Atomic order and cluster energetics in amorphous ...

15
RMC5, Budapest, 19-22 September 2012 Atomic order and cluster energetics in amorphous aluminosilicate systems G.S.E. Antipas 1 , L. Temleitner 2,3 , K. Karalis 1 , S. Kohara 3 , L. Pusztai 2 and A. Xenidis 1 1 School of Mining Engineering and Metallurgy National Technical University of Athens Zografou Campus, Athens 15780 Greece Tel. +30 210 7722388 Email: [email protected] 2 Research Institute for Solid State Physics and Optics Hungarian Academy of Sciences, H-1121 Budapest, Konkoly-Thege M. ut 29-33 Hungary 3 Japan Synchrotron Radiation Research Institute (SPring-8/JASRI) 1-1-1 Kouto, Sayo Hyogo 679-5198, CREST-JST Japan

Transcript of Atomic order and cluster energetics in amorphous ...

Page 1: Atomic order and cluster energetics in amorphous ...

RMC5, Budapest, 19-22 September 2012

Atomic order and cluster energetics

in amorphous aluminosilicate systems

G.S.E. Antipas1, L. Temleitner2,3, K. Karalis1,

S. Kohara3, L. Pusztai2 and A. Xenidis1

1School of Mining Engineering and MetallurgyNational Technical University of Athens

Zografou Campus, Athens 15780Greece

Tel. +30 210 7722388Email: [email protected]

2Research Institute for Solid State Physics and OpticsHungarian Academy of Sciences,

H-1121 Budapest,Konkoly-Thege M. ut 29-33

Hungary

3Japan Synchrotron Radiation Research Institute (SPring-8/JASRI)1-1-1 Kouto, Sayo

Hyogo 679-5198, CREST-JSTJapan

Page 2: Atomic order and cluster energetics in amorphous ...

RMC5, Budapest, 19-22 September 2012

The pyrometallurgical processThe pyrometallurgical process

Rotary Kiln

Electric Arc Furnace (EAF)

Converter

90m

18m

4m5cycle/min

6m

1700 ◦C, oxidation of part of Fe from Fe-Ni to produce slag which is disposed of, increasing the concentration of Ni in the final product, typically up to 18%w.t.

Calcine @ 800 ◦C,

(mixed oxides) %w.t.:

28.6 Fe, 17.6 Si, 3.7 Mg,

2.3 Ca, 1.6 Cr, 3 Al, 1 Ni

Laterite oreFe2O3, SiO2

(Mg,Ni,Al,Fe)6(Si,Al)4O10

CaCO3, Cr2O3

+Solid fuel, e.g. lignite

3 carbon electrodes

1.5 m diameter each

DC or AC 70-75kA,

consumption 0.5m/day

2000 ◦C electrodes

Reduction of calcine to

produce slag (density 3.5

gr/cm3) & metallic Fe-Ni at

15%w.t. Ni (Fe-Ni density

5.5-7 gr/cm3)

Page 3: Atomic order and cluster energetics in amorphous ...

RMC5, Budapest, 19-22 September 2012

FerronickelFerronickel

• 4 active mines / annual ore usage ~ 2.5 million tons

annual nickel production of ~ 10,000 tons

covers 6-7% of the European demand for Nickel

• 4 active mines / annual ore usage ~ 2.5 million tons

annual nickel production of ~ 10,000 tons

covers 6-7% of the European demand for Nickel

Page 4: Atomic order and cluster energetics in amorphous ...

RMC5, Budapest, 19-22 September 2012

The pyrometallurgical processThe pyrometallurgical process

Rotary Kiln

Electric Arc Furnace (EAF)

Converter

90m

18m

4m5cycle/min

6m

1700 ◦C, oxidation of part of Fe from Fe-Ni to produce slag which is disposed of, increasing the concentration of Ni in the final product, typically up to 18%w.t.

Calcine @ 800 ◦C,

(mixed oxides) %w.t.:

28.6 Fe, 17.6 Si, 3.7 Mg,

2.3 Ca, 1.6 Cr, 3 Al, 1 Ni

Laterite oreFe2O3, SiO2

(Mg,Ni,Al,Fe)6(Si,Al)4O10

CaCO3, Cr2O3

+Solid fuel, e.g. lignite

Reduction of calcine to produce

slag (density 3.5 gr/cm3) &

metallic Fe-Ni at 15%w.t. Ni (Fe-Ni

density 5.5-7 gr/cm3)

Page 5: Atomic order and cluster energetics in amorphous ...

