Atmospheric turbulence

40
Atmospheric turbulence Richard Perkins Laboratoire de Mécanique des Fluides et d’Acoustique Université de Lyon CNRS – EC Lyon – INSA Lyon – UCBL 36, avenue Guy de Collongue 69134 Ecully [email protected] R.J. Perkins 2009 1 VII Séminaire Transalpin de Physique - Atmospheric Turbulence

description

Atmospheric turbulence. Richard Perkins Laboratoire de Mécanique des Fluides et d’Acoustique Université de Lyon CNRS – EC Lyon – INSA Lyon – UCBL 36, avenue Guy de Collongue 69134 Ecully [email protected]. What is turbulence?. One of the great unsolved problems - PowerPoint PPT Presentation

Transcript of Atmospheric turbulence

Page 1: Atmospheric turbulence

VII Séminaire Transalpin de Physique - Atmospheric Turbulence 1

Atmospheric turbulence

Richard PerkinsLaboratoire de Mécanique des Fluides et d’Acoustique

Université de LyonCNRS – EC Lyon – INSA Lyon – UCBL

36, avenue Guy de Collongue69134 Ecully

[email protected]

R.J. Perkins 2009

Page 2: Atmospheric turbulence

VII Séminaire Transalpin de Physique - Atmospheric Turbulence 2

One of the great unsolved problems• From a theoretical point of view:

– Einstein/Heisenberg, Cray prize• From a practical point of view:

– Most ‘engineering’ and geophysical flows are turbulent

Impossible to define satisfactorily• But usually easy to recognise• Is it random?• Is it unpredictable?

Often described in terms of how it occurs…

What is turbulence?

Clouds over Madeira

NASA

R.J. Perkins 2009

Page 3: Atmospheric turbulence

R.J. Perkins 2009 VII Séminaire Transalpin de Physique - Atmospheric Turbulence 3

Reynolds experiment

What is turbulence?

Page 4: Atmospheric turbulence

VII Séminaire Transalpin de Physique - Atmospheric Turbulence 4R.J. Perkins 2009

Reynolds’ analysis of his pipe flow experiment

What is turbulence?

2 1

1

m sm

m s

D

U

The flow is determined by three parameters only:

: the kinematic viscosity of the fluid [: the diameter of the pipe [

: the average velocity in the pipe [ ]

Re UD

These can be rearranged into a single dimensionless number:

which determines the state of the flow.

Critical Reynolds number for transition

Re 2000 Re 2000Flow is stable (laminar) Flow becomes unstable (turbulent)

Page 5: Atmospheric turbulence

VII Séminaire Transalpin de Physique - Atmospheric Turbulence 5R.J. Perkins 2009

The role of Reynolds number

What is turbulence?

The wake behind a cylinder

Page 6: Atmospheric turbulence

R.J. Perkins 2009 VII Séminaire Transalpin de Physique - Atmospheric Turbulence 6

A wide range of Length and Time Scales

What is turbulence?

Page 7: Atmospheric turbulence

Conservation of mass― for an incompressible fluid

R.J. Perkins 2009 VII Séminaire Transalpin de Physique - Atmospheric Turbulence 7

The Governing Equations

0

0 1

0 1

12 2 2

2

2 2 2 2

2 2 2

2

Entering Leaving

z z

x x

y y

w wM w z x y M w z x

u uM u x y z

v vM v y x z M v y

yz z

x zy

M u x y zx x

y

1 0 1 0 1 0 0x x y y z zM M M M M M M t

. . 0i

i

uu v wu

x y z x

u2δx2δy

2δz

Mz0

Mz1

Mx1

Mx0

My0

My1

.

. .

.

.

.

Page 8: Atmospheric turbulence

R.J. Perkins 2009 VII Séminaire Transalpin de Physique - Atmospheric Turbulence 8

Conservation of momentum – the Navier-Stokes equations

The Governing Equations

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

1

1

1

u u u u dp u u uu v w

t x y z dx x y z

v v v v dp v v vu v wt x y z dy x y z

w w w w dp w w wu v w

t x y z dz x y z

221 1.or : or :

LiNon linear near

LineaNon linear

i i

j j j

r

ij

i

u u uu dpu u p u ut t x dx x x

, , ,3N- S + continuity

4 unknowns: 4 equations:

soluble p u v w

Page 9: Atmospheric turbulence

Dimensional Analysis

The physical problem can be characterised by:• the fluid density, ρ• a characteristic length scale, L• a characteristic velocity scale, U

