentrating  solar  power  farms  for  which  direct  irradiance  is  crucial.  Our  quantification  of  error  growth  for  direct  irradiance,  also  in  relation  to  global  irradiance,  should  allow  solar  power  plant  operators  to  take  better  informed  decisions  about  the  use  of  direct  irradiance  forecast.  It  may  also  assist  forecast  model  developers  to  better  target  future  model  improvements.  However,  if  improvements  continue  to  be  gradual,  as  was  the  case  with  the  two  versions  assessed  in  this  work,  refined  bias  correction  approaches  will  provide  a  more  effective  short-­‐term  solution  to  delivering  improved  direct  radiation  forecasts  out  to  several  days.  

One  of  the  reason  for  the  gradual  improvement  in  the  NWP  forecast  skill  for  surface  solar  radiation  is  that,  up  to  until  very  recently,  comparison  with  detailed  surface  radiation  measurements  on  a  daily  basis  has  not  been  the  main  focus  of  NWP  development  evaluations.  Particularly  with  the  

Page 37: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  37    

growing  interest  coming  from  the  solar  power  industry,  who  would  benefit  from  a  much  better  representation  of  the  solar  radiation  components,  the  situation  is  now  changing.  This  paper  has  provided  an  indication  of  the  skill  achievable  with  a  renowned  NWP  model  and,  via  the  bias  correction,  what  would  be  some  areas  of  focus  for  model  development.  Given  the  impact  of  different  model  versions  on  surface  solar  radiation  over  Australia,  analogous  evaluations  could  now  be  part  of  the  acceptance  tests  to  upgrade  experimental  versions  of  NWP  models  to  operational  status  (Troccoli  and  Morcrette  2014).    

 

Figure  17  –  Three-­‐hourly  forecast  scores  expressed  as  percentage  of  correct  forecasts  for  GHI  (left  panels)  and  DHI  (right)  for  three  different  distribution  quantiles:  forecast  <  25%  (top  panels),  >50%  (middle)  and  >75%  (bottom)  at  Adelaide.  The  target  period  is  the  second  half  of  2006.  The  black  lines  are  for  non-­‐corrected  model  output,  the  green  lines  for  bias  corrected  model  output  over  the  entire  2006  and  the  red  lines  mimic  a  practical  forecasting  situation,  whereby  the  first  half  of  2006  has  been  used  to  compute  the  bias  which  is  then  applied  to  the  second  half  of  2006.  The  cyan  lines  show  the  persistence  forecast  (using  same  time-­‐of-­‐day,  one  to  5  days  ahead),  whereas  the  grey  lines  provide  another  reference  score,  based  on  the  null-­‐hypothesis  of  random  forecasts.  

0 20 40 60 80 100 120

2040

6080

100 Forecast score for ADELAIDE AIRPORT : GHI < 25%

Lead time [hours]

Perc

ent o

f cor

rect

sco

res

●●

●●

● ● ●

● ●

●●

●●

●●

● ●

●●

●●

●●

0 20 40 60 80 100 120

2040

6080

100 Forecast score for ADELAIDE AIRPORT : GHI > 50%

Lead time [hours]

Perc

ent o

f cor

rect

sco

res

● ●

●● ●

●● ● ●

●●

● ●●

●●

●●

●● ● ● ●

● ●●

● ●●

● ● ●●

● ●● ● ●

●●

●● ●

●● ●

●●

●●

● ●

●●

● ●

●●

● ●

●●

● ●

●●

● ●

0 20 40 60 80 100 120

2040

6080

100 Forecast score for ADELAIDE AIRPORT : GHI > 75%

Lead time [hours]

Perc

ent o

f cor

rect

sco

res

● ●● ●

● ●● ●

●● ●

● ●●

●●

● ● ●●

● ● ●

● ●

● ●

●●

● ●

● ●

● ●●

●●

●● ●

●●

● ●●

● ●

● ●

● ●

0 20 40 60 80 100 12020

4060

8010

0 Forecast score for ADELAIDE AIRPORT : DHI < 25%

Lead time [hours]

