Atomic Physics Lecture PPT Slides 1_8

download Atomic Physics Lecture PPT Slides 1_8

of 53

Transcript of Atomic Physics Lecture PPT Slides 1_8

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    1/141

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    2/141

    Oxford Physics: 3rd Year, Atomic Physics

    • Lecture notes

    • Lecture slides

    • Problem sets

     All available on Physics web site:

    http:www.physics.ox.ac.uk/users/ewart/index.htm

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    3/141

    Oxford Physics: 3rd Year, Atomic Physics

    Atomic Physics:

    • Astrophysics• Plasma Physics

    • Condensed Matter 

    • Atmospheric Physics

    • Chemistry

    • Biology

    Technology• Street lamps

    • Lasers

    • Magnetic Resonance Imaging• Atomic Clocks

    • Satellite navigation: GPS

    • etc

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    4/141

     Astrophysics

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    5/141

    Condensed

    Matter 

    Zircon mineral crystal

    C60 Fullerene

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    6/141

    Snow crystal

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    7/141

    Lasers

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    8/141

    Biology

    DNA strand

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    9/141

    Oxford Physics: 3rd Year, Atomic Physics

    • How we study atoms:

     – emission and absorption of light

     – spectral lines

    • Atomic orders of magnitude• Basic structure of atoms

     – approximate electric field inside atoms

    Lecture 1

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    10/141

    Oxford Physics: 3rd Year, Atomic Physics

    ψ1 ψ2

    ψ( ) = +t ψ ψ1 2

    IΨ( )t I2

    Ψ( )t Ψ( τ)t+

    Oscillating charge cloud: Electric dipole

    I IΨ( + τ)t2

    Atomic radiation

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    11/141

    Oxford Physics: 3rd Year, Atomic Physics

    Spectral Line Broadening

    Homogeneous e.g.

    Lifetime (Natural)

    Collisional (Pressure)

    Inhomogeneous e.g.

    Doppler (Atomic motion)

    Crystal Fields

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    12/141

    Oxford Physics: 3rd Year, Atomic Physics

    Lifetime (natural) broadening

     N( )t  I( )ω

    Time, t  frequency, ω

    Intensity spectrumNumber of excited atoms

    Exponential decay Lorentzian lineshape

    Electric field amplitude 

    Fourier

    Transform 

    E(t) 

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    13/141

    Oxford Physics: 3rd Year, Atomic Physics

    Lifetime (natural) broadening

     N( )t  I( )ω

    Time, t  frequency, ω

    Intensity spectrumNumber of excited atoms

    Exponential decay Lorentzian lineshape

    Electric field amplitude 

    E(t) 

    `τ ~ 10-8

    s `Δν ~ 108

    Hz

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    14/141

    Oxford Physics: 3rd Year, Atomic Physics

    Collision (pressure) broadening

     N( )t  I( )ω

    Time, t  frequency, ω

    Intensity spectrumNumber of uncollided atoms

    Exponential decay Lorentzian lineshape

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    15/141

    Oxford Physics: 3rd Year, Atomic Physics

    Collision (pressure) broadening

     N( )t  I( )ω

    Time,t 

    frequency, ω

    Intensity spectrumNumber of uncollided atoms

    Exponential decay Lorentzian lineshape

    `τ c ~ 10-10

    s `Δν ~ 1010

    Hz

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    16/141

    Oxford Physics: 3rd Year, Atomic Physics

     N(v) I( )ω

    atomic speed, v frequency, ω

    Doppler broadeningDistribution of atomic speed

    Maxwell-Boltzmanndistribution

    Gaussian lineshape

    Doppler (atomic motion) broadening

    ` Typical Δν ~ 109 Hz

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    17/141

    Oxford Physics: 3rd Year, Atomic Physics

    Atomic orders of magnitude

     Atomic energy: 10-19 J → ~2 eV

    Thermal energy:1

    /40 eVIonization energy, H: 13.6 eV

    109,737 cm-1

     Atomic size, Bohr radius: 5.3 x 10-11m

    Fine structure constant, α = v/c: 1/137Bohr magneton, μ B: 9.27 x 10

    -24 JT-1

    = Rydberg Constant 

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    18/141

    Oxford Physics: 3rd Year, Atomic Physics

     r

    U(r)

    1/r

    ~Z/r

    “Actual”

