Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic...

53
Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani- cal Identification Michael R. P. Ragazzon Department of Engineering Cybernetics, Norwegian University of Science and Technology (NTNU) November 18, 2019, KTH Royal Institute of Technology, Stockholm

Transcript of Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic...

Page 1: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Atomic Force MicroscopyHigh-Performance Demodulation and Model-Based Nanomechani-cal Identification

Michael R. P. Ragazzon

Department of Engineering Cybernetics,Norwegian University of Science and Technology (NTNU)

November 18, 2019,KTH Royal Institute of Technology, Stockholm

Page 2: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Outline

Introduction

High-performance DemodulationProblem FormulationLyapunov DemodulatorComparison of Demodulation TechniquesGeneralized Lyapunov demodulator

Model-based Nanomechanical IdentificationIntroductionSystem modelingParameter identificationOperation ModesExperimentsConclusion

Research Directions

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 1

Page 3: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Outline

Introduction

High-performance DemodulationProblem FormulationLyapunov DemodulatorComparison of Demodulation TechniquesGeneralized Lyapunov demodulator

Model-based Nanomechanical IdentificationIntroductionSystem modelingParameter identificationOperation ModesExperimentsConclusion

Research Directions

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 2

Page 4: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

About me

About me

— From Oslo, Norway.

— Graduated with Master’s (2013) and PhD (2018) at NTNU in Trondheim.

— Currently Postdoc. at NTNU.

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 3

Page 5: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Introduction

Atomic force microscopy (AFM)

Mirror

Functiongenerator

Demodulator

ControllerUz

A

xyz Piezoactuator

Aref

Piezo modulator

DetectorLaser

Sample

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 4

Page 6: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Outline

Introduction

High-performance DemodulationProblem FormulationLyapunov DemodulatorComparison of Demodulation TechniquesGeneralized Lyapunov demodulator

Model-based Nanomechanical IdentificationIntroductionSystem modelingParameter identificationOperation ModesExperimentsConclusion

Research Directions

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 5

Page 7: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Problem Formulation

Problem Formulation

Estimate amplitude a(t) and phase ϕ(t) in

z(t) = a(t) sin(ω0t + ϕ(t)). (1)

Evaluate in terms of the following metrics:

— Tracking bandwidth

— Noise evaluation (total integrated noise, TIN)

— Rejection of frequency components away from ω0 (off-mode rejection)

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 6

Page 8: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Problem Formulation

Problem Formulation

Estimate amplitude a(t) and phase ϕ(t) in

z(t) = a(t) sin(ω0t + ϕ(t)). (1)

Evaluate in terms of the following metrics:

— Tracking bandwidth

— Noise evaluation (total integrated noise, TIN)

— Rejection of frequency components away from ω0 (off-mode rejection)

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 6

Page 9: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Problem Formulation

AFM Demodulation Techniques

Demodulators

Rectification(non-synchronous)

Mixing(synchronous)

Open loop Closed loop

- Mean abs. deviation- Peak detection- RMS-to-DC- Peak hold

- Lock-in amplifier- HB lock-in amplifier- Coherent

- Kalman filter- Lyapunov demodulator

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 7

Page 10: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Problem Formulation

AFM Demodulation Techniques

Demodulators

Rectification(non-synchronous)

Mixing(synchronous)

Open loop Closed loop

- Mean abs. deviation- Peak detection- RMS-to-DC- Peak hold

- Lock-in amplifier- HB lock-in amplifier- Coherent

- Kalman filter- Lyapunov demodulator

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 7

Page 11: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Lyapunov Demodulator

Lyapunov DemodulatorUpdate law given by1

˙x = γc(z − z

), (2)

z = cT x (3)

where γ determines the estimation bandwidth.

[sin(ω0t)cos(ω0t)

]

z a‖·‖2

eγ 1

s−x

c

φatan2(·)

1Michael R P Ragazzon, Michael G Ruppert, David M Harcombe, Andrew J Fleming, andJan Tommy Gravdahl (2018). “Lyapunov Estimator for High-Speed Demodulation in Dynamic Mode AtomicForce Microscopy”. IEEE Transactions on Control Systems Technology 26.2, pp. 765–772.