Perc

ent o

f cor

rect

sco

res

● ●●

● ● ● ●

● ●●

●●

● ●●

● ●

●●

● ●

● ●

● ● ●

●●

● ●

●●

● ●

● ●

0 20 40 60 80 100 120

2040

6080

100 Forecast score for ADELAIDE AIRPORT : DHI > 50%

Lead time [hours]

Perc

ent o

f cor

rect

sco

res

●●

● ●

●●

● ●

●●

● ●

● ●●

● ●

● ●●

● ●

●●

● ●●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

●●

●●

●●

●●

● ●●

●●

●● ●

0 20 40 60 80 100 120

2040

6080

100 Forecast score for ADELAIDE AIRPORT : DHI > 75%

Lead time [hours]

Perc

ent o

f cor

rect

sco

res

● ●

● ●

● ●●

● ●

● ●

● ●

● ● ●●

● ●

● ●

●●

● ●

● ●

● ●

●●

● ●● ●

●●

●● ●

● ●

●●

● ●

●●

●● ●

● ●

● ●●

Page 38: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  38    

Global  to  Diffuse  to  Direct  Normal  Radiation  

This  work  focused  first  on  the  development  of  models  for  diffuse  solar  radiation  and  then  moved  to  discuss  how  to  best  obtain  estimated  hourly  direct  normal  solar  radiation.  First,  a  logistic  model  for  direct  normal  solar  radiation  using  multiple  location  data  was  constructed.  Then,  the  use  of  the  logistic  and  Perez  models  in  four  different  locations  was  compared.  The  results  of  four  error  analyses  show  that  the  logistic  model  performed  arguably  better  than  the  Perez  model.    

Spatial-­‐Temporal  Forecasting  

This  research  details  the  extension  from  single  to  multi-­‐site  solar  forecasting.  The  interconnections  between  sites  improve  the  forecasting  skill  on  an  hourly  but  not  on  a  ten  minute  time  scale.  The  forecast  for  a  single  site  for  time  𝑡+1,  performed  at  time  𝑡,  is  performed  first  using  the  CARDS  (Huang  et  al  2013)  forecasting  tool.    Subsequently  the  errors  at  the  three  sites  were  tested  for  cross  correlation,  i.e.  at  time  𝑡,  and  for  each  site  at  the  one  step  lag  for  the  other  sites,  i.e.  at  time  𝑡−1.    From  finding  that  significant  cross  correlation  existed,  the  performance  of  the  single  site  forecast  for  time  𝑡+1  was  improved  by  the  connection  of  the  error  at  site  𝑖,  with  the  errors  at  sites  𝑗,𝑘  at  time  𝑡,  and  the  forecast  of  the  errors  at  sites  𝑗,𝑘  for  time  𝑡+1,  by  a  small  but  significant  amount.  The  procedure  for  constructing  prediction  intervals  for  the  forecast  is  presented,  using  a  Correlated  Autoregressive  Conditional  Heteroscedastic  (Corr  ARCH)  model  for  forecasting  the  variance.  Note  that  the  CARDS  model  is  being  rewritten  into  Python  programming  language  by  staff  at  NREL  in  Colorado.  

Researchers  Access  

One  of  the  planned  key  outputs  of  ASEFS  was  the  researcher  access,  analogously  to  what  done  with  AWEFS.  However,  the  lack  of  operational  ASEFS  data,  up  to  the  time  of  completion  of  ASEFS,  implied  that  researchers  could  not  access  the  ASEFS  system  directly  (as  instead  done  with  AWEFS).  To  alleviate  the  lack  of  direct  connectivity,  AEMO  was  to  extract  solar  forecasting  data  from  the  test  system  so  that  ASEFS  partners  could  assess  their  developments  against  these  forecast  data.  Such  data  would  have  been  key  to  demonstrating  the  value  of  the  improved  solar  forecasting  techniques  developed  under  the  ASEFS  R&D  activities.  Technical  issues  prevented  AEMO  from  delivering  these  data.  This  issue  is  being  looked  into  further  as  it  is  hoped  that  funding  sources  for  research  work  will  be  available  in  the  near  future  to  allow  the  benchmarking  of  solar  forecasting  techniques  against  the  AEMO’s  ASEFS  system.  

