Atomic Layer Deposition Processes for Integration in...

22
Atomic Layer Deposition Processes for Integration in ULSI Metallization Systems and Spintronic Sensor Devices Thomas Waechtler Fraunhofer Institute for Electronic Nano Systems ENAS & Center for Microtechnologies, TU Chemnitz Chemnitz, Germany Contact: [email protected]

Transcript of Atomic Layer Deposition Processes for Integration in...

Page 1: Atomic Layer Deposition Processes for Integration in …semieurope.omnibooksonline.com/2012/semicon_europa/SEMICON... · Atomic Layer Deposition Processes for Integration in ULSI

Atomic Layer Deposition Processes for Integration in ULSI Metallization Systems and Spintronic Sensor Devices Thomas Waechtler Fraunhofer Institute for Electronic Nano Systems ENAS & Center for Microtechnologies, TU Chemnitz Chemnitz, Germany Contact: [email protected]

Page 2: Atomic Layer Deposition Processes for Integration in …semieurope.omnibooksonline.com/2012/semicon_europa/SEMICON... · Atomic Layer Deposition Processes for Integration in ULSI

T. Waechtler

October 9, 2012

Page 2

Outline

• Overview – Fraunhofer Institute for Electronic

Nanosystems ENAS

• ALD @ Fraunhofer ENAS and ZfM Chemnitz

Equipments for ALD

ALD Process Integration for Interconnects

ALD Process Development for Magnetic / Spintronic Sensor

Systems

Integration of ALD with CNTs for Interconnects and NEMS

• Summary

Page 3: Atomic Layer Deposition Processes for Integration in …semieurope.omnibooksonline.com/2012/semicon_europa/SEMICON... · Atomic Layer Deposition Processes for Integration in ULSI

T. Waechtler

October 9, 2012

Page 3

Headquarter: Chemnitz, Germany

140 employees, 13 Mio. € annual budget

International Offices:

Since 2001/2005 Tokyo/Sendai, Japan

Since 2002 Shanghai, China

Since 2007 Manaus, Brazil

Systems integration by using of micro and nano technologies

MEMS/NEMS design

Development of MEMS/NEMS

MEMS/NEMS test

System packaging/wafer bonding

Back-end of Line technologies for micro and nanoelectronics

Process and equipment simulation

Micro and nano reliability

Printed functionalities

Advanced system engineering

Fraunhofer Institute for Electronic Nano Systems

Close cooperation to TU Chemnitz – Center for Microtechnologies

Page 4: Atomic Layer Deposition Processes for Integration in …semieurope.omnibooksonline.com/2012/semicon_europa/SEMICON... · Atomic Layer Deposition Processes for Integration in ULSI

T. Waechtler

October 9, 2012

Page 4

Headquarter: Chemnitz, Germany

140 employees, 13 Mio. € annual budget

International Offices:

Since 2001/2005 Tokyo/Sendai, Japan

Since 2002 Shanghai, China

Since 2007 Manaus, Brazil

Systems integration by using of micro and nano technologies

MEMS/NEMS design

Development of MEMS/NEMS

MEMS/NEMS test

System packaging/wafer bonding

Back-end of Line technologies for micro and nanoelectronics

Process and equipment simulation

Micro and nano reliability

Printed functionalities

Advanced system engineering

Fraunhofer Institute for Electronic Nano Systems

Close cooperation to TU Chemnitz – Center for Microtechnologies

Page 5: Atomic Layer Deposition Processes for Integration in …semieurope.omnibooksonline.com/2012/semicon_europa/SEMICON... · Atomic Layer Deposition Processes for Integration in ULSI

T. Waechtler

October 9, 2012

Page 5

Working areas ALD @ Fraunhofer ENAS and ZfM Chemnitz

Interconnects Spintronics 3D nanostructures

Cap

SiO2 or ULK

Barrier PVD Seed

ECD Cu

• ALD Cu seed layers for ULSI interconnects

• Development of ALD processes for liner deposition (e. g. Ru, Co, Ni)

Substrate

Ferromagnet (e. g. Ni, Co) Non-magnetic conductor (Cu)

Ferromagnet (e. g. Ni, Co) Antiferromagnet (e. g. NiO)