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 8

Page 12: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Lyapunov Demodulator

Experimental Results

−80

−60

−40

−20

0

Magnitude(dB)

LIA slow

LIA fast

Lyapunov slow

Lyapunov fast

0.1 1 10 100−360

−270

−180

−90

0

Frequency (kHz)

Phase

[deg]

Frequency response

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 9

Page 13: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Lyapunov Demodulator

Experimental Results

0 0.1 0.2 0.3 0.40

0.5

1

1.5

2

Time (ms)

Amplitude(V

) Input

LIA fast

Lyapunov fast

Time domain

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 9

Page 14: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Lyapunov Demodulator

Lock-in amplifier vs Lyapunov

0.5 1 10 50

1

10

100

Bandwidth (kHz)

TIN

(mV)

LIA

Lyapunov

Total integrated noise (TIN) vs bandwidth

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 10

Page 15: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Comparison of Demodulation Techniques

Sensitivity to other frequency components

Off-mode rejection2

2Michael G Ruppert, David M Harcombe, Michael R P Ragazzon, S O Reza Moheimani, andAndrew J Fleming (2017). “A Review of Demodulation Techniques for Amplitude-Modulation Atomic ForceMicroscopy”. Beilstein Journal of Nanotechnology 8.1, pp. 1407–1426.

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 11

Page 16: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Comparison of Demodulation Techniques

High-speed AFM Experiments

High-speed AFM experiment, 31 lines per second (∼8 s per image).Top: LIA at low bandwidth. Bottom: Lyapunov at high bandwidth.

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 12

Page 17: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Comparison of Demodulation Techniques

Multifrequency Lyapunov AFM Experiment

Phase demodulation at the first five harmonics of the cantilever.3

3David M Harcombe, Michael G Ruppert, Michael R P Ragazzon, and Andrew J Fleming (2018).“Lyapunov Estimation for High-Speed Demodulation in Multifrequency Atomic Force Microscopy”. BeilsteinJournal of Nanotechnology 9.1, pp. 490–498.

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 13

Page 18: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Generalized Lyapunov demodulator

Generalized Lyapunov demodulator4

— Lyapunov demodulator achieves high demodulation bandwidth.

— However, only first-order filtering.• Can we increase the filter order?

4Michael R P Ragazzon, Saverio Messineo, Jan Tommy Gravdahl, David M Harcombe, andMichael G Ruppert (2019). “Generalized Lyapunov Demodulator for Amplitude and Phase Estimation by theInternal Model Principle”. In Proc. IFAC Mechatronics. Vienna, Austria, p. 6.

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 14

Page 19: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Generalized Lyapunov demodulator

Indirect filter design

K Gu

y

v2

Amplitude andphase retrieval

a

ωc

r

Modulated signal(measurement)

Internal model of sinusoidInternal filter

Demodulator loop, T Composer

ϕ

a

ϕε

v1

— Design K (s) such that the demodulator loop T (s) becomes a desiredbandpass shape.

— Perfect tracking is guaranteed for any stable K (s).

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 15

Page 20: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Generalized Lyapunov demodulator

Direct filter design

−ωc

s

Tr

v2

Amplitude andphase retrieval

a

Demodulator filterComposer ϕ

v1

— Design T (s) directly as a bandpass filter.

— Perfect tracking is guaranteed by the condition T (jωc) = 1.

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 16

Page 21: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Generalized Lyapunov demodulator

Direct filter design

−ωc

s

Tr

v2

Amplitude andphase retrieval

a

Demodulator filterComposer ϕ

v1

— Design T (s) directly as a bandpass filter.

— Perfect tracking is guaranteed by the condition T (jωc) = 1.

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 16

Page 22: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Generalized Lyapunov demodulator

Bode plot T (s)

30 35 40 45 50 55 60 65 70 75 80−40

−20

0

Magnitude(d

B)

30 35 40 45 50 55 60 65 70 75 80

−200

0

200

Frequency (kHz)

Phase

(deg

)

3 kHz bandwidth

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 17

Page 23: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Generalized Lyapunov demodulator

Tracking frequency response

0.1 1 10 100

−40

−20

0

Frequency (kHz)

Magnitude(d

B)

1 10 100 1000

Frequency (kHz)

3 kHz bandwidth 30 kHz bandwidth

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 18

Page 24: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Outline

Introduction

High-performance DemodulationProblem FormulationLyapunov DemodulatorComparison of Demodulation TechniquesGeneralized Lyapunov demodulator

Model-based Nanomechanical IdentificationIntroductionSystem modelingParameter identificationOperation ModesExperimentsConclusion

Research Directions

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 19

Page 25: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Introduction

Introduction

— Single- and multifrequency AFM allow mechanical properties to be gathered.

— However, interaction forces are inherently nonlinear and often requires:• linearization• multifrequency demodulation• consideration of harmonics

to relate the observables to mechanical properties.

— Here, we relate the sample properties directly from the observables usingtime-domain dynamic models.

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 20

Page 26: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Introduction

Introduction

— Single- and multifrequency AFM allow mechanical properties to be gathered.

— However, interaction forces are inherently nonlinear and often requires:• linearization• multifrequency demodulation• consideration of harmonics

to relate the observables to mechanical properties.

— Here, we relate the sample properties directly from the observables usingtime-domain dynamic models.