Meetings  and  Stakeholder  Engagement  

Fortnightly  project  catch-­‐up  calls,  six-­‐monthly  meetings  and  workshops  as  well  as  stakeholder  workshops,  including  industry  advisory  committee  meetings,  were  integral  to  the  execution  and  success  of  the  project.    

 

   

Page 39: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  39    

Transferability  The  ASEFS  operational  system  provides  an  opportunity,  as  it  was  for  AWEFS,  to  showcase  the  reliability  of  the  system  and  its  effectiveness  at  enabling  the  smooth  integration  of  solar  power  into  the  national  grid.  In  this  sense,  the  expertise  gained  in  developing  and  installing  ASEFS  could  be  transferred  to  other  energy  markets,  including  Western  Australia,  as  well  as  overseas.    

In  terms  of  ASEFS  R&D  activities,  although  these  were  mainly  aimed  at  improving  the  forecasting  produced  by  the  operational  ASEFS,  they  have  yielded  notable  advances  in  several  areas,  as  illustrated  in  the  previous  section  and  in  the  technical  milestone  reports.  As  such,  these  techniques  could  also  be  applied  as  a  stand-­‐alone  (namely  not  linked  to  the  AEMO  ASEFS)  modular  prediction  system.    

The  techniques  developed  with  ASEFS  R&D  should  also  be  further  developed,  including  through  a  blending  of  multiple  data  sources  for  solar  forecasting  of  distributed  photovoltaic  power  generation  on  a  city-­‐wide  scale.  Indeed,  the  rapid  expansion  of  rooftop  solar  PV,  which  has  reached  a  overall  capacity  of  over  4  GW  in  Australia,  is  demanding  immediate  attention  in  regards  to  its  forecasting  (AEMO  has  already  commissioned  a  system  to  complement  the  current  ASEFS  operational  system  to  deal  with  rooftop  solar  PV  generation).    

Other  applications,  that  have  started  to  be  explored,  are  the  combination  of  solar  forecast  with  control  algorithms  with  a  view  to  optimise  use  of  batteries/electricity  generation/GHG  emission/cost  of  electricity.  Yet  another  area  which  would  benefit  from  the  ASEFS  R&D  outputs  is  the  development  of  advanced  ways  to  generate  and  communicate  probabilistic  forecasts.  Indeed,  being  highly  variable,  solar  power  prediction  would  best  be  expressed  by  probabilistic  information,  which  could  be  generated  by  combining  the  various  techniques  developed  by  ASEFS  R&D.  

Scientific  advances  in  solar  forecasting  through  ASEFS  have  also  allowed  Australian  scientists  to  strengthen  their  knowledge  and  skills  in  the  burgeoning  solar  forecasting  area.  This  has  led  to  international  recognitions  as  in  the  case  of  an  invitation  to  an  ASEFS  participant  to  author  a  chapter  on  solar  forecasting  in  a  book  contributed  by  international  experts  in  the  area  of  renewable  energy  forecasting.    

Conclusion  and  next  steps  A  system  to  produce  solar  power  forecasts  was  successfully  developed  and  implemented  at  AEMO.    This  Australian  Solar  Energy  Forecasting  System  (ASEFS)  is  essential  for  the  operations  of  large-­‐scale  solar  farms.  As  with  AWEFS,  ASEFS  is  amongst  the  most  advanced  solar  forecasting  systems  worldwide.  

ASEFS  provides  a  system  that  uses  basic  forecasting  techniques  to  cover  all  the  AEMO-­‐required  forecasting  timeframes,  which  range  from  five  minutes  to  two  years.  Also,  while  the  system  was  intended  to  feed  large-­‐scale  photovoltaic  and  solar-­‐thermal  plants  no  large-­‐scale  solar  generator  was  commissioned  during  the  development  and  testing  phase  of  the  ASEFS  system.    In  the  absence  of  registered  large-­‐scale  solar  generators  in  ASEFS,  the  solution  was  to  run  the  solar  forecasts  in  a  non-­‐production  environment  using  two  small-­‐scale  test  solar  farms  to  exercise  the  forecasting  models.  The  Black  Mountain  (Canberra)  and  the  Norwest  (Sydney)  test  solar  farms  replicated  (scaled)  fixed,  non-­‐tracking  solar  generators  with  scaled  energy  conversion  models,  providing  scaled  

Page 40: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  40    

“MW”  output  and  onsite  weather  data  to  ASEFS.  The  normalised  mean  accuracy  error  for  the  different  time  horizons  were  tested  against  the  required  system  specifications  and  the  results  were  within  the  ASEFS  agreed  accuracy  targets.  

