ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This...

34
Appendix A – ATtiny25/V Specification at 105°C This document contains information specific to devices operating at temperatures up to 105°C. Only deviations are covered in this appendix, all other information can be found in the complete datasheet. The complete datasheet can be found at www.atmel.com. 8-bit Microcontroller with 2K Bytes In-System Programmable Flash ATtiny25/V Appendix A Rev. 2586N–Appendix A–AVR–08/11

Transcript of ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This...

Page 1: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

8-bit Microcontroller with 2K Bytes In-SystemProgrammable Flash

ATtiny25/V

Appendix A

Rev. 2586N–Appendix A–AVR–08/11

Appendix A – ATtiny25/V Specification at 105°CThis document contains information specific to devices operating at temperatures upto 105°C. Only deviations are covered in this appendix, all other information can befound in the complete datasheet. The complete datasheet can be found atwww.atmel.com.

Page 2: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

1. Electrical Characteristics

1.1 Absolute Maximum Ratings*

1.2 DC Characteristics

Operating Temperature.................................. -55°C to +125°C *NOTICE: Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent dam-age to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Storage Temperature ..................................... -65°C to +150°C

Voltage on any Pin except RESETwith respect to Ground ................................-0.5V to VCC+0.5V

Voltage on RESET with respect to Ground......-0.5V to +13.0V

Maximum Operating Voltage ............................................ 6.0V

DC Current per I/O Pin ............................................... 40.0 mA

DC Current VCC and GND Pins................................ 200.0 mA

Table 1-1. DC Characteristics. TA = -40°C to +105°C

Symbol Parameter Condition Min. Typ.(1) Max. Units

VILInput Low-voltage, exceptXTAL1 and RESET pin

VCC = 1.8V - 2.4VVCC = 2.4V - 5.5V

-0.5-0.5

0.2VCC(3)

0.3VCC(3)

VV

VIHInput High-voltage, exceptXTAL1 and RESET pin

VCC = 1.8V - 2.4VVCC = 2.4V - 5.5V

0.7VCC(2)

0.6VCC(2)

VCC +0.5VCC +0.5

VV

VIL1Input Low-voltage, XTAL1 pin, External Clock Selected

VCC = 1.8V - 5.5V -0.5 0.1VCC(3) V

VIH1Input High-voltage, XTAL1 pin, External Clock Selected

VCC = 1.8V - 2.4VVCC = 2.4V - 5.5V

0.8VCC(2)

0.7VCC(2)

VCC +0.5VCC +0.5

VV

VIL2Input Low-voltage,RESET pin

VCC = 1.8V - 5.5V -0.5 0.2VCC(3) V

V

VIH2Input High-voltage,RESET pin

VCC = 1.8V - 5.5V 0.9VCC(2) VCC +0.5 V

VIL3Input Low-voltage,RESET pin as I/O

VCC = 1.8V - 2.4VVCC = 2.4V - 5.5V

-0.5-0.5

0.2VCC(3)

0.3VCC(3)

VV

VIH3Input High-voltage,RESET pin as I/O

VCC = 1.8V - 2.4VVCC = 2.4V - 5.5V

0.7VCC(2)

0.6VCC(2)

VCC +0.5VCC +0.5

VV

VOLOutput Low-voltage (4),Port B (except RESET) (6)

IOL = 10 mA, VCC = 5VIOL = 5 mA, VCC = 3V

0.60.5

VV

VOHOutput High-voltage (5),Port B (except RESET) (6)

IOH = -10 mA, VCC = 5VIOH = -5 mA, VCC = 3V

4.32.5

VV

IILInput LeakageCurrent I/O Pin

VCC = 5.5V, pin low(absolute value)

< 0.05 1 µA

IIHInput LeakageCurrent I/O Pin

VCC = 5.5V, pin high(absolute value)

< 0.05 1 µA

22586N–Appendix A–AVR–08/11

ATtiny25

Page 3: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

ATtiny25

Notes: 1. Typical values at 25°C.

2. “Min” means the lowest value where the pin is guaranteed to be read as high.

3. “Max” means the highest value where the pin is guaranteed to be read as low.

4. Although each I/O port can sink more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state conditions (non-transient), the following must be observed:1] The sum of all IOL, for all ports, should not exceed 60 mA.If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition.

5. Although each I/O port can source more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state conditions (non-transient), the following must be observed:1] The sum of all IOH, for all ports, should not exceed 60 mA.If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition.