RMC5, Budapest, 19-22 September 2012

• Electrode/energy consumption is proportional to slag electrical resistivity

• Slag conductivity is correlated to the concentration of (ferric) Fe3+

• Fe3+, can be either a network modifier (octahedral) or former (tetrahedral)

• Tetrahedral coordination is achieved for all ferric iron when Fe3+ : Fe2+ exceeds 1:1

• Octahedral Fe2+, acts as a network modifier / what about tetrahedral Fe2+ ?

• Diffusion of network-modifying cations dominate the kinetics of redox Fe2+/Fe3+

equilibrium in transition metal-bearing amorphous silicates

• Could oxygen coordination of the Fe2+/Fe3+ ions also affect the redox equilibrium?

Slag – the role of Fe2+/Fe3+Slag – the role of Fe2+/Fe3+

3 carbon electrodes

1.5 m diameter each

DC or AC 70-75kA,

consumption 0.5m/day

2000 ◦C electrodes

1700 ◦C slag

Page 6: Atomic order and cluster energetics in amorphous ...

RMC5, Budapest, 19-22 September 2012

main mineralogical phases

• fayalite (Fe2SiO4)

• forsterite (Mg2SiO4)

• magnetite (Fe3O4)

• christobalite (SiO2)• chromite (FeCr2O4)• ferrosilite (Ca0.5Fe1.5Si2O6)

• magnesioferrite (Al0.47Fe1.52MgO4)

main mineralogical phases

• fayalite (Fe2SiO4)

• forsterite (Mg2SiO4)

• magnetite (Fe3O4)

• christobalite (SiO2)• chromite (FeCr2O4)• ferrosilite (Ca0.5Fe1.5Si2O6)

• magnesioferrite (Al0.47Fe1.52MgO4)

Slag elemental concentration (%w.t.) and XRD spectrumSlag elemental concentration (%w.t.) and XRD spectrum

Page 7: Atomic order and cluster energetics in amorphous ...

RMC5, Budapest, 19-22 September 2012

Levitation (liquid) and post-levitation (glass)

XRD characterisation - BL04B2 beamline

Levitation (liquid) and post-levitation (glass)

XRD characterisation - BL04B2 beamline

• photon wavelength of 0.20194 Å (60 keV)

• Q range of up to 21 Å-1 , 2θ up to 40◦

• aerodynamic levitation by a compressed air flow

• melting by a CO2 laser with max power of 100W

• Sample temperature reached 1400°C

• photon wavelength of 0.20194 Å (60 keV)

• Q range of up to 21 Å-1 , 2θ up to 40◦

• aerodynamic levitation by a compressed air flow

• melting by a CO2 laser with max power of 100W

• Sample temperature reached 1400°C

* G.S.E. Antipas, L. Temleitner, K. Karalis, S. Kohara, L. Pusztai and A. Xenidis,, J. Mol. Struct (2012)

*

*

Page 8: Atomic order and cluster energetics in amorphous ...

RMC5, Budapest, 19-22 September 2012

Reverse Monte Carlo – RMC_POTReverse Monte Carlo – RMC_POT

Liquid

Glass

Si-OFe-O/Mg-O

Fe

-Si/

Ca

-O

Si-Si/O-O

Fe-Fe

Page 9: Atomic order and cluster energetics in amorphous ...

RMC5, Budapest, 19-22 September 2012

RMC-generated environmentsRMC-generated environments

Page 10: Atomic order and cluster energetics in amorphous ...

RMC5, Budapest, 19-22 September 2012

RMC-generated environments (cntd)RMC-generated environments (cntd)

Marked reduction of Si NBO

Oxygen (% of total O atoms in supercell)

Increase of Fe-Si BO

Single (XRD) dataset-based RMC not to be over-interpreted

Increase of Fe-2Si BO

Marked reduction of “uncoordinated” O

Marked increase of Fe-Fe BO

Increase of Fe-Si-Mg BO

Increase of Fe-Mg BO

Increase of Si-2Fe BO

Marked reduction of Al NBO

increase of Si-Mg-Al BO

2nd neighbour coordinationGlass Liquid

Fe-Fe 3 3Fe-Si 3 2Fe-Mg ~1 ~1Si-Si 2 2

No Fe CN > 5No Fe CN > 5

Page 11: Atomic order and cluster energetics in amorphous ...