Fig.: Typical GMR spin valve layer stack

• ALD utilization for spintronic devices, like GMR sensor systems

200 nm

200 nm

Ni substrate

ALD film (5 nm) on Ni

Fig.: SEM top view images

• Functionalization of 3D nanostructures by ALD coating with conformal layers or nanoparticles, e. g.:

CNTs Nanowires Porous materials

Pristine sample After CuxO ALD

550 ALD cycles

Fig.: SEM images of vertically aligned MWCNTs in via holes

400 nm

400 nm

Photo courtesy AMD Saxony / GLOBAL-FOUNDRIES Dresden

Page 6: Atomic Layer Deposition Processes for Integration in …semieurope.omnibooksonline.com/2012/semicon_europa/SEMICON... · Atomic Layer Deposition Processes for Integration in ULSI

T. Waechtler

October 9, 2012

Page 6

Equipment

Page 7: Atomic Layer Deposition Processes for Integration in …semieurope.omnibooksonline.com/2012/semicon_europa/SEMICON... · Atomic Layer Deposition Processes for Integration in ULSI

T. Waechtler

October 9, 2012

Page 7

Equipment I – 100 mm Single-Wafer Research Reactor ALD @ Fraunhofer ENAS and ZfM Chemnitz

(1) Load lock chamber

(2) Wafer transport chamber

(3) Reactor chamber

(4) Gas inlet

(5) Two bubbler systems (currently used for water and formic acid)

(6) Two liquid delivery systems (currently used for Cu and Ni precursors)

1

2

3

4 5 6 6

Cold wall reactor (substrates up to 100 mm diameter; smaller pieces on carrier wafer)

Process gases: Ar, H2, O2, NH3

Process temperature up to 400°C

Turbo + Roughing

Roots + Roughing

Base pressure < 3 x 10-6 mbar Processing pressure range: 0.1 to 10 mbar Typical processing pressure (copper oxide ALD): 0.5 to 1.5 mbar

5

Page 8: Atomic Layer Deposition Processes for Integration in …semieurope.omnibooksonline.com/2012/semicon_europa/SEMICON... · Atomic Layer Deposition Processes for Integration in ULSI

T. Waechtler

October 9, 2012

Page 8

Equipment II – New 200 mm “Nanodeposition Cluster Tool” Strategic Investment Fraunhofer Microelectronics Alliance VµE

ALD @ Fraunhofer ENAS and ZfM Chemnitz

Cluster system • R&D and small series production • Ion-beam sputtering (IBSD) of

ultra-thin metals • (PE)CVD of carbon nanomaterials

(CNTs, graphene) • (PE)ALD of oxides, nitrides, and

metals in 2 ALD chambers • In situ analytics (Raman, XPS) • Industrial standard

(class 10 cleanroom) • 200 mm wafer size • Automatic handling

Page 9: Atomic Layer Deposition Processes for Integration in …semieurope.omnibooksonline.com/2012/semicon_europa/SEMICON... · Atomic Layer Deposition Processes for Integration in ULSI

T. Waechtler

October 9, 2012

Page 9

Process Integration for ULSI Interconnects

Cap

SiO2 or ULK

Barrier PVD Seed

ECD Cu Photo courtesy AMD

Saxony / GLOBAL-FOUNDRIES Dresden

Page 10: Atomic Layer Deposition Processes for Integration in …semieurope.omnibooksonline.com/2012/semicon_europa/SEMICON... · Atomic Layer Deposition Processes for Integration in ULSI

T. Waechtler

October 9, 2012

Page 10

• Cu(I) β-diketonate precursor

− Fluorine free – avoiding adhesion issues

− Liquid under standard conditions – liquid precursor delivery during ALD

• Oxidation by a mixture of water vapor and O2 (“wet O2“)

Precursor Pulse

Argon Purge

Oxidation Pulse

Argon Purge

ALD

cyc

les

1st step: Copper oxide ALD

2nd step: Vapor phase reduction

C

C

CH3

CH3

CH2

O

O

Cu

(CH3CH2CH2CH2)3P

(CH3CH2CH2CH2)3P

Process temperature < 140°C

Our Approach T. Waechtler, et al., J. Electrochem. Soc. 156, H453 (2009) T. Waechtler, et al., DE 10 2007 058 571, international patents pending

Well established process for CuxO ALD

Page 11: Atomic Layer Deposition Processes for Integration in …semieurope.omnibooksonline.com/2012/semicon_europa/SEMICON... · Atomic Layer Deposition Processes for Integration in ULSI

T. Waechtler

October 9, 2012

Page 11

Reduction of the Copper Oxide Films Challenge: • Efficient reduction to metallic copper • On arbitrary substrates • In 3D nanostructures • Without agglomeration

Idea: Precursor mixture for in-situ doping the CuxO films with catalytic amounts of Ru to improve the reduction efficiency on arbitrary substrates

• Liquid under standard conditions

• Established synthesis route

• Mixable with the Cu precursor, typically 1 mol-%

• Stable within the CuxO ALD window (≈ 120 °C)

RuSi(CH3)3

Patent pending.