6. The RESET pin must tolerate high voltages when entering and operating in programming modes and, as a consequence, has a weak drive strength as compared to regular I/O pins.

7. Values are with external clock using methods described in “Minimizing Power Consumption” on page 37. Power Reduction is enabled (PRR = 0xFF) and there is no I/O drive.

8. Brown-Out Detection (BOD) disabled.

RRST Reset Pull-up Resistor VCC = 5.5V, input low 30 60 kΩ

Rpu I/O Pin Pull-up Resistor VCC = 5.5V, input low 20 50 kΩ

ICC

Power Supply Current (7)

Active 1MHz, VCC = 2V 0.3 0.55 mA

Active 4MHz, VCC = 3V 1.5 2.5 mA

Active 8MHz, VCC = 5V 5 8 mA

Idle 1MHz, VCC = 2V 0.1 0.2 mA

Idle 4MHz, VCC = 3V 0.35 0.6 mA

Idle 8MHz, VCC = 5V 1.2 2 mA

Power-down mode (8)WDT enabled, VCC = 3V 4 20 µA

WDT disabled, VCC = 3V 0.2 10 µA

Table 1-1. DC Characteristics. TA = -40°C to +105°C (Continued)

Symbol Parameter Condition Min. Typ.(1) Max. Units

32586N–Appendix A–AVR–08/11

Page 4: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

1.3 Clock Characteristics

1.3.1 Calibrated Internal RC Oscillator AccuracyIt is possible to manually calibrate the internal oscillator to be more accurate than default factorycalibration. Please note that the oscillator frequency depends on temperature and voltage. Volt-age and temperature characteristics can be found in Figure 2-36 on page 28 and Figure 2-37 onpage 28.

Notes: 1. Accuracy of oscillator frequency at calibration point (fixed temperature and fixed voltage).

2. ATtiny25/V, only: 6.4 MHz in ATtiny15 Compatibility Mode.

3. Voltage range for ATtiny25V.

4. Voltage range for ATtiny25.

1.4 System and Reset Characteristics

Note: 1. Values are guidelines only.

Table 1-2. Calibration Accuracy of Internal RC Oscillator

CalibrationMethod Target Frequency VCC Temperature

Accuracy at given Voltage & Temperature (1)

FactoryCalibration

8.0 MHz (2) 3V 25°C ±10%

UserCalibration

Fixed frequency within:6 – 8 MHz

Fixed voltage within:1.8V - 5.5V (3)

2.7V - 5.5V (4)

Fixed temperature within:

-40°C to +105°C±1%

Table 1-3. Reset, Brown-out and Internal Voltage Characteristics

Symbol Parameter Condition Min (1) Typ (1) Max (1) Units

VRST RESET Pin Threshold Voltage VCC = 3V 0.2 VCC 0.9 VCC V

tRSTMinimum pulse width on RESET Pin

VCC = 3V 2.5 µs

VHYST Brown-out Detector Hysteresis 50 mV

tBODMin Pulse Width on Brown-out Reset

2 µs

VBGBandgap reference voltage

VCC = 5.5VTA = 25°C

1.0 1.1 1.2 V

tBGBandgap reference start-up time

VCC = 2.7VTA = 25°C

40 70 µs

IBGBandgap reference current consumption

VCC = 2.7VTA = 25°C

15 µA

42586N–Appendix A–AVR–08/11

ATtiny25

Page 5: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

ATtiny25

1.4.1 Enhanced Power-On ResetThe table below describes the characteristics of the power-on reset.

Note: 1. Values are guidelines, only

2. Threshold where device is released from reset when voltage is rising

3. The Power-on Reset will not work unless the supply voltage has been below VPOT (falling)

Table 1-4. Characteristics of Enhanced Power-On Reset. TA = -40°C to +105°C

Symbol Parameter Min (1) Typ (1) Max (1) Units

VPOR Release threshold of power-on reset (2) 1.1 1.4 1.7 V

VPOA Activation threshold of power-on reset (3) 0.6 1.3 1.7 V

SRON Power-On Slope Rate 0.01 V/ms

52586N–Appendix A–AVR–08/11

Page 6: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

1.5 ADC Characteristics – Preliminary

Note: 1. Values are guidelines only.