     Potential 

    The

    CentralField

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    19/141

    Oxford Physics: 3rd Year, Atomic Physics

    ~Z

    Zeff 

    1

     Radial position, r 

    Important

    region

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    20/141

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    21/141

    Lecture 2• The Central Field Approximation:

     – physics of wave functions (Hydrogen)

    • Many-electron atoms

     – atomic structures and the Periodic Table

    • Energy levels – deviations from hydrogen-like energy levels

     – finding the energy levels; the quantum defect

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    22/141

    Oxford Physics: 3rd Year, Atomic Physics

    Schrödinger Equation (1-electron atom)

    Hamiltionian for many-electron atom:

    Individual electron potential in field of nucleus 

    Electron-electron interaction 

    This prevents separation into

    Individual electron equations

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    23/141

    Oxford Physics: 3rd Year, Atomic Physics

    Central potential in Hydrogen:

    V(r)~1/r,

    separation of ψ into radial and angular functions:

    ψ = R(r)Y 

    m

    l ( θ,φ)χ( m s )

    Therefore we seek a potential for multi-electron atom

    that allows separation intoindividual electron wave-functions of this form

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    24/141

    Oxford Physics: 3rd Year, Atomic Physics

    Electron – Electron interaction term:

    Treat this as composed of two contributions:

    (a)a centrally directed part(b)a non-central Residual Electrostatic part

    +

    e-

    e

    -

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    25/141

    Oxford Physics: 3rd Year, Atomic Physics

    Hamiltonian for Central Field Approximation

     H 1 = residual electrostatic interaction

     Perturbation Theory Approximation:

     H 1

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    26/141

    Oxford Physics: 3rd Year, Atomic Physics

     Zero order Schrödinger Equation: H 0 ψ = Ε 0 ψ 

     H 0 is spherically symmetric so equation is separable -

    solution for individual electrons:

    Radial Angular Spin 

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    27/141

    Oxford Physics: 3rd Year, Atomic Physics

    Central Field Approximation:

    What form does U(r i ) take?

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    28/141

    +

    Hydrogen atomZ+

    --

    --

    -

    --

    Many-electron atom

    Z+Z+

    -

    -

    -

    -

    --

    Z+

    Z protons+ (Z – 1) electrons

    U(r) ~ 1/r 

    Z protons

    U(r) ~ Z/r 

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    29/141

    Oxford Physics: 3rd Year, Atomic Physics

     r

    U(r)

    1/r

    ~Z/r

    “Actual”

     Potential 

    The

    CentralField

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    30/141

    Oxford Physics: 3rd Year, Atomic Physics

    ~Z

    Zeff 

    1

     Radial position, r 

    Important

    region

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    31/141

    Oxford Physics: 3rd Year, Atomic Physics

    Finding the Central Field

    • “Guess” form of U(r)

    • Solve Schrödinger eqn.→ Approx ψ .

    • Use approx ψ to find charge distribution

    • Calculate Uc(r) from this charge distribution

    • Compare Uc(r) with U(r)• Iterate until Uc(r) = U(r)

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    32/141

    Oxford Physics: 3rd Year, Atomic Physics

    Energy eigenvalues for Hydrogen:

    l = 0 1 2

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    33/141

    Oxford Physics: 3rd Year, Atomic Physics1

    2

    3

    4

    n

    Energy

    -13.6 eV

    0

    l = 0 1 2s p d

    H Energy leveldiagram

    Note degeneracy in l 

    Revision of Hydrogen solutions:

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    34/141

    Oxford Physics: 3rd Year, Atomic Physics

    Revision of Hydrogen solutions:

    Product wavefunction:

    Spatial x Angular function

    Normalization

    : Eigenfunctions of angular momentum operators

    Eigenvalues

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    35/141

    Oxford Physics: 3rd Year, Atomic Physics

    |Y 1+( )|θ,φ 2|Y 1

    0( )|θ,φ

    2

    Angular momentum orbitals

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    36/141

    Oxford Physics: 3rd Year, Atomic Physics

    |Y 1+( )|θ,φ 2|Y 1

    0( )|θ,φ

    2

    Angular momentum orbitals

    Spherically symmetric charge cloud with filled shell 

    Radial wavefunctions

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    37/141

    Oxford Physics: 3rd Year, Atomic Physics

    2 4 6 2 4 6 8 10

    2 4 6 8 10 20

     Zr a /  o  Zr a /  o

     Zr a /  o

    Ground state, n = 1, = 0l 1st excited state, n = 2, l = 0 

    2nd excited state, 0n = 3, l =

    2n = 3, l =

     N = 2, l = 1

      n = 3, l = 1

    2 1.0

    1 0.5

    0.4

    Radial wavefunctions

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    38/141

    Oxford Physics: 3rd Year, Atomic Physics

    Radial wavefunctions

    • l = 0 states do not vanish at r = 0• l ≠ 0 states vanish at r = 0,

    and peak at larger r as l increases• Peak probability (size) ~ n2

    • l = 0 wavefunction has (n-1) nodes• l = 1 has (n-2) nodes etc.

    • Maximum l=(n-1 ) has no nodesElectrons arranged in “shells” for each n

    The Periodic Table

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    39/141

    Oxford Physics: 3rd Year, Atomic Physics

    The Periodic Table

    Shells specified by n and l quantum numbers

    Electronconfiguration 

    The Periodic Table

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    40/141

    Oxford Physics: 3rd Year, Atomic Physics

    The Periodic Table

    The Periodic Table

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    41/141

    Oxford Physics: 3rd Year, Atomic Physics

    The Periodic Table

    Rare gases

    He: 1s2

     Ne: 1s22s22p6

    Ar: 1s22s22p63s23p6

    Kr: (…) 4s24p6

    Xe: (…..)5s25p6

    Rn: (……)6s26p6

    The Periodic Table

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    42/141

    Oxford Physics: 3rd Year, Atomic Physics

    The Periodic Table

     Alkali metals

    Li: 1s22s

     Na: 1s22s22p63s

    Ca: 1s22s22p63s23p64s

    Rb: (…) 4s24p65s

    Cs: (…..)5s25p66s

    etc.

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    43/141

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    44/141

    Oxford Physics: 3rd Year, Atomic Physics

    Finding the Energy Levels

    Hydrogen Binding Energy, Term Value Tn = R n2

    Many electron atom, Tn = R .(n – δ(l ))2

    δ(l ) is the Quantum Defect

    Finding the Quantum Defect

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    45/141

    Oxford Physics: 3rd Year, Atomic Physics

    1. Measure wavelength of absorption lines

    2. Calculate: = 1/

    3. "Guess" ionization potential, T(n ) i.e. Series Limit

    4. Calculate T(n ):

    = T(n ) - T(n )

    5. Calculate: n* or

    T(n ) = R /(n - )

     λ

    ν

    o

    i

    i o i

    i

    ν

    δ(l)

    2

     λ

    δ(l)

    Δ(l)

    T(n)i

    Quantum defect plot

    Lecture 3

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    46/141

    Oxford Physics: 3rd Year, Atomic Physics

    Lecture 3

    • Corrections to the Central Field

    • Spin-Orbit interaction

    • The physics of magnetic interactions

    • Finding the S-O energy – Perturbation Theory

    • The problem of degeneracy

    • The Vector Model (DPT made easy)

    • Calculating the Spin-Orbit energy• Spin-Orbit splitting in Sodium as example

    The

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    47/141

    Oxford Physics: 3rd Year, Atomic Physics

     r

    U(r)

    1/r

    ~Z/r

    “Actual”

     Potential 

    The

    CentralField

    Corrections to the Central Field

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    48/141

    Oxford Physics: 3rd Year, Atomic Physics

    Corrections to the Central Field

    • Residual electrostatic interaction:

    • Magnetic spin-orbit interaction:

     H 2 = -μ . Borbit^

    Magnetic spin-orbit interaction

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    49/141

    Oxford Physics: 3rd Year, Atomic Physics

    g p

    ^

    • Electron moves in Electric field of nucleus,so sees a Magnetic field Borbit

    • Electron spin precesses in Borbit

    with energy:

    -μ .B which is proportional to s.l 

    • Different orientations of s and l give different

    total angular momentum j = l + s.

    • Different values of j give different s.l so have

    different energy:The energy level is split for l + 1/2

    Larmor Precession

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    50/141

    Oxford Physics: 3rd Year, Atomic Physics

    Larmor Precession

    Magnetic field B exerts atorque on magnetic moment μ

    causing precession of μ

    and the associatedangular momentum vector λ

    The additional angular velocityω’ changes the angular velocity

    and hence energy of the

    orbiting/spinning charge

    ΔE = - μ .B

    Spin-Orbit interaction: Summary

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    51/141

    Oxford Physics: 3rd Year, Atomic Physics

     B parallel to l 

    μ  parallel to s

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    52/141

    Oxford Physics: 3rd Year, Atomic Physics

    ?

