Aula 24 - Cavitation

download Aula 24 - Cavitation

of 19

Transcript of Aula 24 - Cavitation

  • 8/17/2019 Aula 24 - Cavitation

    1/19

    Cavitation

    Contents: Occurence of cavitation in turbomachinery with

    liquids: movie Examples of Cavitation 

    Cavitation effects in turbomachinery performance Net Positive Suction Head (NPSH)

    Suction specific velocity

     Thoma’s Coefficient

    Exercises

  • 8/17/2019 Aula 24 - Cavitation

    2/19

    Cavitation

    Cavitation: evaporation, followed bycondensation (almost instantaneously)

    How to detect cavitation:

    Change in performance curves

    Visual observation of bubble formation

    Noise and vibrations

    Cavitation effects: Noise, vibration

    Material erosion

    Performance reduction (efficiency, etc.)

  • 8/17/2019 Aula 24 - Cavitation

    3/19

    Occurrence of Cavitation in pumps

    In the figure below p1

     is less than the atmosferic

    pressure. If p1 < pvap (T)  Evaporation

    However minimum pressure occurs inside the pump

     pmin < pvap (T)  Evaporation cavitation

    Pumps

    Pump

    Head loses in suction

    pipe

  • 8/17/2019 Aula 24 - Cavitation

    4/19

    Occurrence of Cavitation in pumps

    vap p p p p     1min

    to avoid cavitation

    Minimum

    Pressure

    Compression face

    Suction face

  • 8/17/2019 Aula 24 - Cavitation

    5/19

    Occurrence of Cavitation in pumps

      To avoid cavition:

    vap p p p   1   p p p vap   1

     g 

     g 

     p

     g 

     p

     g 

     g 

     p   vap

    22

    21

    211

          

    Piping System (H s ) Pump ( NPSH )

    p o  

    asp s   Z e g 

     g 

     p

     g 

     p

    2

    2

    101

        

     

      

       g 

     p Z e

     g  p   vapasp s

        0

     H  s > H  si 

    Pump

  • 8/17/2019 Aula 24 - Cavitation

    6/19

    Occurrence of Cavitation in pumps

    Suction Head ():

    it only depends on piping system  g 

     p

     g 

     g 

     p H   vap

     s    

    2

    211

    NPSH (also  critical value of ):it only depends of the pump 

     g 

     g 

     p

     H  NPSH   si 2

    2

    1

      

    Curves of H  si

     are given by the pump supplier:

     H  si = F(Q,N,D,   ,  , geometric parameters) 

  • 8/17/2019 Aula 24 - Cavitation

    7/19

    Occurrence of Cavitation in pumps

    NPSH - H  si 

    (it only depends on the

    pump) g 

     g 

     p H  si

    2

    2

    1

      

    Plots of H ,  and H  si for the pumporiginal diameter (260 mm) and

    after turning (“torneamento”) 

  • 8/17/2019 Aula 24 - Cavitation

    8/19

    Occurrence of Cavitation in turbines

    Now, head loses in the diffuser (part of the supply) areincluded in the NPSH definition

    No cavitation if

    H s > H si  

    Hydraulic Turbines

     Applying Bernoulli’s equation: 

  • 8/17/2019 Aula 24 - Cavitation

    9/19

    Occurrence of Cavitation

    NPSH:

    it only depends of the machine   g V 

     g 

     p H  si

    2

    2

    1

      

     H  si = F(Q,N,D,   ,  , geometrical parameters) 

     Applying dimensional analysis:  

      

     

      

    2

    3 , ND

     ND

    Q f  

     H 

     H  sii

    negligible Re 

    influence

    Critical Thoma´s

    Coefficient

    No cavitation if:   >  i  

    Thoma´s Coefficient   = H  s /H   only depends on piping system 

  • 8/17/2019 Aula 24 - Cavitation

    10/19

    Occurrence of Cavitation

    Suction specific velocity:   43 s gH 

    Q N S  

    Critical suction specific velocity

     