Table 1-5. ADC Characteristics, Single Ended Channels. TA = -40°C to +105°C

Symbol Parameter Condition Min Typ Max Units

Resolution 10 Bits

Absolute accuracy(Including INL, DNL, andQuantization, Gain andOffset errors)

VREF = 4V, VCC = 4V,ADC clock = 200 kHz

2 LSB

VREF = 4V, VCC = 4V,ADC clock = 1 MHz

3 LSB

VREF = 4V, VCC = 4V,ADC clock = 200 kHz

Noise Reduction Mode1.5 LSB

VREF = 4V, VCC = 4V,ADC clock = 1 MHzNoise Reduction Mode

2.5 LSB

Integral Non-linearity (INL)(Accuracy after offset and gain calibration)

VREF = 4V, VCC = 4V,ADC clock = 200 kHz

1 LSB

Differential Non-linearity (DNL)VREF = 4V, VCC = 4V,ADC clock = 200 kHz

0.5 LSB

Gain ErrorVREF = 4V, VCC = 4V,ADC clock = 200 kHz

2.5 LSB

Offset ErrorVREF = 4V, VCC = 4V,ADC clock = 200 kHz

1.5 LSB

Conversion Time Free Running Conversion 14 280 µs

Clock Frequency 50 1000 kHz

VIN Input Voltage GND VREF V

Input Bandwidth 38.4 kHz

AREF External Reference Voltage 2.0 VCC V

VINT

Internal Voltage Reference 1.0 1.1 1.2 V

Internal 2.56V Reference (1) VCC > 3.0V 2.3 2.56 2.8 V

RREF 32 kΩ

RAIN Analog Input Resistance 100 MΩ

ADC Output 0 1023 LSB

62586N–Appendix A–AVR–08/11

ATtiny25

Page 7: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

ATtiny25

Note: 1. Values are guidelines only.

Table 1-6. ADC Characteristics, Differential Channels (Unipolar Mode). TA = -40°C to +105°C

Symbol Parameter Condition Min Typ Max Units

ResolutionGain = 1x 10 Bits

Gain = 20x 10 Bits

Absolute accuracy(Including INL, DNL, and Quantization, Gain and Offset Errors)

Gain = 1xVREF = 4V, VCC = 5VADC clock = 50 - 200 kHz

10.0 LSB

Gain = 20xVREF = 4V, VCC = 5VADC clock = 50 - 200 kHz

20.0 LSB

Integral Non-Linearity (INL)(Accuracy after Offset and Gain Calibration)

Gain = 1xVREF = 4V, VCC = 5VADC clock = 50 - 200 kHz

4.0 LSB

Gain = 20xVREF = 4V, VCC = 5VADC clock = 50 - 200 kHz

10.0 LSB

Gain ErrorGain = 1x 10.0 LSB

Gain = 20x 15.0 LSB

Offset Error

Gain = 1xVREF = 4V, VCC = 5VADC clock = 50 - 200 kHz

3.0 LSB

Gain = 20xVREF = 4V, VCC = 5VADC clock = 50 - 200 kHz

4.0 LSB

Conversion Time Free Running Conversion 70 280 µs

Clock Frequency 50 200 kHz

VIN Input Voltage GND VCC V

VDIFF Input Differential Voltage VREF/Gain V

Input Bandwidth 4 kHz

AREF External Reference Voltage 2.0 VCC - 1.0 V

VINT

Internal Voltage Reference 1.0 1.1 1.2 V

Internal 2.56V Reference (1) VCC > 3.0V 2.3 2.56 2.8 V

RREF Reference Input Resistance 32 kΩ

RAIN Analog Input Resistance 100 MΩ

ADC Conversion Output 0 1023 LSB

72586N–Appendix A–AVR–08/11

Page 8: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

Note: 1. Values are guidelines only.

Table 1-7. ADC Characteristics, Differential Channels (Bipolar Mode). TA = -40°C to +105°C

Symbol Parameter Condition Min Typ Max Units

ResolutionGain = 1x 10 Bits

Gain = 20x 10 Bits

Absolute accuracy(Including INL, DNL, and Quantization, Gain and Offset Errors)

Gain = 1xVREF = 4V, VCC = 5VADC clock = 50 - 200 kHz

8.0 LSB

Gain = 20xVREF = 4V, VCC = 5VADC clock = 50 - 200 kHz

8.0 LSB

Integral Non-Linearity (INL)(Accuracy after Offset and Gain Calibration)