RMC5, Budapest, 19-22 September 2012

Gas phase, spin un. (open shell) BLYP/TZ2P level of theory, frozen cores: Fe(3p), Si(2p), Mg(2p), O(1s)

DFT cluster energetics - clusters based on O environmentDFT cluster energetics - clusters based on O environment

Tetrahedral Fe2+

Mg mostly mediates stability of Fe3+

Single bridging O – all clusters are linked via corner sharing

Increasing Si polyhedra coordination stabilizes Fe2+ (in the absence of network modifiers?)

Fe diclusters show a preference to at least one Fe3+ moiety

Page 12: Atomic order and cluster energetics in amorphous ...

RMC5, Budapest, 19-22 September 2012

• Fe2+ is most preferred in the liquid state (most likely as a network modifier)

• In the liquid state, at CN=3 Fe2+ appears to be readily oxidized to Fe3+

• In the glassy state, CN=4, Fe2+ is energetically more favoured; increasing Mg content lowers

the Fe2+/Fe3+ ratio but at a slower rate compared to the liquid phase

DFT cluster energetics - clusters based on Fe environmentDFT cluster energetics - clusters based on Fe environment

Page 13: Atomic order and cluster energetics in amorphous ...

RMC5, Budapest, 19-22 September 2012

The EAF slag was studied in the liquid/glass state by a/d levitation and RMC modeling

• Stereochemical features of both states were similar and in par with literature

- both states may consist of the same fundamental clusters, the rel. number of which may

define the state (?)

• Transition from liquid to glass involves:

- a 3-fold decrease in uncoordinated O (to within the 1st RDF min)

- a marked increase of Fe-Si-Mg polyhedra bridging O

• Spin unrestricted DFT BLYP/TZ2P calculations for Si-Fe-Mg-O suggested that

- the oxidation state of Fe depends on its polyhedra coordination

I) Fe polyhedra always favour Fe2+ in the absence of Mg; the latter promotes Fe3+

II) At CN=3 (liquid) the ratio of Fe2+/Fe3+ is reduced at a lower rate than at CN=4 for

increasing Mg concentration

III) Fe2+/Fe3+ - O bond sterngth in the liquid state ??? – correlation to viscosity

SummarySummary

Page 14: Atomic order and cluster energetics in amorphous ...

RMC5, Budapest, 19-22 September 2012

ReferencesG1 ChengdeHuand and A.N. Cormack, The structure of sodium silicate glass, The Journal of Chemical Physics, Vol. 93, 1990, doi:

10.1063/1.459296G2 Eun-Tae Kang, Seong-Joo Lee and Alex C. Hannon, Molecular dynamics simulations of calcium aluminate glasses, Journal of Non-Crystalline

Solids, Vol. 352, p. 725-736, 2006G3 BenotiMagali, Ganster Patrick, Delaye Jean0Marc and Kob Walter, Structural and vibrational properties of a calcium aluminosilicate glass:

Classical force-fields vs. First-principles, Molecular Simulation, Vol. 33, p. 1093-1103, 2007. G4 Patrick Ganster, Megali Benoit, Walter Kob and Jean-Marc Delaye, Structural properties of a calcium aluminosilicate glass from molecular-

dynamics simulations: A finite size effects study, Journal of Chemical Physics, 2004G5 TadeuszKondtraTowicz, Structural changes in sodium-calcium-silicate glass after adding Si3N4, OpticaApplicata, Vol. XXXVII, No. 1-2, 2007. G6 Mark Taylor and Gordeon E. Brown, Structure of mineral glasses – I. The feldspar glasses NaAlSi3O8, KAlSi3O8, CaAl2Si2O8,

GeochimicaetCosmochimicaActa, Vol. 43, p. 61-75, 1978G7 Mark Taylor and Gordon E. Brown, Structure of mineral glasses-II. The SiO2-NaAlSiO4 join, GeochimicaetCosmochimicaActa, Vol. 43, p.