The dimensionless variables then become:

R.J. Perkins 2009 VII Séminaire Transalpin de Physique - Atmospheric Turbulence 9

The Governing Equations

* * *

* * *

*

2*

2

2 2 2* * *

/ , / , // , / , /

( / )

/

1 1, ,

x x L y y L z z Lu u U v v U w w Ut t U L

p p U

Ux L x x L x t L t

Lengths: Velocities: Time :

Pressure :

Derivatives:

Page 10: Atmospheric turbulence

R.J. Perkins 2009 VII Séminaire Transalpin de Physique - Atmospheric Turbulence 10

In Dimensionless Form:

The Governing Equations

*

*

2* * **

** * * * *

2* * **

** * * * *

0

1Re

Non linear

Non line

i

i

i

a

i ij

j i j j

i i ij

j i j j

Linear

Lir near

ux

u u udpu

t x dx UL x x

u u udput x dx x x

Continuity equation :

Navier-Stokes equation :

: or

4 variables (u1, u2, u3, p) and 4 equations1 independent parameter – the Reynolds number Re (=UL/ν) Family of solutions, as a function of Re

Very few analytical solutions available Need to solve the equations numerically

Page 11: Atmospheric turbulence

R.J. Perkins 2009 VII Séminaire Transalpin de Physique - Atmospheric Turbulence 11

Flow between parallel plates

Laminar flow

u

xy

z

z h0u v w

0u v w

0z

z h

20 Re 1000

0

0

Steady flow

Choice of axes

Except for

U ht

yp

x x

0 0 0 0and

Continui

since at ,

ty e

everyw

quatio

r

n

he eu v w w

w z h wx y z z

2 2 2

2 2 2

1

10 is independe

Navier-Stokes equation ( compon

nt of

e

nt)w

w w w w dp w w wu v w

t x y z dz x y zdp

p zdz

Page 12: Atmospheric turbulence

R.J. Perkins 2009 VII Séminaire Transalpin de Physique - Atmospheric Turbulence 12

Flow between parallel plates

Laminar flow

2 2 2

2 2 2

2

2

2

1

10

1 12

Navier-Stokes equation ( component)

Since is indepen

dent of we can integrate this directly:

u

u u u u dp u u uu v w

t x y z dx x y z

dp udx z

p z

dpu z

dx

0 :with boundary con ditions t a

az b

u z h

2max

01

2

Maximum speedz

dpu h

dx

32

3

12 3

1 42 3

Mass flow ratehh

h h

dp zq u dz h z

dx

dp hdx

Shear stress on the wall

hz h

u dph

z dx

2 212

dpu z h

dx

Page 13: Atmospheric turbulence

VII Séminaire Transalpin de Physique - Atmospheric Turbulence 13R.J. Perkins 2009

What happens at higher Reynolds numbers?

Turbulent flow

If Re 1000 the flow will start to become turbulent, and the velocities will fluctuate in space and in time.

Poiseuille flow close to the boundary, visualised with smoke

Laminar Turbulent

0

0, 0, 0

0

t

x y zw

Fransson, Talamelli, Brandt & Cossu (PRL, 2006).

Could we do the same analysis, using just the average velocities?

Page 14: Atmospheric turbulence

R.J. Perkins 2009 VII Séminaire Transalpin de Physique - Atmospheric Turbulence 14

Reynolds Decomposition

Turbulent flow

0 10 20 30 40 50t(s)

0

5

10

15

u [m

s-1

] u

0 0 0

1 1 1 0T T T

u u u

u u dt u dt u dt u u uT T T

Reynolds decomposition:

For a steady flow we can take a time average of the velocity:

For unsteady flow we need to take an ensemble average

1

1 1

1( ) ( )

1 1( ) ( )

( ) ( )

( ) 0

n N

nn

n N n N

nn n

u t u tN

u t u tN Nu t u t

u t

h

u

u gh

Page 15: Atmospheric turbulence

R.J. Perkins 2009 VII Séminaire Transalpin de Physique - Atmospheric Turbulence 15