Gain = 1xVREF = 4V, VCC = 5VADC clock = 50 - 200 kHz

4.0 LSB

Gain = 20xVREF = 4V, VCC = 5VADC clock = 50 - 200 kHz

5.0 LSB

Gain ErrorGain = 1x 4.0 LSB

Gain = 20x 5.0 LSB

Offset Error

Gain = 1xVREF = 4V, VCC = 5VADC clock = 50 - 200 kHz

3.0 LSB

Gain = 20xVREF = 4V, VCC = 5VADC clock = 50 - 200 kHz

4.0 LSB

Conversion Time Free Running Conversion 70 280 µs

Clock Frequency 50 200 kHz

VIN Input Voltage GND VCC V

VDIFF Input Differential Voltage VREF/Gain V

Input Bandwidth 4 kHz

AREF External Reference Voltage 2.0 VCC - 1.0 V

VINT

Internal Voltage Reference 1.0 1.1 1.2 V

Internal 2.56V Reference (1) VCC > 3.0V 2.3 2.56 2.8 V

RREF Reference Input Resistance 32 kΩ

RAIN Analog Input Resistance 100 MΩ

ADC Conversion Output -512 511 LSB

82586N–Appendix A–AVR–08/11

ATtiny25

Page 9: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

ATtiny25

1.6 Serial Programming Characteristics

Figure 1-1. Serial Programming Waveforms

Figure 1-2. Serial Programming Timing

Note: 1. 2 tCLCL for fck < 12 MHz, 3 tCLCL for fck >= 12 MHz

Table 1-8. Serial Programming Characteristics, TA = -40°C to +105°C, VCC = 1.8 - 5.5V (Unless Otherwise Noted)

Symbol Parameter Min Typ Max Units

1/tCLCL Oscillator Frequency (VCC = 1.8 - 5.5V) 0 4 MHz

tCLCL Oscillator Period (VCC = 1.8 - 5.5V) 250 ns

1/tCLCL Oscillator Frequency (VCC = 2.7 - 5.5V) 0 10 MHz

tCLCL Oscillator Period (VCC = 2.7 - 5.5V) 100 ns

1/tCLCL Oscillator Frequency (VCC = 4.5V - 5.5V) 0 20 MHz

tCLCL Oscillator Period (VCC = 4.5V - 5.5V) 50 ns

tSHSL SCK Pulse Width High 2 tCLCL* ns

tSLSH SCK Pulse Width Low 2 tCLCL* ns

tOVSH MOSI Setup to SCK High tCLCL ns

tSHOX MOSI Hold after SCK High 2 tCLCL ns

tSLIV SCK Low to MISO Valid 100 ns

MSB

MSB

LSB

LSB

SERIAL CLOCK INPUT(SCK)

SERIAL DATA INPUT (MOSI)

(MISO)

SAMPLE

SERIAL DATA OUTPUT

MOSI

MISO

SCK

tOVSH

tSHSL

tSLSHtSHOX

tSLIV

92586N–Appendix A–AVR–08/11

Page 10: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

2. Typical CharacteristicsThe data contained in this section is largely based on simulations and characterization of similardevices in the same process and design methods. Thus, the data should be treated as indica-tions of how the part will behave.

The following charts show typical behavior. These figures are not tested during manufacturing.All current consumption measurements are performed with all I/O pins configured as inputs andwith internal pull-ups enabled. A sine wave generator with rail-to-rail output is used as clocksource.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage, operatingfrequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient tempera-ture. The dominating factors are operating voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as CL*VCC*f whereCL = load capacitance, VCC = operating voltage and f = average switching frequency of I/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaranteed tofunction properly at frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down mode with Watchdog Timerenabled and Power-down mode with Watchdog Timer disabled represents the differential cur-rent drawn by the Watchdog Timer.

2.1 Active Supply Current

Figure 2-1. Active Supply Current vs. VCC (Internal RC oscillator, 8 MHz)

ACTIVE SUPPLY CURRENT vs. VCCINTERNAL RC OSCILLATOR, 8 MHz

0

1

2

3

4

5

6

7

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I CC (m

A)

25 °C85 °C

105 °C

-40 °C

102586N–Appendix A–AVR–08/11

ATtiny25

Page 11: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

ATtiny25

Figure 2-2. Active Supply Current vs. VCC (Internal RC Oscillator, 1 MHz)

Figure 2-3. Active Supply Current vs. VCC (Internal RC Oscillator, 128 kHz)

25 °C85 °C

105 °C

-40 °C

ACTIVE SUPPLY CURRENT vs. VCCINTERNAL RC OSCILLATOR, 1 MHz

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I CC (m

A)