Page 12: Atomic Layer Deposition Processes for Integration in …semieurope.omnibooksonline.com/2012/semicon_europa/SEMICON... · Atomic Layer Deposition Processes for Integration in ULSI

T. Waechtler

October 9, 2012

Page 12

ECD Experiments Cu ECD on Patterns with PVD Ru and PVD Ru / ALD Cu

Initial film stack: 10 nm PVD TaN / 10 nm PVD Ru

1 µm

SiO2

Si

ECD Cu

1 µm

SiO2

Si

ECD Cu

Initial film stack: 10 nm PVD TaN / 10 nm PVD Ru / ~ 8 nm ALD Cu

Unoptimized ECD conditions, comparable to the processes on blanket wafers

Grainy Cu, incomplete filling Denser Cu, better filling behavior

ECD Cu

PVD Ru 10 nm

PVD TaN 10 nm

Patterned SiO2

Si

ECD Cu

PVD Ru 10 nm

PVD TaN 10 nm

Patterned SiO2

Si

ALD Cu ca. 7 nm

T. Waechtler, et al., Microelectron. Eng. 88, 684 (2011)

Combination Ru/ALD Cu could enable nanoscale interconnect metallization

Page 13: Atomic Layer Deposition Processes for Integration in …semieurope.omnibooksonline.com/2012/semicon_europa/SEMICON... · Atomic Layer Deposition Processes for Integration in ULSI

T. Waechtler

October 9, 2012

Page 13

Process Integration for Spintronic Sensor Devices

Substrate

Ferromagnet (e. g. Ni, Co) Non-magnetic conductor (Cu)

Ferromagnet (e. g. Ni, Co) Antiferromagnet (e. g. NiO)

Page 14: Atomic Layer Deposition Processes for Integration in …semieurope.omnibooksonline.com/2012/semicon_europa/SEMICON... · Atomic Layer Deposition Processes for Integration in ULSI

T. Waechtler

October 9, 2012

Page 14

Process Integration for Spintronic Sensor Devices Integration of the ALD CuxO / Cu Process with Magnetic Thin Films

200 nm

CuxO ALD film on Ni

Ni

• Smooth and continuous CuxO ALD films on PVD Ni and PVD Co using precursor mixture

200 nm

CuxO ALD film on Co

Co

SEM top-view investigations

TEM cross section

• Growth behavior unchanged despite addition of Ru precursor

Si

20 nm SiO2

10 nm

10 nm

Page 15: Atomic Layer Deposition Processes for Integration in …semieurope.omnibooksonline.com/2012/semicon_europa/SEMICON... · Atomic Layer Deposition Processes for Integration in ULSI

T. Waechtler

October 9, 2012

Page 15

Process Integration for Spintronic Sensor Devices Remote Hydrogen Plasma Reduction as Alternative Reduction Route

120 140 160 180 200 220 240 2602425262728293031323334

After CuxO ALD (8 nm) After reduction 5 min After reduction 10 min After reduction 20 min After reduction Ni substrate

Shee

t res

istan

ce [O

hm /

sq.]

Temperature [°C] 0 5 10 15 20 25 30 35 401

10

100

1000

Resi

stiv

ity [µΩ

*cm

]

Cu film thickness [nm]

ALD Cu Liu et al. - evaporating Jacob et al. - evaporating Vancea et al. - evaporating Walter et al. - sputtering

Bulk

Sheet resistance: • Significant reduction of the sheet resistance on Ni substrates • Resistivity of 5 nm Cu on Ni of 55 µΩcm comparable with PVD techniques

Remote H reduction promising for process integration with Ni as ferromagnetic film

Page 16: Atomic Layer Deposition Processes for Integration in …semieurope.omnibooksonline.com/2012/semicon_europa/SEMICON... · Atomic Layer Deposition Processes for Integration in ULSI