In  parallel  to  the  implementation  of  the  ASEFS  system,  an  advanced  and  varied  R&D  program  has  been  developed  which  has  allowed  to  develop  skills  and  techniques  in  important  future  areas  such  as  cloud  tracking  using  sky  cameras  or  satellite  images,  improvements  of  NWP  models,  better  use  of  atmospheric  models,  methods  to  derive  solar  forecasts  at  the  distributed  level.  The  R&D  developments  have  been  documented  in  international  journal  papers,  and  presented  at  many  public  forums,  thus  allowing  the  rest  of  the  Australian  and  worldwide  research  and  industry  communities  to  benefit  from  such  acquired  knowledge.  

Conversations  have  already  started  around  extending  the  R&D  work  by  combining  the  various  techniques  which  have  thus  far  been  developed  in  isolation.  For  instance,  tracking  of  clouds  from  sky  cameras  and  satellite  could  be  merged  to  provide  a  more  comprehensive  picture  of  cloud  evolution.  Such  combinations  could  be  developed  into  modular  software  which  can  be  commercialised  for  large  solar  farms  as  well  as  PV  roof-­‐top  use.    

In  the  meantime  AEMO  has  already  identified  areas  of  further  developments  of  their  ASEFS  operational  system,  particularly  with  the  commissioned  expansion  of  a  system  able  to  cope  with  distributed  solar  power,  which  has  turned  out  to  be  a  source  of  substantial  aggregate  power,  much  bigger  than  the  currently  available  large-­‐scale  solar  farms.  Indeed,  the  surge  in  uptake  of  roof-­‐top  PV  has  been  creating  a  growing  problem  for  creating  a  growing  problem  for  the  balancing  of  supply-­‐demand:  forecast  errors  have  already  been  experienced  in  regions  like  South  Australia  or  South  East  Queensland,  and  these  may  increasingly  contribute  to  severe  power  quality  (frequency)  issues.  

The  use  of  solar  forecasting  in  combination  of  control  algorithms  for  battery  storage  is  another  area  of  development.  Such  algorithms  would  allow  the  optimisation  of  battery  longevity/electricity  generation/GHG  emission/cost  of  electricity.  Solar  forecasting  would  provide  a  key  input  in  the  development  of  such  control  algorithms.  This  topic  was  extensively  discussed  at  the  recent  Solar  Forecasting  &  Storage  Stakeholder  Workshop  held  in  Melbourne  on  10  August  2015.  This  stakeholder  workshop,  attended  by  around  40  experts  from  industry,  government,  and  research  institutions,  aimed  to:  

1. Strengthen  the  link  with  industry  around  the  issue  of  solar  forecasting  and  electrical  storage    2. Potentially  co-­‐develop  a  proposal  for  a  feasibility  study  on  the  role  and  value  of  solar  

forecasting  in  relation  to  various  electrical  storage  scenarios    

We  are  already  working  on  a  proposal  for  such  a  feasibility  study.  The  proposal  development  has  been  benefiting  from  conversations  with  industry  and  research  institutions,  as  well  as  with  ARENA  staff,  including  its  CEO.  The  discussions  at  the  workshop  are  also  informing  the  way  in  which  the  feasibility  study  is  being  shaped.  Specifically,  it  is  apparent  that  the  projected  larger  use  of  storage,  particularly  combined  with  PV,  will  make  the  role  of  forecasting  both  more  important  and  more  diverse,  also  due  to  the  variety  of  battery  technologies  available.  There  are  some  useful  prospects  to  provide  supporting  information  such  as  solar  irradiance  and  forecasting  to  also  complement  e.g.  the  APVI  solar  PV  web  portal,  and  which  could  be  developed  in  collaboration  with  the  AREMI  project  (http://www.nationalmap.gov.au/renewables/).  