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 20

Page 27: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Introduction

Introduction

— Single- and multifrequency AFM allow mechanical properties to be gathered.

— However, interaction forces are inherently nonlinear and often requires:• linearization• multifrequency demodulation• consideration of harmonics

to relate the observables to mechanical properties.

— Here, we relate the sample properties directly from the observables usingtime-domain dynamic models.

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 20

Page 28: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

System modeling

Cantilever dynamics

Approximation by first resonance mode.

MD + KD + CD = Fmod + Fts. (4)

x

z

Z

Z0

D

R

Rest position

Tip

Sample

Cantileverdeflection

X

h

δ

K,C

k, c

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 21

Page 29: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

System modeling

Contact model

Modified Hertz contact model.

Fts = E ′δ32 + cδ (5)

E = 34 R−

12 (1− ν2)E ′ (6)

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 22

Page 30: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Parameter identification

Parametric model

Combining the previous cantilever and sample models gives the system

Ms2D + CsD + KD − Fmod = csδ + E ′δ1.5. (7)

Rewrite (7) as

w ′ =[

cE ′

]T [ sδδ1.5

](8)

= θTφ′ (9)

Persistently exciting φ→ exponential convergence of parameters.

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 23

Page 31: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Parameter identification

Parametric model

Combining the previous cantilever and sample models gives the system

Ms2D + CsD + KD − Fmod = csδ + E ′δ1.5. (7)

Rewrite (7) as

w ′ =[

cE ′

]T [ sδδ1.5

](8)

= θTφ′ (9)

Persistently exciting φ→ exponential convergence of parameters.

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 23

Page 32: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Parameter identification

Parametric model

Combining the previous cantilever and sample models gives the system

Ms2D + CsD + KD − Fmod = csδ + E ′δ1.5. (7)

Rewrite (7) as

w ′ =[

cE ′

]T [ sδδ1.5

](8)

= θTφ′ (9)

Persistently exciting φ→ exponential convergence of parameters.

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 23

Page 33: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Parameter identification

Parameter estimator

Least squares method with forgetting factor.5

w = θTφ (10)

ε = (w − w)/m2 (11)

m2 = 1 + αφTφ (12)˙θ = Pεφ (13)

P = βP− PφφT

m2P (14)

P(0) = P0 (15)

5P A Ioannou and J Sun (1996). “Robust Adaptive Control”. Upper Saddle River, NJ: Prentice Hall.

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 24

Page 34: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Operation Modes

Procedure

x

y

Cantilever tip

t

Z0

Fmod

X

DSample

Intermittent contact

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 25

Page 35: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Operation Modes

Procedure

x

y

Cantilever tip

t

Z0

Fmod

X

DSample

In-contact dynamic mode.

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 26

Page 36: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Experiments

Experimental setup

Park Systems XE-70 AFM and setup.

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 27

Page 37: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Experiments

Experiment: Two-component Polymer Sample

0 0.5 1 1.50

0.5

1

1.5

X (µm)

Y(µm

)

0

20

40

60

nm

(a) Topography

0 0.5 1 1.50

0.5

1

1.5

X (µm)

Y(µm

)

1.2

1.4

1.6

1.8

nm

(b) Amplitude

0 0.5 1 1.50

0.5

1

1.5

X (µm)

Y(µm

)

107

108

109

Pa

(c) Elastic modulus

0 0.5 1 1.50

0.5

1

1.5

X (µm)

Y(µm

)

0

50

100

µNs/m

(d) Damping coefficient

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 28

Page 38: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Experiments

Experiment: Two-component Polymer Sample

0 1 2 3 4 5 60

100

200

Time (s)

Z(nm)

Z mean

Z envelope

(a) Vertical tip position

0 1 2 3 4 5 60

2

4

6

8·10−5

Time (s)

c(N

s/m)

0

5

10

15

20

25

k(N

/m)

(b) Parameter estimates

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 29

Page 39: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Conclusion

Advantages

— Handles nonlinear force interactions naturally.

— Time-domain approach, circumvents the need• for linearization,• to consider harmonics,• demodulation, either single- or multifrequency.

— Can modify the cantilever and sample dynamics separately.

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 30

Page 40: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Conclusion

Challenges

— Signal-to-noise ratio of the cantilever is frequency dependent.

— Some nonlinear parametric models are challenging.• Eg. adhesion and plasticity.

— Can we trust the deflection signal under in-contact dynamic mode?

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 31

Page 41: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Outline

Introduction

High-performance DemodulationProblem FormulationLyapunov DemodulatorComparison of Demodulation TechniquesGeneralized Lyapunov demodulator

Model-based Nanomechanical IdentificationIntroductionSystem modelingParameter identificationOperation ModesExperimentsConclusion

Research Directions

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 32

Page 42: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Research Directions

Issues with in-contact dynamic mode

Laser

Sample

xy Piezoactuator

Shaker

z Piezo

Z

Photodetector

In-contact dynamic mode

Can the deflection measurement be trusted?