    Perturbation energy

    Radial integral

     Angular momentum operator 

    How to find using perturbation theory?^^

    Perturbation theory with degenerate states

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    53/141

    Oxford Physics: 3rd Year, Atomic Physics

    Perturbation Energy:

    Change in wavefunction:

    So won’t work if E i = E  ji.e. degenerate states.

    We need a diagonal perturbation matrix,

    i.e. off-diagonal elements are zero

    New

    wavefunctions:New

    eignvalues:

    The Vector Model

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    54/141

    Oxford Physics: 3rd Year, Atomic Physics

     Angular momenta represented by vectors:

    l 2 , s2 and  j2, and l  , s j and with magnitudes:

    l(l+1), s(s+1) and j(j+1). andl(l+1), s(s+1) and  j(j+1).

    Projections of vectors:

    l, s and  j on z-axis

    are ml  , m s and m j

    Constants of the Motion Good quantum numbers

    lh ml h

    z

    Summary of Lecture 3: Spin-Orbit coupling

    • Spin Orbit energy

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    55/141

    Oxford Physics: 3rd Year, Atomic Physics

    • Spin-Orbit energy

    • Radial integral sets sizeof the effect.

    • Angular integral needs Degenerate Perturbation Theory

    • New basis eigenfunctions:

    •  j and j z are constants of the motion

    • Vector Model represents angular momenta as vectors

    • These vectors can help identify constants of the motion

    • These constants of the motion - represented by good quantum numbers

     jl 

     s

    Z  Z 

    (a) No spin orbit Fixed in

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    56/141

    Oxford Physics: 3rd Year,Atomic Physics

    l  z 

    l  

    l  

     j    j 

    s

    s

    sz 

    s

    l  

     j  j 

    ( a )i i

    ( d )I i

    ( b )i i

    ( c )i i

    Z Z 

    (a) No spin-orbit

    coupling(b) Spin–orbit coupling

    gives precession

    around j

    (c) Projection of l on z

    is not constant

    (d) Projection of s on z

    is not constant

    ml and ms are not good

    quantum numbersReplace by j and m j

    Fixed in 

    space 

    V d l d fi

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    57/141

    Oxford Physics: 3rd Year, Atomic Physics

    Vector model defines:

     j l 

     s

    Vector triangle

    Magnitudes

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    58/141

    Oxford Physics: 3rd Year, Atomic Physics

    Using basis states: | n, l, s, j, m j › to find expectation value:

    The spin-orbit energy is:

    Δ E = β n,l x (1/2){ j(j+1) – l(l+1) – s(s+1)}

    ∼ βn,l   x

    ‹ ½ { j2

     – l 2

     – s2

    } ›

    Δ E = β n l x (1/2){ j(j+1) – l(l+1) – s(s+1)}

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    59/141

    Oxford Physics: 3rd Year, Atomic Physics

    βn,l  ( ){j(j ) ( ) ( )}

    Sodium

    3s: n = 3, l = 0, no effect

    3p: n = 3, l = 1,  s = ½, -½, j = ½ or 3 / 2

    Δ E( 1 / 2 ) = β 3p x ( - 1); Δ E( 3 / 2 ) = β 3p x (

    1/2)

     j = 3/2

     j = 1/2

    3p(no spin-orbit)

     2j + 1 = 4

     2j + 1 = 2

    1/2

    -1

    Lecture 4

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    60/141

    Oxford Physics: 3rd Year, Atomic Physics

    • Two-electron atoms:

    the residual electrostatic interaction• Adding angular momenta: LS-coupling

    • Symmetry and indistinguishability• Orbital effects on electrostatic interaction

    • Spin-orbit effects

    Lecture 4

    Coupling of l i and s to form L and S:

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    61/141

    Oxford Physics: 3rd Year, Atomic Physics

    Electrostatic interaction dominates

    l 1 i s1

    l 2  s2

    L S

    L = +l l 1 2 S = + s s1 2

    Coupling of L and S to form J

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    62/141

    Oxford Physics: 3rd Year, Atomic Physics

    L = 1

    S = 1

    S = 1

    S = 1

    L = 1 L = 1

    J = 2 J = 1 J = 0

    Magnesium: “typical” 2-electron atom

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    63/141

    Na Configuration:

    1s

    2

    2s

    2

    2p

    6

    3s

    Oxford Physics: 3rd Year, Atomic Physics

    Mg Configuration:

    1s22s22p63s2

    “Spectator” electron in Mg

    Mg energy level structure is like Na

    but levels are more strongly bound

    Residual electrostatic interaction

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    64/141

    Oxford Physics: 3rd Year, Atomic Physics

    3s4s state in Mg:Zero-order wave functions

    Perturbation energy:

    ?