ACTIVE SUPPLY CURRENT vs. VCCINTERNAL RC OSCILLATOR, 128 KHz

0

0,05

0,1

0,15

0,2

0,25

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I CC (m

A)

25 °C

85 °C105 °C

-40 °C

112586N–Appendix A–AVR–08/11

Page 12: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

2.2 Idle Supply Current

Figure 2-4. Idle Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)

Figure 2-5. Idle Supply Current vs. VCC (Internal RC Oscilllator, 1 MHz)

IDLE SUPPLY CURRENT vs. VCCINTERNAL RC OSCILLATOR, 8 MHz

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I CC (m

A)

25 °C85 °C

105 °C

-40 °C

25 °C85 °C

105 °C

-40 °C

IDLE SUPPLY CURRENT vs. VCCINTERNAL RC OSCILLATOR, 1 MHz

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I CC (m

A)

122586N–Appendix A–AVR–08/11

ATtiny25

Page 13: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

ATtiny25

Figure 2-6. Idle Supply Current vs. VCC (Internal RC Oscillator, 128 kHz)

2.3 Power-down Supply Current

Figure 2-7. Power-down Supply Current vs. VCC (Watchdog Timer Disabled)

25 °C

85 °C

105 °C-40 °C

IDLE SUPPLY CURRENT vs. VCCINTERNAL RC OSCILLATOR, 128 kHz

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I CC (m

A)

POWER-DOWN SUPPLY CURRENT vs. VCCWATCHDOG TIMER DISABLED

105 °C

85 °C

25 °C-40 °C

0

0,5

1

1,5

2

2,5

3

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I CC (u

A)

132586N–Appendix A–AVR–08/11

Page 14: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

Figure 2-8. Power-down Supply Current vs. VCC (Watchdog Timer Enabled)

2.4 Pin Pull-up

Figure 2-9. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 1.8V)

105 °C85 °C

25 °C-40 °C

POWER-DOWN SUPPLY CURRENT vs. VCCWATCHDOG TIMER ENABLED

0

2

4

6

8

10

12

14

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I CC (u

A)

I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE

0

10

20

30

40

50

60

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2

VOP (V)

VCC = 1.8V

I OP (u

A)

25 °C

85 °C105 °C

-40 °C

142586N–Appendix A–AVR–08/11

ATtiny25

Page 15: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

ATtiny25

Figure 2-10. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 2.7V)

Figure 2-11. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 5V)

VCC = 2.7V

25 °C85 °C

105 °C-40 °C

I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE

0

10

20

30

40

50

60

70

80

35,225,115,00

VOP (V)

I OP (u

A)

VCC = 5V

25 °C85 °C

105 °C-40 °C

I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE

0

20

40

60

80

100

120

140

160

6543210

VOP (V)

I OP (u

A)

152586N–Appendix A–AVR–08/11

Page 16: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

Figure 2-12. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 1.8V)

Figure 2-13. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 2.7V)

25 °C

85 °C105 °C

-40 °C

RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGEVCC = 1.8V

0

5

10

15

20

25

30

35

40

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2

VRESET (V)

I RE

SE

T (u

A)

25 °C

85 °C105 °C

-40 °C

RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGEVCC =2.7V

0

10

20

30

40

50

60

0 0,5 1 1,5 2 2,5 3

VRESET (V)

I RE

SE

T (u

A)

162586N–Appendix A–AVR–08/11

ATtiny25

Page 17: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

ATtiny25

Figure 2-14. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V)

2.5 Pin Driver Strength

Figure 2-15. I/O Pin Output Voltage vs. Sink Current (VCC = 3V)

25 °C

85 °C105 °C

-40 °C

RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGEVCC = 5V

0

20

40

60

80

100

120

0 1 2 3 4 5 6

VRESET (V)

I RE

SE

T (u

A)

I/O PIN OUTPUT VOLTAGE vs. SINK CURRENTVCC = 3V

105 °C

85 °C

25 °C

-40 °C

0

0,2

0,4

0,6

0,8

1

1,2

5202510150

IOL (mA)

V OL (

V)

172586N–Appendix A–AVR–08/11

Page 18: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

Figure 2-16. I/O Pin Output Voltage vs. Sink Current (VCC = 5V)

Figure 2-17. I/O Pin Output Voltage vs. Source Current (VCC = 3V)