Reynolds Decomposition applied to the Continuity Equation

Turbulent flow

0

0

i i ii

i i i i

i

i

u u uux x x x

ux

Taking the ensemble average:

i i iu u u

Reynolds decomposition

0i

i

ux

The Continuity Equation

0ii ii i

i i i i

uu uu ux x x x

Applying Reynolds decomposition:

Conclusions• The average velocities satisfy the continuity

equation• The fluctuating velocities satisfy the

continuity equation, at every instant

Page 16: Atmospheric turbulence

VII Séminaire Transalpin de Physique - Atmospheric Turbulence 16R.J. Perkins 2009

Reynolds Decomposition applied to the Navier-Stokes Equations

Turbulent flow

21Re

i ji i ij

j i j j j

u uu u p uu

t x x x x x

Taking the ensemble average:

i i iu u u

p p p

Reynolds decomposition21

Rei i i

jj i j j

u u uput x x x x

The Navier-Stokes Equations

21

Rei i j j i i i ij i j j

u u u u u u p p u ut x x x x

Applying Reynolds decomposition:

Conclusions• The average velocities do not satisfy

the Navier-Stokes equations!• Correlations between the

fluctuating velocities contribute to the mean transport of momentum.

Page 17: Atmospheric turbulence

VII Séminaire Transalpin de Physique - Atmospheric Turbulence 17R.J. Perkins 2009

The Reynolds stress term

Turbulent flow

2

2

12

0 0.

jj j

j j

j j

i j

uu u

x x

u u

Consider the case :

And only if

This is only true in a laminar flow.δz

0u w

0u w 0uu u zz

0uu u zz

u

z

' 0

0

uu zz

w

0

' 0

wuu zz

Reynolds stresses in the boundary layer

0u w So in the boundary layer:

• Fluctuating velocities towards the wall transport faster fluid towards the wall

• Fluctuating velocities away from the wall transport slower fluid away from the wall

• Reynolds stresses transport momentum down the momentum gradient

• The action of the Reynolds stresses is similar to the action of viscosity.

• But, the Reynolds stresses are much more effective than viscosity

They cannot be neglected

Page 18: Atmospheric turbulence

VII Séminaire Transalpin de Physique - Atmospheric Turbulence 18R.J. Perkins 2009

The closure problem

Turbulent flow

211 1 1

1

222 2 2

2

233 3 3

3

0

1Re

1Re

1Re

i

i

jj

j j j j

jj

j j j j

jj

j j j j

ux

u uu u p uu

t x x x x x

u uu u p uu

t x x x x x

u uu u p uu

t x x x x x

4 Equations:

Continuity:

Navier-Stokes:

1 2 3

1 1 1 2 1 3 2 2 2 3 3 3

, , ,

, , , , ,

u u u p

u u u u u u u u u u u u

10 unknowns: Need a model for the Reynolds stress terms to close the system of equations.

Page 19: Atmospheric turbulence

VII Séminaire Transalpin de Physique - Atmospheric Turbulence 19R.J. Perkins 2009

Closure models

Turbulent flow

2

2 2

13

3

Eddy viscosity models

jii j ij T

j i

i i

uuu u q

x x

q u u u

2

2

1 2

:

12

turbulent kinetic energy : average energy dissipation

Need Evolution equations for and

: Production

of turbulent energ

models

y

T

i ii j T

i j

k kC

kdkdtd C Cdt k k

u uu u

x

k

x

2

j

i

u

x

Page 20: Atmospheric turbulence

R.J. Perkins 2009 VII Séminaire Transalpin de Physique - Atmospheric Turbulence 20

Numerical solutions of the Navier-Stokes equations

Turbulent flows

Direct Numerical Simulation – DNSAll the terms are computed explicitlyÞ Spatial resolution Δx, Δy ~ kη – Kolmogorov length scale

2(Re) 1mm 0.1s; for the atmosphere, ! (And !)k f k T k

Large Eddy Simulation – LES• The large scales are calculated explicitly (Δx, Δy kη)• The effect of the small scales is modelled using a sub-grid scale model

Express the derivatives as Finite Differences:

3,2 1,2 2,3 2,1

3 1 3 1

u u u uu ux x x y y y

e.g.

x

1,1u 2,1u

2x 3x

1y

1,2u

2,3u

2,2u

1,3u

3,1u

3,2u

3,3u

2y

3y

y

1x

Page 21: Atmospheric turbulence

R.J. Perkins 2009 VII Séminaire Transalpin de Physique - Atmospheric Turbulence 21