   

Page 41: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

Australian  Solar  Energy  Forecasting  System|  Page  41    

References  Boland  J,  Huang  J,  and  Ridley  B  (2013)  Decomposing  global  solar  radiation  into  its  direct  and  diffuse  

components,  Renewable  and  Sustainable  Energy  Reviews,  28,  pp.  749-­‐756.  Boland  J  (2015)  Spatial-­‐temporal  forecasting  of  solar  radiation,  Renewable  Energy,  75,  pp.  607-­‐616.  Chen,  C.,  Duan,  S.,  Cai,  T.,  Liu,  B.,  2011.  Online  24-­‐h  solar  power  forecasting  based  on  weather  type  

classification  using  artificial  neural  network.  Solar  Energy,  85(11),  2856–2870.  Chow,  W.  C.,  Urquhart,  B.,  Lave,  M.,  Dominguez,  A.,  Kleissl,   J.,  Shields,   J.,  Washom,  B.,  2011.   Intra-­‐

hour   forecasting   with   a   total   sky   imager   at   the   UC   San   Diego   solar   energy   test   bed.   Solar  Energy,  85(11),  2881–2893.  

Crispim,  E.  M.,  Ferreira,  P.  M.,  Ruano,  A.  E.,  2008.  Prediction  of   the  solar   radiation  evolution  using  computational   intelligence  techniques  and  cloudiness   indices.   Int.   J.  of   Innovative  Computing,  Information  and  Control,  4(5),  1121–1133.  

Huang   J,  Korolkiewicz  M,  Agrawal  M  and  Boland   J,   (2013)  Forecasting  solar   radiation  on  an  hourly  time  scale  using  a  coupled  autoregressive  and  dynamical  system  (CARDS)  model,  Solar  Energy,  87,  pp.  136-­‐149.  

Huang  J,  Troccoli  A  and  Coppin  P  (2014)  “An  analytical  comparison  of  four  approaches  to  modelling  the   daily   variability   of   solar   irradiance   using  meteorological   records”.   Renewable   Energy,   72,  doi:  195–202,  10.1016/j.renene.2014.07.015    

Lorenz   E,   Kühnert   J   and   Heinemann   D   (2014)   Overview   of   Irradiance   and   Photovoltaic   Power  Prediction.   In  Troccoli  A.,  Dubus  L  and  Haupt  SE  (eds.),  Weather  matters  for  energy,  Springer,  New  York,  USA,  pp  429-­‐454,  DOI:  10.1007/978-­‐1-­‐4614-­‐9221-­‐4_21  

Mathiesen,   P.,   Kleissl,   J.,   2011.   Evaluation   of   numerical   weather   prediction   for   intra-­‐day   solar  forecasting  in  the  continental  united  states.  Solar  Energy,  85(5),  967–977.  

Marquez,   R.,   Coimbra,   C.   F.   M.,   2011.   Forecasting   of   global   and   direct   solar   irradiance   using  stochastic   learning  methods,  ground  experiments  and  the  NWS  database.  Solar  Energy,  85(5),  746–756.  

Marquez,   R.,   Coimbra,   C.   F.  M.,   2013a.   Intra-­‐hour   DNI   forecasting   based   on   cloud   tracking   image  analysis.  Solar  Energy,  91,  327–336.  

Pelland,   S.,   Remund,   J.,   Kleissl,   J.,   Oozeki,   T.,   Brabandere,   K.   D.,   2013.   Photovoltaic   and   Solar  Forecasting:  State  of  the  Art.  Technical  report,  IEA  PVPS  T14-­‐01:2013.  

Perez,   R.,   Moore,   K.,   Wilcox,   S.,   Renné,   D.,   Zelenka,   A.,   2007.   Forecasting   solar   radiation—Preliminary   evaluation   of   an   approach   based   upon   the   National   Forecast   Database.   Solar  Energy,  81(6),  809–812.  

Pernick,   R.,  Wilder,   C.,   2008.   Utility   Solar   Assessment   Study   Reaching   Ten   Percent   Solar   by   2025.  Technical  Report.  Washington,  D.C.:  Clean  Edge,  Inc.,  and  Co-­‐Op  America  Foundation.  