I/O PIN OUTPUT VOLTAGE vs. SINK CURRENTVCC = 5V

105 °C

85 °C

25 °C

-40 °C

0

0,1

0,2

0,3

0,4

0,5

0,6

5202510150

IOL (mA)

V OL (

V)

I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENTVCC = 3V

105 °C85 °C25 °C

-40 °C

0

0,5

1

1,5

2

2,5

3

3,5

5202510150

IOH (mA)

V OH (V

)

182586N–Appendix A–AVR–08/11

ATtiny25

Page 19: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

ATtiny25

Figure 2-18. I/O Pin Output Voltage vs. Source Current (VCC = 5V)

Figure 2-19. Reset Pin Output Voltage vs. Sink Current (VCC = 3V)

I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENTVCC = 5V

105 °C85 °C

25 °C

-40 °C

4,3

4,4

4,5

4,6

4,7

4,8

4,9

5

5202510150

IOH (mA)

V OH (V

)

RESET AS I/O PIN OUTPUT VOLTAGE vs. SINK CURRENTVCC = 3V

105 °C

85 °C

25 °C

-40 °C

0

0,5

1

1,5

35,225,115,00

IOL (mA)

V OL (

V)

192586N–Appendix A–AVR–08/11

Page 20: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

Figure 2-20. Reset Pin Output Voltage vs. Sink Current (VCC = 5V)

Figure 2-21. Reset Pin Output Voltage vs. Source Current (VCC = 3V)

RESET AS I/O PIN OUTPUT VOLTAGE vs. SINK CURRENTVCC = 5V

105 °C85 °C

25 °C

-40 °C

0

0,2

0,4

0,6

0,8

1

35,225,115,00

IOL (mA)

V OL (

V)

25 °C85 °C

105 °C

-40 °C

RESET AS I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENTVCC = 3V

0

0,5

1

1,5

2

2,5

3

3,5

25,115,00

IOH (mA)

V OH (V

)

202586N–Appendix A–AVR–08/11

ATtiny25

Page 21: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

ATtiny25

Figure 2-22. Reset Pin Output Voltage vs. Source Current (VCC = 5V)

2.6 Pin Threshold and Hysteresis

Figure 2-23. I/O Pin Input Threshold Voltage vs. VCC (VIH, IO Pin Read as ‘1’)

25 °C85 °C

105 °C

-40 °C

RESET AS I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENTVCC = 5V

2

2,5

3

3,5

4

4,5

5

25,115,00

IOH (mA)

V OH (V

)

I/O PIN INPUT THRESHOLD VOLTAGE vs. VCCVIH, IO PIN READ AS '1'

0

0,5

1

1,5

2

2,5

3

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

Thre

shol

d (V

)

25 °C85 °C

105 °C

-40 °C

212586N–Appendix A–AVR–08/11

Page 22: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

Figure 2-24. I/O Pin Input Threshold Voltage vs. VCC (VIL, IO Pin Read as ‘0’)

Figure 2-25. I/O Pin Input Hysteresis vs. VCC

25 °C85 °C

105 °C

-40 °C

I/O PIN INPUT THRESHOLD VOLTAGE vs. VCCVIL, IO PIN READ AS '0'

0

0,5

1

1,5

2

2,5

3

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

Thre

shol

d (V

)

I/O PIN INPUT HYSTERESIS vs. VCC

105 °C85 °C

25 °C

-40 °C

0

0,1

0,2

0,3

0,4

0,5

0,6

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

Inpu

t Hys

tere

sis

(V)

222586N–Appendix A–AVR–08/11

ATtiny25

Page 23: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

ATtiny25

Figure 2-26. Reset Input Threshold Voltage vs. VCC (VIH, IO Pin Read as ‘1’)

Figure 2-27. Reset Input Threshold Voltage vs. VCC (VIL, IO Pin Read as ‘0’)

RESET INPUT THRESHOLD VOLTAGE vs. VCCVIH, IO PIN READ AS '1'

105 °C85 °C25 °C

-40 °C

0

0,5

1

1,5

2

2,5

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

Thre

shol

d (V

)

RESET INPUT THRESHOLD VOLTAGE vs. VCCVIL, IO PIN READ AS '0'

0

0,5

1

1,5

2

2,5

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

Thre

shol

d (V

)

25 °C85 °C

105 °C

-40 °C

232586N–Appendix A–AVR–08/11

Page 24: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

Figure 2-28. Reset Pin Input Hysteresis vs. VCC

2.7 BOD Threshold and Analog Comparator Offset

Figure 2-29. BOD Threshold vs. Temperature (BOD Level is 4.3V)