    Degenerate states

    Linear combination of zero-order wave-functions

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    65/141

    Oxford Physics: 3rd Year, Atomic Physics

    Off-diagonal matrix elements:

    Off-diagonal matrix elements:

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    66/141

    Oxford Physics: 3rd Year, Atomic Physics

    Therefore as required!

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    67/141

    Orbital orientation effect on electrostatic interaction

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    68/141

    Oxford Physics: 3rd Year, Atomic Physics

    l 2

    l 1

    Overlap of electron

    wavefunctions

    depends on orientation

    of orbital angular momentum:so electrostatic interaction

    depends on L

    l 1

    l 2

    L

    L = +l l 1 2

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    69/141

    Oxford Physics: 3rd Year, Atomic Physics

    Residual Electrostaticand

    Spin-Orbit effects

    in LS-coupling

    Term diagram of Magnesium

    Singlet terms Triplet terms

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    70/141

    Oxford Physics: 3rd Year, Atomic Physics

    1 1 1 3 3 3S P D S P Do 21

    3s S2 1

    0

    3s3p P

    1

    1

    3s3p P3

    2,1,0

    3s3d D1

    24s

    5s

    ns3p

    2

    3pn

    intercombination line(weak)

    resonance line(strong)

    Singlet terms Triplet terms

    The story so far:

    Hierarchy of interactions

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    71/141

    Oxford Physics: 3rd Year, Atomic Physics

    HOH1H2

    H3

    : Nuclear Effects on atomic energy

    H3

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    72/141

    • Nuclear effects on energy levels – Nuclear spin

     – addition of nuclear and electron angularmomenta

    • How to find the nuclear spin

    •Isotope effects:

     – effects of finite nuclear mass

     – effects of nuclear charge distribution

    • Selection Rules

    Nuclear effects in atoms

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    73/141

    Nucleus:

    • stationary

    • infinite mass

    • point

    Corrections 

    Nuclear spin   → magnetic dipoleinteracts with electrons

    orbits centre of mass withelectrons

    charge spread overnuclear volume

    Nuclear Spin interaction

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    74/141

    Magnetic dipole ~ angular momentum

    μ = - γλħ

    μl  = - gl μBl  μs = - gsμΒ s

    μΙ = - gIμ Ν I 

    gI ~ 1 μ Ν = μΒ x me/mP ~ μΒ / 2000

    Perturbation energy:

    Η3 = − μΙ . Bel ^

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    75/141

    Magnetic field of electrons: Orbital and Spin

    Closed shells: zero contributions orbitals: largest contribution – short range ~1/r 3

    l > 0, smaller contribution - neglect

     Bel

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    76/141

     Bel = (scalar quantity) x J 

    Usually dominated by spin contribution in s-states:

    Fermi “contact interaction”.

    Calculable only for Hydrogen in ground state, 1s

    Coupling of I and J 

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    77/141

    Depends on I  Depends on J 

    Nuclear spin interaction energy:

    empirical Expectation value  

    Vector model of nuclear interaction

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    78/141

    F

    F

    F

    I

    I

    I

    JJJ

    I and J precess around FF = I + J

    Hyperfine structure

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    79/141

    Hfs interaction energy:

    Vector model result:

    Hfs energy shift:

    Hfs interval rule:

    Finding the nuclear spin, I

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    80/141

    • Interval rule – finds F, then for known J → I

    • Number of spectral lines(2I + 1) for J > I, (2J + 1) for I > J

    • Intensity

    Depends on statistical weight (2F + 1)

    finds F, then for known J → I

    Isotope effects

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    81/141

    reduced mass 

    Orbiting about

    centre of mass

    Orbiting aboutFixed nucleus,

    infinite mass

    +

    Isotope effects

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    82/141

    reduced mass 

    Orbiting about

    centre of mass

    Orbiting aboutFixed nucleus,

    infinite mass

    +

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    83/141

    Lecture 6• Selection Rules

    • Atoms in magnetic fields

     – basic physics; atoms with no spin

     – atoms with spin: anomalous Zeeman Effect

     – polarization of the radiation

    Parity selection ruler 

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    84/141

    Parity (-1)l must change

    Δl = + 1

    N.B. Error in notes eqn (161) 