Troccoli   A   and  Morcrette   J-­‐J   (2014)   “Skill   of   direct   solar   radiation  predicted  by   the   ECMWF  global  atmospheric  model  over  Australia”.   J.  Applied  Meteorology  and  Climatology,  2571–2588,  doi:  10.1175/JAMC-­‐D-­‐14-­‐0074.1    

West,  S.R.,  Rowe,  D.,  Sayeef,  S.,  Berry,  A.,  2014.  Short-­‐term  irradiance  forecasting  using  skycams:  Motivation  and  development.  Sol.  Energy  110,  188–207.  doi:10.1016/j.solener.2014.08.038  (http://dx.doi.org/10.1016/j.solener.2014.08.038)  

Widiss,   R.,   Porter,   K.,   2014.   A   Review   of   Variable   Generation   Forecasting   in   the   West.   Technical  Report  NREL/SR-­‐6A20-­‐61035  

   

 

 

Page 42: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

 

42  

Lessons  Learnt  

Lessons  Learnt  Report:  Delays  with  Solar  Flagship  program  Project  Name:  Australian  Solar  Energy  Forecasting  System  

Knowledge  Category:   Regulatory  Knowledge  Type:   Planning  &  Development  approvals    Technology  Type:   Solar  PV  State/Territory:   National  

Key  learning  In  spite  of  the  Solar  Flagships  plans  and  commitments,  large-­‐scale  solar  farms  (>  30  MW)  were  only  installed  towards  the  end  of  the  ASEFS  project.  This  externality  was  very  difficult  to  anticipate.  It  affected  the  outcome  of  the  project  only  to  the  extent  that  the  ASEFS  operational  system  could  not  be  tested  on  large-­‐scale  solar  farms  during  the  duration  of  the  ASEFS  project.  It  will  be  however  tested  shortly  by  AEMO  (beyond  the  ASEFS  project),  if  not  done  so  already.  

Implications  for  future  projects  Greater  assurance  that  large-­‐solar  farms  are  being  deployed  should  be  sought  before  commencing  a  project  which  relies  on  the  running  of  such  solar  farms.  While  a  system  like  ASEFS  was  predicated  on  the  existence  of  large  generators  (>  30MW)  which  have  a  requirement  to  produce  and  provide  a  forecast,  an  enabling  technology  such  as  solar  forecasting  is  not  tied  to  the  size  of  solar  generators.  Therefore  future  projects  could  be  written  in  a  more  generic  way,  namely  without  putting  too  much  emphasis  on  specific  sizes  of  solar  generators.  

Knowledge  gap  None  

Background  

Objectives  or  project  requirements  

The  ASEFS  operational  system  was  meant  to  provide  solar  forecasts  for  large-­‐scale  generators.  

Process  undertaken  

Development  of  the  ASEFS  system  was  carried  out  anyway,  but  test  solar  installations  had  to  be  relatively  quickly  set  up  in  order  to  test  the  system.  Lack  of  large-­‐scale  solar  farms  was  also  linked  to  the  unavailability  of  solar  forecasts  through  the  proposed  researcher  access.      

Page 43: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

 

43  

Lessons  Learnt  Report:  Unexpected  rapid  increase  in  rooftop  solar  installations  Project  Name:  Australian  Solar  Energy  Forecasting  System  

Knowledge  Category:   Regulatory  Knowledge  Type:   Planning  &  Development  approvals    Technology  Type:   Solar  PV  State/Territory:   National  

Key  learning  An  unexpected  rapid  increase  in  the  uptake  of  roof-­‐top  PV  has  been  creating  a  growing  problem  for  the  balancing  of  supply-­‐demand:  forecast  errors  have  already  been  experienced  in  regions  like  South  Australia  or  South  East  Queensland,  and  these  may  increasingly  contribute  to  severe  power  quality  (frequency)  issues.  This  externality  was  difficult  to  anticipate.  However,  it  only  affected  the  project  to  the  extent  that  more  emphasis  could  have  been  placed  on  targeting  this  issue  during  ASEFS,  perhaps  through  a  re-­‐planning  of  the  project.  

Implications  for  future  projects  In  a  fast  moving  industry  like  solar,  projects  need  to  have  the  flexibility  to  adapt  their  targets  to  unexpected  emerging  issues.  

Knowledge  gap  Better  knowledge  and  forecasting  tools  to  target  distributed  solar  power  could  be  developed.    