Vertical Structure of the Atmospheric Boundary layer

Turbulence in the Atmospheric Boundary Layer

Page 22: Atmospheric turbulence

R.J. Perkins 2009 VII Séminaire Transalpin de Physique - Atmospheric Turbulence 22

Length and Time Scales

Turbulence in the Atmospheric Boundary Layer

Page 23: Atmospheric turbulence

R.J. Perkins 2009 VII Séminaire Transalpin de Physique - Atmospheric Turbulence 23

Synoptic Scales – Radioactive plume from Chernobyl

Turbulence in the Atmospheric Boundary layer

Page 24: Atmospheric turbulence

R.J. Perkins 2009 VII Séminaire Transalpin de Physique - Atmospheric Turbulence 24

Diurnal variations

Turbulence in the Atmospheric Boundary Layer

Page 25: Atmospheric turbulence

R.J. Perkins 2009 VII Séminaire Transalpin de Physique - Atmospheric Turbulence 25

Effect of density gradient of air

Thermal Effects in the ABL

Hydrostatic pressure:

Ideal gas :

Adiabatic movement:

Potential temperature :

1K /100mp

dp dT ggdz dz C

p RT

0pdpdq C dT

/ 2 / 71000pR C

refpT T

p p

0 :

0 :

0 :

Unstable

Neutral

Stable

ddzddzddz

0 0,p T

2 / 7

11 1 0

0

, pp T Tp

Page 26: Atmospheric turbulence

R.J. Perkins 2009 VII Séminaire Transalpin de Physique - Atmospheric Turbulence 26

Thermal Stability

Thermal Effects in the ABL

Neutral Stable Unstable

Page 27: Atmospheric turbulence

R.J. Perkins 2009 VII Séminaire Transalpin de Physique - Atmospheric Turbulence 27

Effects on Dispersion

Thermal Effects in the ABL

Page 28: Atmospheric turbulence

R.J. Perkins 2009 VII Séminaire Transalpin de Physique - Atmospheric Turbulence 28

Inversion layers

Thermal Effects in the ABL

Beirut, April 2000

Page 29: Atmospheric turbulence

29R.J. Perkins 2009 VII Séminaire Transalpin de Physique - Atmospheric Turbulence

The dispersion of hot smoke in a tunnel

The effect of stratification on turbulence

Page 30: Atmospheric turbulence

VII Séminaire Transalpin de Physique - Atmospheric Turbulence 30

Mechanical Production of Turbulence

R.J. Perkins 2009

The effect of stratification on turbulence

ˆ

Horizontal force:

Work done = Force x distance:

Power = rate of doing work:

Power/unit mass of fluid:

M

M

M

F x y

duW x y z t

dz

duP x y z

dz

P duP

x y z dz

Page 31: Atmospheric turbulence

VII Séminaire Transalpin de Physique - Atmospheric Turbulence 31

Buoyant production/destruction of turbulence

R.J. Perkins 2009

The effect of stratification on turbulence

ˆ

Buoyancy Force caused by a fluctuation in density:

Work done = Force x distance:

Power = rate of doing work:

Power/unit mass of fluid:

Averaging over all fluctuati

B

B

B

B

F V g

W V g w t

P V g w

P g w

ˆ

ons of density and velocity:

Bg

P w

Page 32: Atmospheric turbulence

VII Séminaire Transalpin de Physique - Atmospheric Turbulence 32

Vertical Heat flux

R.J. Perkins 2009

The effect of stratification on turbulence

ˆ

Density fluctuations are related to temperature fluctuations:

From which:

where is the vertical flux of sensible heat.

pB

p p

TT

g c T wg g HP T w

T T c T c

H

For an unstable (convective) boundary layer H>0: upward heat flux adds to the turbulence

For a stable boundary layer H<0:downward heat flux suppresses turbulence

Buoyant production is almost independent of height:ρ and T vary very little in the first 10m-50m

Þ At low altitudes, stability is determined principally by mechanical productionÞ At higher altitudes, stability is determined principally by buoyant production