    -r 

    Configuration

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    85/141

    Only one electron “jumps”

    Selection Rules:Conservation of angular momentum

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    86/141

    h

    h

    J1 J1

    J2 = J1

    J2 = J1

    ΔL = 0, + 1

    ΔS = 0

    ΔMJ = 0, + 1

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    87/141

    Oxford Physics: 3rd Year, Atomic Physics

     Atoms in magnetic fields

    Effect of B-field

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    88/141

    Oxford Physics: 3rd Year, Atomic Physics

    on an atom

    with no spin

    Interaction energy -Precession energy:

    N l Z Eff t

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    89/141

    Oxford Physics: 3rd Year, Atomic Physics

    Normal Zeeman Effect

    Level is split into equally

    Spaced sub-levels (states)

    Selection rules on ML

    give a spectrum of thenormal Lorentz Triplet

    Spectrum

    Effect of B-field

    t

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    90/141

    Oxford Physics: 3rd Year, Atomic Physics

    on an atom

    with spin-orbit coupling

    Precession of L and S

    around the resultant J

    leads to variation of

    projections of L and S

    on the field direction

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    91/141

    Oxford Physics: 3rd Year, Atomic Physics

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    92/141

    Oxford Physics: 3rd Year, Atomic Physics

    Total magnetic moment

    does not lie along axis

    of J.

    Effective magnetic moment

    does lie along axis of J,

    hence has constantprojection on Bext axis

    Perturbation Calculation of Bext effect on spin-orbit level

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    93/141

    Oxford Physics: 3rd Year, Atomic Physics

    Interaction energy

    Effective magnetic moment

    Perturbation Theory:expectation value of energy

    Energy shift of MJ level

    Vector Model Calculation of Bext effect on spin-orbit level

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    94/141

    Oxford Physics: 3rd Year, Atomic Physics

    Projections of L and S

    on J are given by

    Vector Model Calculation of Bext effect on spin-orbit level

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    95/141

    Oxford Physics: 3rd Year, Atomic Physics

    Perturbation Theory result

    Anomalous Zeeman Effect:

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    96/141

    Oxford Physics: 3rd Year, Atomic Physics

     Anomalous Zeeman Effect:

    3s2S1/2 – 3p2P1/2 in Na

    Polarization ofA l Z

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    97/141

    Oxford Physics: 3rd Year, Atomic Physics

    Polarization of Anomalous Zeeman

    components

    associated with Δm

    selection rules

    Lecture 7

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    98/141

    Oxford Physics: 3rd Year, Atomic Physics

    • Magnetic effects on fine structure

    - Weak field- Strong field

    • Magnetic field effects on hyperfine structure:- Weak field

    - Strong field

    Summary of magnetic field

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    99/141

    Oxford Physics: 3rd Year, Atomic Physics

    Summary of magnetic field

    effects on atom with

    spin-orbit interaction

    Total magnetic moment

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    100/141

    Oxford Physics: 3rd Year, Atomic Physics

    Total magnetic moment

    does not lie along axis

    of J.

    Effective magnetic moment

    does lie along axis of J,

    hence has constantprojection on Bext axis

    Interaction energy

    Perturbation Calculation of Bext effect on spin-orbit level

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    101/141

    Oxford Physics: 3rd Year, Atomic Physics

    Interaction energy

    Effective magnetic moment

    Perturbation Theory:expectation value of energy

    Energy shift of MJ level

    What is g J ?

    Vector Model Calculation of Bext effect on spin-orbit level

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    102/141

    Oxford Physics: 3rd Year, Atomic Physics

    Projections of L and S

    on J are given by

    Vector Model Calculation of Bext effect on spin-orbit level

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    103/141

    Oxford Physics: 3rd Year, Atomic Physics

    Perturbation Theory result

    Landé

    g-factor 

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    104/141

    Oxford Physics: 3rd Year, Atomic Physics

     Anomalous Zeeman Effect:

    3s2S1/2 – 3p2P1/2 in Na

    gJ(2P1/2) = 2/3

    gJ(

    2

    S1/2) = 2

    St fi ld ff t t

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    105/141

    Oxford Physics: 3rd Year, Atomic Physics

    Strong field effects on atoms

    with spin-orbit coupling

    Spin and Orbit magnetic moments couple

    more strongly to Bext than to each other.