      

       343  ND

    Q F  gH 

    Q N S  si

    i

    No cavitation if S < S i 

    We can use S i or  i 

  • 8/17/2019 Aula 24 - Cavitation

    11/19

    Occurrence of Cavitation

    Critical suction specific velocity:

     

     

     

     

    3 ND

    Q

     f   H 

     H  sii 

    Turbomachines of same geometrical family have

    equal (S i)max and ( i )max 

    Critical Thoma´s Coefficient:

     

     

      

     

    343  ND

    Q F 

     gH 

    Q N S 

     si

    i

  • 8/17/2019 Aula 24 - Cavitation

    12/19

    Occurrence of Cavitation

    Reference values: Pumps: 2,5 < (S i)max = F () < 3,5 (S i)max = 3 

    Turbines: 3,5 < (S i)max = F () < 5,2 (S i)max = 4

  • 8/17/2019 Aula 24 - Cavitation

    13/19

    Occurrence of

    Cavitation

    PumpTurbine

  • 8/17/2019 Aula 24 - Cavitation

    14/19

    Problems 5 and 8Problems 5 and 8 – The pump, with the attached performance curves and a

    D=265 mm rotor, delivers a flow of 260 m3/h when installed in a given piping

    system (reservoirs open to the atmosphere and with 12 m head difference).It is intended to decrease the flow rate to 180 m3/h; 4 possible solutions for this

    are considered:

    a) Partially close discharge pipe valve;

    b) Adjustment of the rotation speed;

    c) Turning the rotor diameter (use given performance curves for rotor diametersless than 265mm);

    d) Installing a re-circulating circuit by connecting the pump outlet to its inlet in

    such a way that some pump flow recirculates and the flow in the main duct is

    the desired flow rate of 180 m3/h.

     Assuming fully turbulent flow at the pipe, find the pump power consumption and

    the maximum height above the upstream reservoir free-surface for each of the

    four possible control processes used to deliver 180m3/h to the downstream

    reservoir. Assume that atmospheric pressure applies at the free-surface of the two

    reservoirs and Zasp=0,5 m (for 180 m3/h), pvap=2,45 kPa and patm=101,3 kPa)

  • 8/17/2019 Aula 24 - Cavitation

    15/19

    Problems 5 and 8 – piping system characteristic

    017

    pump

    Piping system

    characteristics = 12 +  

    = 7.4 × 10− ℎ  

  • 8/17/2019 Aula 24 - Cavitation

    16/19

    Problems 5 and 8 a)  –  Valve adjustment

    1

    pump

    Power: =

    = 13646  

    Maximum height:

    ≤ 9.59 = 7.79 1.8

  • 8/17/2019 Aula 24 - Cavitation

    17/19

    Problems 5 and 8 b) –  Rotational speed

    adjustment

    2

    3Operation point (2):

    = 180 ℎ  

    = 14,4  

    Efficiency of point 2? = 80% 

    = 4.44 × 10− 

    Power: =

    = 8820  

    Maximum height: ≤ 9.59 = 8.12 

    = 1.47  

    Computed from same

    Thoma’s Coefficients between

    points 2 and 3

  • 8/17/2019 Aula 24 - Cavitation

    18/19

    Problems 5 and 8 c) –  Rotor diameter adjustment

    2

    Operation point (2):

    = 180 ℎ  

    = 14,4  

    Efficiency of point 2? = 75% 

    Power: =

    = 9408  

    Maximum height: ≤ 9.59 = 8.12 

    = 1.8  

  • 8/17/2019 Aula 24 - Cavitation

    19/19

    Problems 5 and 8 d)  –  Recirculation circuit

    4

    recirculation

    Operation point (4)?

    = 280 ℎ   = 14,4  

    = 68% 

    Power: = = 16142  

    Maximum height:

    ≤ 9.59 = 8.12 

    = 3.5