T. Waechtler

October 9, 2012

Page 16

Interesting Magneto-Optical Properties with ALD Materials

Extension of the working field: ALD metals (Cu, Ni) for 3D nanostructured spintronic and magneto-optical devices

ALD copper oxide strongly influencing magneto-optical properties of ultrathin metallic nickel films

M. Fronk, G. Salvan & TW et al., Thin Solid Films, 520, 4741 (2012)

G. Salvan & TW, et al., Microelectron. Eng., submitted (2012)

Page 17: Atomic Layer Deposition Processes for Integration in …semieurope.omnibooksonline.com/2012/semicon_europa/SEMICON... · Atomic Layer Deposition Processes for Integration in ULSI

T. Waechtler

October 9, 2012

Page 17

ALD/CNT Integration for Interconnects

and Sensor Systems

Pristine sample After CuxO ALD

550 ALD cycles 400 nm

400 nm

Page 18: Atomic Layer Deposition Processes for Integration in …semieurope.omnibooksonline.com/2012/semicon_europa/SEMICON... · Atomic Layer Deposition Processes for Integration in ULSI

T. Waechtler

October 9, 2012

Page 18

ALD/CNT Integration for Interconnects and Sensor Systems Selective CNT Growth in Vias

• Decomposition of C2H4 catalytic Ni nano particles growth of MWCNTs

• Selective growth by interaction of catalysator and substrate

SEM investigations of CNTs selectively grown in vias

Schematic of CNT growth

Page 19: Atomic Layer Deposition Processes for Integration in …semieurope.omnibooksonline.com/2012/semicon_europa/SEMICON... · Atomic Layer Deposition Processes for Integration in ULSI

T. Waechtler

October 9, 2012

Page 19

ALD/CNT Integration for Interconnects and Sensor Systems Overview of Results

• Pre-treatment with wet oxygent at 300°C leading to layer-like ALD growth

Possible damage of the regular carbon lattice of the outermost CNT shells

Layer-like growth reported on amorphous carbon

200°C H2O+O2 300°C O2 100°C H2O+O2 300°C H2O+O2

• In situ pre-treatment of CNTs applicable to tune ALD growth behavior • Deeper studies underway

M. Melzer & TW et al., Microelectron. Eng., submitted (2012)

Page 20: Atomic Layer Deposition Processes for Integration in …semieurope.omnibooksonline.com/2012/semicon_europa/SEMICON... · Atomic Layer Deposition Processes for Integration in ULSI

T. Waechtler

October 9, 2012

Page 20

Summary

• Fraunhofer ENAS and ZfM Chemnitz – R&D for new materials and system integration for microelectronics and MEMS/NEMS

• ALD tools available for research and application up to 200 mm

• Thermal ALD and plasma-enhanced processes

• Standard oxides, metal nitrides, metals

• ALD development activities focusing on metals for

• ULSI interconnects

• Magnetic / spintronic sensor system

• Integration with 3D nanostructures such as CNTs for nanoelectronics and NEMS

Page 21: Atomic Layer Deposition Processes for Integration in …semieurope.omnibooksonline.com/2012/semicon_europa/SEMICON... · Atomic Layer Deposition Processes for Integration in ULSI

T. Waechtler

October 9, 2012

Page 21

Acknowledgments

• Prof. H. Lang et al., TUC – precursor synthesis

• Prof. M. Albrecht et al., TUC – magnetic materials and systems

• Prof. D.R.T. Zahn, Prof. G. Salvan et al., TUC – magneto-optical Kerr spectroscopy

• BMBF “Nano System Integration Network of Excellence – nanett”, FKZ 03IS2011

• DFG International Graduate School IRTG 1215 “Materials and Concepts for Advanced Interconnects and Nanosystems”

Page 22: Atomic Layer Deposition Processes for Integration in …semieurope.omnibooksonline.com/2012/semicon_europa/SEMICON... · Atomic Layer Deposition Processes for Integration in ULSI

T. Waechtler

October 9, 2012

Page 22

Thank you for your attention!

Visit us at booth # 2.108 (Hall 2, "Science Park")

Contact: Dr. Thomas Waechtler Fraunhofer ENAS, Chemnitz, Germany Tel.: +49 (0)371 45001-280 [email protected]