    Strong field effect on L and S.

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    106/141

    Oxford Physics: 3rd Year, Atomic Physics

    L and S precess independently around BextSpin-orbit coupling is relatively insignificant

    m L and m S are

     good quantum numbers 

    Splitting of level in strong field: Paschen-Back Effect

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    107/141

    Oxford Physics: 3rd Year, Atomic Physics

    N.B. Splitting likeNormal Zeeman Effect 

    Spin splitting = 2 x Orbital g S = 2 x g L 

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    108/141

    Oxford Physics: 3rd Year, Atomic Physics

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    109/141

    Oxford Physics: 3rd Year, Atomic Physics

    Magnetic field effects onhyperfine structure

    Hyperfine structure in Magnetic Fields

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    110/141

    Oxford Physics: 3rd Year, Atomic Physics

    Hyperfine

    interaction

    Electron/Field

    interaction

    Nuclear spin/Field

    interaction

    Weak field effect on

    hyperfine structure

    I and J precess

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    111/141

    Oxford Physics: 3rd Year, Atomic Physics

    I and J precess

    rapidly around F.

    F precesses slowlyaround Bext

    I, J, F and MFare good quantum

    numbers

    μ  F 

    Only contribution to μF is

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    112/141

    Oxford Physics: 3rd Year, Atomic Physics

    component of μJ along F

    μ  F  = -gJμ B J.F x F

    F F

    magnitude direction

    gF = gJ x J.FF2

    Find this usingVector Model 

    gF = gJ x J.F

    F2 FI

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    113/141

    Oxford Physics: 3rd Year, Atomic Physics

    JF = I + J

    I2 = F2 + J2 – 2J.F

    J.F = ½{F(F+1) + J(J+1) – I(I+1)}

    Δ E =

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    114/141

    Oxford Physics: 3rd Year, Atomic Physics

    N.B. notes error eqn 207

    Each hyperfine level is split by g F  term

    Ground level of Na:

    J = 1/2 ; I = 3/2 ;

    F = 1 or 2

    F = 2: gF = ½ ;

    F = 1: gF = -½

    Sign inversion of gF for F = 1 and F = 2

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    115/141

    Oxford Physics: 3rd Year, Atomic Physics

    I = 3/2

    J = 1/2

    F = 2

    I = 3/2

    J = -1/2

    F = 1

    J.F positive J.F negative

    Strong field effect on hfs. Δ E =

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    116/141

    Oxford Physics: 3rd Year, Atomic Physics

    J precesses rapidly around Bext (z-axis)

    I tries to precess around J but can follow only thetime averaged component along z-axis i.e. Jz

    So AJ   I .J term → AJ MI MJ

    Strong field effect on hfs.

    Energy

    Dominant term 

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    117/141

    Oxford Physics: 3rd Year, Atomic Physics

    Na ground state

    Δ E =

    Strong field effect on hfs.

    Energy:

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    118/141

    Oxford Physics: 3rd Year, Atomic Physics

    J precesses around field Bext

    I tries to precess around J

    I precesses around what it can “see” of J:The z-component of J: JZ

    Magnetic field effects on hfs

    Weak field: F, MF are good quantum nos.Resolve μJ along F to get effective magnetic moment and gF

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    119/141

    Oxford Physics: 3rd Year, Atomic Physics

    ΔE(F,MF) = gFμBMFBext

    → “Zeeman” splitting of hfs levels

    Strong field: MI and MJ are good quantum nos.

    J precesses rapidly around Bext;I precesses around z-component of J i.e. what it can “see” of J

     ΔE(MJ,M

    I) = g

    JμBM

    JBext + A

    JM

    IM

    J  → hfs of “Zeeman” split levels

    Lecture 8

    • X rays: excitation of “inner shell” electrons

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    120/141

    Oxford Physics: 3rd Year, Atomic Physics

    • X-rays: excitation of inner-shell electrons

    • High resolution laser spectroscopy

    - The Doppler effect

    - Laser spectroscopy- “Doppler-free” spectroscopy

    X – Ray Spectra

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    121/141

    Oxford Physics: 3rd Year, Atomic Physics

    • Wavelengths fit a simple series formula

    Characteristic X-rays

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    122/141

    Oxford Physics: 3rd Year, Atomic Physics

    • All lines of a series appear together – when excitation exceeds threshold value

    • Threshold energy just exceedsenergy of shortest wavelength X-rays

    • Above a certain energy no new series appear.