Page 33: Atmospheric turbulence

VII Séminaire Transalpin de Physique - Atmospheric Turbulence 33

The Richardson number

R.J. Perkins 2009

The effect of stratification on turbulence

R

R

ˆˆ /

f

f

B

pM

P g HT c du dzP

Richardson defined a stability criterion as:

negative buoyant production rate mechanical production rate

- /

/

p HH c K T z

But these quantities are difficult to measure, so Richardsonassumed that the turbulent transport of Heat and Momentum could be modelled by diffusion equ

Flux Richardson

ations

r

:

Numbe

2

2

/ /

/R

/

M

Hf

M

u z K u z

T zKgT K u z

From which:

1H

M

KK

T

Often

The Temperature can be written in terms of the Potential Temperature

Page 34: Atmospheric turbulence

VII Séminaire Transalpin de Physique - Atmospheric Turbulence 34R.J. Perkins 2009

The Richardson number

The Effect of Stratification on Turbulence

2

/R/

R 0.25 :R 0.25 :

where: slightly turbulent flow remains turbulent

Gradient Richardson Number

turbulence is suppressed

i

i

i

g zu z

Page 35: Atmospheric turbulence

VII Séminaire Transalpin de Physique - Atmospheric Turbulence 35

The Monin-Obukhov Length

R.J. Perkins 2009

The Effect of Stratification on Turbulence

3*

3 3* *

ˆˆ ˆ

ˆ

MO

MMO

M B

Bp

p v pMO

L

uduPdz kL

P Pg HPT c

u T c u T cL

g H k k g w

Suppose that at some height the mechanical production of turbulence

is balanced by the buoyant dissipation of turbulence:

Page 36: Atmospheric turbulence

VII Séminaire Transalpin de Physique - Atmospheric Turbulence 36

Lagrangian dispersion

Consider the trajectories of particles passing through the source:

R.J. Perkins 2009

Turbulent dispersion coefficient

In the absence of molecular diffusion, the concentration transported by a particle remains constant.

Page 37: Atmospheric turbulence

VII Séminaire Transalpin de Physique - Atmospheric Turbulence 37

Trajectory of a single particle

R.J. Perkins 2009

Turbulent dispersion coefficient

22( ) ( )( )

( ) ( )

Velocity autocorrelation

L v t v tRv t v t

( )tu

( )t t u

( 2 )t t u

( 3 )t t u

( 4 )t t u

22 220

( ) d

Lagrangian Integral timescale

L LT R

Page 38: Atmospheric turbulence

VII Séminaire Transalpin de Physique - Atmospheric Turbulence 38

Lagrangian analysis

R.J. Perkins 2009

Turbulent dispersion coefficient

0

( , ) ( , ), ( ,0,0)

0,

( )

Consider a velocity field defined by:

where

Release a cloud of particles at in the volume

The position of particle at any instant is given by the n

u x t U u x t U U

N t x r

x t n t

0

1

( ) ( ( ), ) d

1( ) ( )

Lagrangian integral:

The position of the centroid of the cloud of particles at any instant is defined by:

where denotes the of t

t

n n n

n N

c n nn

n

x t u x

t

x t x t x tN

ensemble average he variable .

Page 39: Atmospheric turbulence

VII Séminaire Transalpin de Physique - Atmospheric Turbulence 39

Diffusion by continuous movements (Taylor, 1921)

R.J. Perkins 2009

Turbulent dispersion coefficient

2 2 2

1

1( ) ( ) ( )

Consider dispersion in the direction; this can be characterised by the variance of the particle positions:

, the dispersion coeB fy fidefi ciennit t is the rate of change ion

n N

y nn

y

t y t y tN

22

0

0 0 0

22

( )( ) ( )2 ( ) 2 ( ) ( ) 2 ( ) ( )

:

2 ( ) ( ) 2 ( ) ( ) 2 ( ) ( )

2 ( ) ( )

of the variance:

With the change of variable

From which:

ty

T

t t t

T

LT

d y td t dy tK y t y t v t v t v s dsdt dt dt

s t

K v t v t d v t v t d v t v t d

K v t v t R

0

( )t

d

Page 40: Atmospheric turbulence

VII Séminaire Transalpin de Physique - Atmospheric Turbulence 40

Time dependence of the dispersion coefficient

R.J. Perkins 2009

Turbulent dispersion coefficient

222

0

222

222 22 22

0

2 ( )

0, ( ) 1 2

, ( ) d 2

tL

T

LT

tL L L

T

K v R d

t R K v t

t R T K v T

t

.TK const

TK tKT varies with distance from the source