RESET PIN INPUT HYSTERESIS vs. VCC

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

Inpu

t Hys

tere

sis

(V)

25 °C

85 °C105 °C

-40 °C

BOD THRESHOLDS vs. TEMPERATUREBODLEVEL = 4.3V

Rising VCC

Falling VCC

4,26

4,28

4,3

4,32

4,34

4,36

4,38

4,4

-40 -20 0 20 40 60 80 100 120Temperature (C)

Thre

shol

d (V

)

242586N–Appendix A–AVR–08/11

ATtiny25

Page 25: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

ATtiny25

Figure 2-30. BOD Threshold vs. Temperature (BOD Level is 2.7V)

Figure 2-31. BOD Threshold vs. Temperature (BOD Level is 1.8V)

BOD THRESHOLDS vs. TEMPERATUREBODLEVEL = 2.7V

Rising VCC

Falling VCC

2,68

2,7

2,72

2,74

2,76

2,78

2,8

-40 -20 0 20 40 60 80 100 120

Temperature (C)

Thre

shol

d (V

)

BOD THRESHOLDS vs. TEMPERATUREBODLEVEL = 1.8V

Rising VCC

Falling VCC

1,795

1,8

1,805

1,81

1,815

1,82

1,825

1,83

1,835

1,84

1,845

1,85

-40 -20 0 20 40 60 80 100 120

Temperature (C)

Thre

shol

d (V

)

252586N–Appendix A–AVR–08/11

Page 26: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

Figure 2-32. Bandgap Voltage vs. Supply Voltage

Figure 2-33. Bandgap Voltage vs. Temperature

BANDGAP VOLTAGE vs. VCC

1

1,02

1,04

1,06

1,08

1,1

1,12

1,14

1,16

1,18

1,2

1,5 2 2,5 3 3,5 4 4,5 5 5,5

Vcc (V)

Band

gap

Volta

ge (V

)

85 °C105 °C

25 °C

-40 °C

BANDGAP VOLTAGE vs. Temperature

5 V

3 V1.8 V

1

1,02

1,04

1,06

1,08

1,1

1,12

1,14

1,16

1,18

1,2

-40 -20 0 20 40 60 80 100 120

Temperature

Band

gap

Volta

ge (V

)

262586N–Appendix A–AVR–08/11

ATtiny25

Page 27: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

ATtiny25

2.8 Internal Oscillator Speed

Figure 2-34. Watchdog Oscillator Frequency vs. VCC

Figure 2-35. Watchdog Oscillator Frequency vs. Temperature

WATCHDOG OSCILLATOR FREQUENCY vs. VCC

105 °C

85 °C

25 °C

-40 °C

0,11

0,112

0,114

0,116

0,118

0,12

0,122

0,124

0,126

0,128

2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

F RC (M

Hz)

WATCHDOG OSCILLATOR FREQUENCY vs. TEMPERATURE

5.5 V4.0 V3.3 V2.7 V

1.8 V

0,104

0,106

0,108

0,11

0,112

0,114

0,116

0,118

0,12

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120Temperature

FRC

(MH

z)

272586N–Appendix A–AVR–08/11

Page 28: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

Figure 2-36. Calibrated 8 MHz RC Oscillator Frequency vs. VCC

Figure 2-37. Calibrated 8 MHz RC Oscillator Frequency vs. Temperature

105 °C85 °C

25 °C

-40 °C

CALIBRATED 8 MHz RC OSCILLATOR FREQUENCY vs. VCC

7400000

7500000

7600000

7700000

7800000

7900000

8000000

8100000

8200000

8300000

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

F RC (H

z)

CALIBRATED 8 MHz RC OSCILLATOR FREQUENCY vs. TEMPERATURE

5.0 V3.0 V

1.8 V

7400000

7500000

7600000

7700000

7800000

7900000

8000000

8100000

8200000

8300000

-60 -40 -20 0 20 40 60 80 100 120

Temperature

F RC (H

z)

282586N–Appendix A–AVR–08/11

ATtiny25

Page 29: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

ATtiny25

Figure 2-38. Calibrated 8 MHz RC Oscillator Frequency vs. OSCCAL Value

2.9 Current Consumption of Peripheral Units

Figure 2-39. Brownout Detector Current vs. VCC

25 °C85 °C

105 °C

-40 °C

CALIBRATED 8.0MHz RC OSCILLATOR FREQUENCY vs. OSCCAL VALUE

0

2

4

6

8

10

12

14

16

18

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

OSCCAL (X1)