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 33

Page 43: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Research Directions

Tip-actuated cantilever

Sample

xy Piezoactuator

Shaker

z Piezo

Z

Magneticfield

Magneticparticle

Fm

Tip-actuated cantilever

Can the deflection measurement be trusted?

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 34

Page 44: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Research Directions

Model improvements

k0

k1 k2

d1 d2 dj

kj

Generalized Maxwell model

— Extension to more general, frequency dependent viscoelastic models.

— Deeper insight into the forces involved.

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 35

Page 45: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Research Directions

Model improvements

Sample

xy Piezoactuator

Shaker

z PiezoZ0

D

Fd (D)

Fk (D)Fts(δ; S)

External and internal cantilever forces

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 36

Page 46: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Thank You

Thank you for your attention!

Questions?

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 37

Page 47: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Bonus slides

Noise vs Bandwidth

Total integrated noise

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 38

Page 48: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Bonus slides

Experimental setup

Ux, Uy , Uz

State machine(control logic)

D

D,Fmod

DA

DDemodulator

XYZControllerdX, dY, dZ

X, Y

Z δ

h

Parameter estimator

Leastsquares

estimator

k, cw

φSignal

filtering

Z0

A′ sin(ω0t)FmodEnable estimator

Block diagram of the control logic and parameter estimator.

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 39

Page 49: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Bonus slides

Experimental setup

— Implemented on a commercial AFM, Park Systems XE-70.

— All aspects controlled by our own algorithms.

— Real-time implementation at 200 kHz on a dSpace computer.

— Spherical carbon tip cantilever, radius 40 nm (B40_CONTR).

— Cantiler parameters M,K ,C determined a priori.

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 40

Page 50: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Bonus slides

Plant dynamics

Cantileverdynamics

XYActuator

hFts

Fmod

Uz

Ux, Uy X,Y X, Y

D

D

Z0Z0 Z δ Sample

k, cZ

Actuator

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 41

Page 51: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Bonus slides

Experimental results: Time-varying parameters

0 50 100−2

−1

0

1

2·10−5

Time (s)

c(N

s/m

)

−0.5

0

0.5

k(N

/m)

Time-varying sample parameter estimates during indentation.

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 42

Page 52: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Bibliography

Bibliography I

Harcombe, David M, Michael G Ruppert, Michael R P Ragazzon, and Andrew J Fleming(2018). “Lyapunov Estimation for High-Speed Demodulation in Multifrequency AtomicForce Microscopy”. Beilstein Journal of Nanotechnology 9.1, pp. 490–498.

Ioannou, P A and J Sun (1996). “Robust Adaptive Control”. Upper Saddle River, NJ: PrenticeHall.

Ragazzon, Michael R. P. (2018). “Parameter Estimation in Atomic Force Microscopy:Nanomechanical Properties and High-Speed Demodulation”. PhD Thesis. Trondheim,Norway: NTNU, Norwegian University of Science and Technology.

Ragazzon, Michael R P, Saverio Messineo, Jan Tommy Gravdahl, David M Harcombe, andMichael G Ruppert (2019). “Generalized Lyapunov Demodulator for Amplitude and PhaseEstimation by the Internal Model Principle”. In Proc. IFAC Mechatronics. Vienna, Austria.

Ragazzon, Michael R P, Michael G Ruppert, David M Harcombe, Andrew J Fleming, andJan Tommy Gravdahl (2018). “Lyapunov Estimator for High-Speed Demodulation inDynamic Mode Atomic Force Microscopy”. IEEE Transactions on Control SystemsTechnology 26.2, pp. 765–772.

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 43

Page 53: Atomic Force Microscopyfolk.ntnu.no/ragazzon/publication_files/2019_kth... · 2019-11-17 · Atomic Force Microscopy High-Performance Demodulation and Model-Based Nanomechani-cal

Introduction High-performance Demodulation Model-based Nanomechanical Identification Research Directions

Bibliography

Bibliography II

Ragazzon, M.R.P., J.T. Gravdahl, and K.Y. Pettersen (2018). “Model-Based Identification ofNanomechanical Properties in Atomic Force Microscopy: Theory and Experiments”. IEEETransactions on Control Systems Technology.

Ruppert, Michael G, David M Harcombe, Michael R P Ragazzon, S O Reza Moheimani, andAndrew J Fleming (2017). “A Review of Demodulation Techniques forAmplitude-Modulation Atomic Force Microscopy”. Beilstein Journal of Nanotechnology 8.1,pp. 1407–1426.

Michael R. P. Ragazzon Atomic Force Microscopy: Demodulation and Model-Based Identification 44