    Generation ofcharacteristic X rays

    Ejected electron

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    123/141

    Oxford Physics: 3rd Year, Atomic Physics

    characteristic X-rays

    X-ray

    e-

    e-

    Incident high voltage electron

    X-ray series

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    124/141

    Oxford Physics: 3rd Year, Atomic Physics

    y

    X-ray spectra for increasing electron impact energy

    L-thresholdK-threshold

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    125/141

    Oxford Physics: 3rd Year, Atomic Physics

    Wavelength

       X

      -  r  a  y   I  n   t  e

      n  s   i   t  y

    Max voltage

    E1E2>E3>

    Binding energy for electron in hydrogen = R/n2

    Binding energy for “hydrogen-like” system = RZ2

    /n2

    S i b th l t i i h ll

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    126/141

    Oxford Physics: 3rd Year, Atomic Physics

    Screening by other electrons in inner shells:

    Z→ (Z –  σ)

    Binding energy of inner-shell electron:

    En = R(Z –  σ)2

    / n2

    Transitions between inner-shells:

    En - Em= ν = R{(Z –  σi)2 / ni2 - (Z –  σ j)2 / n j2}

    Fine structure

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    127/141

    Oxford Physics: 3rd Year, Atomic Physics

    of X-rays

    X-ray absorption spectra

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    128/141

    Oxford Physics: 3rd Year, Atomic Physics

     Auger effect

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    129/141

    Oxford Physics: 3rd Year, Atomic Physics

    g

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    130/141

    Oxford Physics: 3rd Year, Atomic Physics

    High resolution laser spectroscopy

    Doppler broadening

    Doppler Shift:

    M ll B lt di t ib ti f

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    131/141

    Oxford Physics: 3rd Year, Atomic Physics

    Maxwell-Boltzmann distribution of 

     Atomic speeds

    Distribution of

    Intensity

    Dopplerwidth

    Notes error 

    Crossed beam

    Spectroscopy

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    132/141

    Oxford Physics: 3rd Year, Atomic Physics

     Absorption profile

    for weak probe

    Saturation effect on absorption

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    133/141

    Oxford Physics: 3rd Year, Atomic Physics

     Absorption profile

    for weak probe –

    with strong pump

    at ωo

    Strong pump at ωL reduces population of ground state for

    atoms Doppler shifted by (ωL –  ωo).

    Hence reduced absorption for this group of atoms.

     Absorption ofweak probe

    ω

    Saturation effect on absorption

     Absorption ofstrong pump

    ω

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    134/141

    Oxford Physics: 3rd Year, Atomic Physics

    ωL

    Probe and pump laser at same frequency ωL

    But propagating in opposite directionsProbe Doppler shifted down = Pump Doppler shifted up.

    Hence probe and pump “see” different atoms.

    ωL

    Saturation of “zero velocity” group at ωO

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    135/141

    Oxford Physics: 3rd Year, Atomic Physics

    Counter-propagating pump and probe“see” same atoms at ωL = ωOi.e. atoms moving with zero velocity relative to light

    Saturation spectroscopy

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    136/141

    Oxford Physics: 3rd Year, Atomic Physics

    Principle of Doppler-free two-photon absorption

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    137/141

    Oxford Physics: 3rd Year, Atomic Physics

    Photon Doppler shifted up + Photon Doppler shifted down

    Two-photon absorption spectroscopy

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    138/141

    Oxford Physics: 3rd Year, Atomic Physics

    Doppler-free spectroscopy of moleculesin high temperature flames

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    139/141

    Oxford Physics: 3rd Year, Atomic Physics

    Oxy-acetylene

    Torch ~ 3000K

    Doppler-free spectrum of OH molecule in a flame

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    140/141

    Oxford Physics: 3rd Year, Atomic Physics

  • 8/9/2019 Atomic Physics Lecture PPT Slides 1_8

    141/141

    Oxford Physics: 3rd Year, Atomic Physics

    The End