F RC (M

Hz)

BROWNOUT DETECTOR CURRENT vs. VCCBOD level = 1.8V

105 °C85 °C

25 °C-40 °C

0

5

10

15

20

25

30

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I CC (u

A)

292586N–Appendix A–AVR–08/11

Page 30: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

Figure 2-40. ADC Current vs. VCC (AREF = AVCC)

Figure 2-41. Analog Comparator Current vs. VCC

ADC CURRENT vs. VCCAREF = AVCC

105 °C85 °C25 °C

-40 °C

0

0,05

0,1

0,15

0,2

0,25

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I CC (m

A)

105 °C85 °C

25 °C-40 °C

ANALOG COMPARATOR CURRENT vs. VCC

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I CC (m

A)

302586N–Appendix A–AVR–08/11

ATtiny25

Page 31: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

ATtiny25

Figure 2-42. Programming Current vs. VCC

2.10 Current Consumption in Reset and Reset Pulsewidth

Figure 2-43. Minimum Reset Pulse Width vs. VCC

PROGRAMMING CURRENT vs. VccExt Clk

105 °C85 °C

25 °C

-40 °C

0

1

2

3

4

5

6

7

8

9

10

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I CC (m

A)

MINIMUM RESET PULSE WIDTH vs. VCC

0

500

1000

1500

2000

2500

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

Pul

sew

idth

(ns)

25 °C85 °C

105 °C

-40 °C

312586N–Appendix A–AVR–08/11

Page 32: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

3. Ordering Information

Notes: 1. Code indicators:

– N: matte tin– R: tape & reel

2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazard-ous Substances (RoHS).

Speed (MHz) Power Supply Ordering Code(1) Package(2) Operational Range

10 1.8 - 5.5V

ATtiny25V-10SNATtiny25V-10SNRATtiny25V-10SSNATtiny25V-10SSNR

8S28S2S8S1S8S1

Industrial(-40°C to +105°C)

20 2.7 - 5.5V

ATtiny25-20SNATtiny25-20SNRATtiny25-20SSNATtiny25-20SSNR

8S28S2S8S1S8S1

Industrial(-40°C to +105°C)

Package Type

8S2 8-lead, 0.200" Wide, Plastic Gull-Wing Small Outline (EIAJ SOIC)

S8S1 8-lead, 0.150" Wide, Plastic Gull-Wing Small Outline (JEDEC SOIC)

322586N–Appendix A–AVR–08/11

ATtiny25

Page 33: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

ATtiny25

4. Revision History

Revision No. History

2586A–Appendix A–AVR–06/10 Initial revision

2586B–Appendix A–AVR–07/10 Added Ordering Codes -SN and -SNR (package 8S2)

2586N–Appendix A–AVR–08/11 Removed “Preliminary” status, updated contact information

332586N–Appendix A–AVR–08/11

Page 34: ATtiny25/V - Appendix A - Microchip TechnologyAppendix A – ATtiny25/V Specification at 105 C This document contains information specific to devices operating at temperatures up to

2586N–Appendix A–AVR–08/11

Headquarters International

Atmel Corporation2325 Orchard ParkwaySan Jose, CA 95131USATel: (+1)(408) 441-0311Fax: (+1)(408) 487-2600

Atmel Asia LimitedUnit 01-5 & 16, 19FBEA Tower, Millennium City 5418 Kwun Tong RoadKwun Tong, KowloonHONG KONGTel: (+852) 2245-6100Fax: (+852) 2722-1369

Atmel Munich GmbHBusiness CampusParkring 4D-85748 Garching b. MunichGERMANYTel: (+49) 89-31970-0 Fax: (+49) 89-3194621

Atmel Japan9F, Tonetsu Shinkawa Bldg.1-24-8 ShinkawaChuo-ku, Tokyo 104-0033JAPANTel: (+81)(3) 3523-3551Fax: (+81)(3) 3523-7581

Product Contact

Web Sitewww.atmel.com

Technical [email protected]

Sales Contactwww.atmel.com/contacts

Literature Requestswww.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to anyintellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORYWARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULARPURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OFTHE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes norepresentations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specificationsand product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically providedotherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for useas components in applications intended to support or sustain life.

© 2011 Atmel Corporation. All rights reserved.

Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other termsand product names may be trademarks of others.