Background  

Objectives  or  project  requirements  

The  development  of  forecasting  tools  for  distributed  solar  power  was  set  as  a  small  portion  of  the  project  as  at  the  time  of  the  writing  of  the  proposal  roof-­‐top  PV  installations  were  at  a  much  lower  level  than  they  currently  are.    

Process  undertaken  

The  planned  work  on  forecasting  tools  for  distributed  solar  power  was  delivered  as  planned.  However,  given  the  surge  in  roof-­‐top  PV  a  project  re-­‐planning  to  focus  on  this  aspect  might  have  been  useful.    

Page 44: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

 

44  

Lessons  Learnt  Report:  Lack  of  solar  forecast  data  thorough  the  Researcher  Access  Project  Name:  Australian  Solar  Energy  Forecasting  System  

Knowledge  Category:   Technical  Knowledge  Type:   Technology    Technology  Type:   Solar  PV  State/Territory:   National  

Key  learning  Lack  of  large-­‐scale  solar  farms  led  to  the  unavailability  of  solar  forecast  data  through  the  proposed  researcher  access.  Attempts  were  made  to  obtain  these  data  anyway,  but  unsuccessfully.    

Implications  for  future  projects  The  way  in  which  solar  forecast  data  are  produced  and  stored  at  AEMO  may  be  done  in  a  more  flexible  way  and  also  independently  of  the  size  of  the  solar  farm  

Knowledge  gap  A  cost-­‐benefit  analysis  for  the  more  advanced  forecasting  techniques,  for  which  the  ASEFS  data  was  essential,  was  not  possible  but  should  still  be  carried  out  

Background  

Objectives  or  project  requirements  

Solar  forecast  data  through  Researcher  Access  were  essential  for  testing  the  potential  improvements  of  the  advanced  solar  forecasting  techniques  developed  during  the  project,  by  means  of  a  cost-­‐benefit  analysis.  

Process  undertaken  

Repeated  attempts  to  obtain  the  solar  forecast  data  offline  (namely  without  going  through  the  unavailable  Researcher  Access)  were  made  but  unsuccessful  (see  also  main  text)    

 

Page 45: Australian*SolarEnergy* ForecastingSystem* …...3! ExecutiveSummary* The!30Ymonth,7.6million,project!AustralianSolar!Energy!Forecasting!System!(ASEFS)!addressed!the ...

 

45  

Lessons  Learnt  Report:  Delays  in  signing  the  agreement  between  CSIRO  and  NREL  Project  Name:  Australian  Solar  Energy  Forecasting  System  

Knowledge  Category:   Technical  Knowledge  Type:   Human  Resources    Technology  Type:   Solar  PV  State/Territory:   Non-­‐state  specific  

Key  learning  The  signing  of  the  agreement  between  CSIRO  and  NREL,  a  subcontractor  to  CSIRO  in  the  project,  took  much  longer  than  anticipated.  Such  unexpected  delay,  due  to  the  complexity  of  the  two  organisations  involved,  led  to  both  lengthy  negotiations  and  delays  in  the  execution  of  the  project.  

Implications  for  future  projects  It  is  difficult  to  anticipate  legal  obstacles  in  specific  project  agreements  but  circulation  of  terms  and  conditions  ahead  of  the  planned  exchange  of  contracts  could  help  iron  out  potential  legal  issues  in  time  for  the  execution  of  the  project.  

Knowledge  gap  None  

Background  

Objectives  or  project  requirements  

The  agreement  between  CSIRO  and  NREL,  a  subcontractor  to  CSIRO  in  the  project,  should  have  been  signed  at  the  start  of  the  project.  The  ASEFS  project  commenced  on  7th  January  2013  and  it  took  over  a  year  for  this  agreement  to  be  signed.    

Process  undertaken  

Many  email  and  phone  communications,  including  lengthy  negotiations  had  been  necessary  in  order  to  reach  an  agreement  between  CSIRO  and  NREL.  As  of  June  2014,  however,  NREL  consistently  contributed  to  ASEFS,  as  have  all  other  partners.  Due  to  these  delays,  the  project  finished  in  June  2015,  hence  six  months  later  than  originally  planned.