1467-1473, 2003.G8 Xianglong Yuan and A.N. Cormack, Si-O-Si bond angle and torsion angle distribution in vitreous silica and sodium silicate glasses, Journal of

Non-Crystalline Solids, Vol. 319, p. 31-43, 2003G9 Norman T. Huff, ErsanDemiralp. TahirCagin and William A. Goddard III, Molecular dynamics simulation of vitreous silica structures, Journal

of Non-Crystalline Solids, 1998G10 Patrick Ganster, Megali Benoit, Walter Kob and Jean-Marc Delaye, Structural properties of a calcium aluminosilicate glass from molecular-

dynamics simulations: A finite size effects study, Journal of Chemical Physics, 2004G11 A. Nukui, U, Shimizugawa, S. Inoue, H. Ozawa, R. Uno, K. Oosumi and A. Makishima, A structural study of Y2O3-Al2O3-SiO2 glass employing

partial RDFs obtained by anomalous scattering, Journal of Non-Crystalline Solids, Vol. 150, p. 376-379, 1992G12 Weiqun Li and Stephen H. Garofalini, Molecular dynamics simulation of lithium diffusion in Li-2O-Al2O3-SiO2 glasses, Solid State Ionics,

Vol. 166, p. 365-373, 2004.G13 Peter Perichta, MarekLiska, Jan Machacek and OndrejGedeon, MD structural study of 23Y2O3-77Al2O3 and 23LA2O3-77Al2O3 glasses,

Ceramics – Silikaty, Vol. 53, p. 52-54, 2009G14 MarekLiska, Jan Machacek, Peter Perichta, OndrejGedeon and Jan pilat, Thermochemical modelling and ab initio molecular dynamics

simulations of calcium aluminate glasses, Ceramics – Silikaty, Vol. 52, p. 61-65, 2008G15 S. Kohara, J. Akola, H. Morita, K. Suzuya, J.K.R. Weber, M.C. Wilding and C.J. Benmore, Relationship between topological order and glass

forming ability in densely packed enstatite and forsterite composition glasses, PNAS Early Edition, 2011, doi: 10.1073/pnas.1104692108/-/DCSupplemental

G16 Jisun Jin, Shinichi Sakida, Toshinobu Yoko and Masayuki Nogami, The local structure of Sm-doped aluminosilicate glasses prepared by sol-gel method, Journal of Non-Crystalline Solids, Vol. 262, p. 183-190, 2000

G17 S.M. Haile and B.J. Wuensch, X-ray diffraction study of K3NdSi-7O17: a new framework silicate with a linear Si-O-Si bond, ActaCrystallographica Section B, Vol. B56, p. 773-779, 2000

G18 T. Fujiwara, H.S. Chen and Y. Waseda, On the structure of Fe-B metallic glasses of hypereytectic concentration, Jouranl of Physics F: Met. Phys, Vol. 11, p. 1327-1333, 1981.

Page 15: Atomic order and cluster energetics in amorphous ...

RMC5, Budapest, 19-22 September 2012

References

2 G.S.E. Antipas, L. Temleitner, K. Karalis, S. Kohara, L. Pusztai and A. Xenidis, A Containerless study of short range order in high temperatureFe-Si-Al-Ca-Mg oxide systems, Journal of Molecular structure, 2012, doi:10.1016/j.molstruc.2012.03.056

L1 P K Hung, N V Hong and L T Vinh,Diffusion and structure in silica liquid: a molecular dynamics simulation, J. Phys.: Condens. Matter 19(2007) 466103

L2 Gonzalo Gutierrez, A. B. Belonoshko, Rajeev Ahuja, and Borje Johansson,Structural properties of liquid Al2O3: A molecular dynamics study,Physical Review E, vol. 61, No. 3, 2000

F1 Glen B. COOK and Reid F. COOPER, CHEMICAL DIFFUSION AND CRYSTALLINE NUCLEATION DURING OXIDATION OF FERROUS IRON-BEARING MAGNESIUM ALUMINOSILICATE GLASS, Journal of Non-Crystalline Solids 120 (1990) 207-222

http://www.mintek.co.za/Pyromet/Laterite/Laterite.htm