Atmospheric Aerosol Physics, Physical Measurements, and...

16
Atmospheric Aerosol Physics, Physical Measurements, and Sampling Mechanical Properties SAMLAC San Juan, Puerto Rico November 2018

Transcript of Atmospheric Aerosol Physics, Physical Measurements, and...

Page 1: Atmospheric Aerosol Physics, Physical Measurements, and ...samlac.uprrp.edu/wp-content/uploads/2018/12/Mechanical-Propertie… · Hinds: Aerosol Technology: Properties, Behavior,

Atmospheric Aerosol Physics, Physical Measurements, and Sampling

Mechanical Properties

SAMLACSan Juan, Puerto Rico

November 2018

Page 2: Atmospheric Aerosol Physics, Physical Measurements, and ...samlac.uprrp.edu/wp-content/uploads/2018/12/Mechanical-Propertie… · Hinds: Aerosol Technology: Properties, Behavior,

External forces on a particles will result in a macroscopically directed particle motion. 

Examples for external forces:

Gravitational force

Electrical force

Thermophoresis 2P th

thG

3 D K TFT

External Forces

3 Gg P P

P

(1 )6

F D g

e e eF n E

Page 3: Atmospheric Aerosol Physics, Physical Measurements, and ...samlac.uprrp.edu/wp-content/uploads/2018/12/Mechanical-Propertie… · Hinds: Aerosol Technology: Properties, Behavior,

Particle Reynolds NumberThe Particle‐Reynolds‐Number is an important quantity for the characterization of the mechanical properties of aerosol particles.

It characterizes the flow around an aerosol particle.

Equal Particle‐Reynolds‐Numbers imply the same pattern of stream lines in thevicinity of particles with different size and in different gases.

It is the most important property for the determination of the drag force a gas exertson a suspended particle.

G P PPRe u D

Page 4: Atmospheric Aerosol Physics, Physical Measurements, and ...samlac.uprrp.edu/wp-content/uploads/2018/12/Mechanical-Propertie… · Hinds: Aerosol Technology: Properties, Behavior,

Hinds: Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles

Laminar flow, Re = 0.1 Turbulent flow, Re  2  Turbulent flow, Re  250 

Flow around a sphere

Page 5: Atmospheric Aerosol Physics, Physical Measurements, and ...samlac.uprrp.edu/wp-content/uploads/2018/12/Mechanical-Propertie… · Hinds: Aerosol Technology: Properties, Behavior,

Most particle movement takes place at low Particle‐Reynolds‐Numbers, as both, the flow velocityand the particle diameter are usually small.

Stokes' Law is a special solution of the momentum, i.e. the Navier‐Stokes‐equation.

Therefore, the following assumptions are made:

incompressible flow steady state gas velocity equal to zero at the particle surface (no slip boundary)

The drag coefficient can be determined applying Newton's Law:

The drag force results in:

The temperature dependency of the viscosity can be described as follows:

Re24

D C

D 3 P PF u D

Stokes' Law 

3/2

00

0

110.4K110.4K

TTT T

Page 6: Atmospheric Aerosol Physics, Physical Measurements, and ...samlac.uprrp.edu/wp-content/uploads/2018/12/Mechanical-Propertie… · Hinds: Aerosol Technology: Properties, Behavior,

For particle diameters DP< 10000 nm,  the gas velocity at the particle surface is not equal to zero, which results in a reduced drag force.

This effect is accounted for by the Cunningham correction factor

The Cunningham correction factor was determined empirically via the determination of the settling velocity of particles with known size and density.

For the pressure & temperature dependency of the Cunningham correction factor, the mean free path has to be corrected according to:

The drag force then becomes: 

))55.0exp(8.0514.2(1 P

PC

DD

C

P PD

C

3 u DFC

Cunningham Correction Factor

2

0 00

0

110.4K+110.4K

p TTT p T

Page 7: Atmospheric Aerosol Physics, Physical Measurements, and ...samlac.uprrp.edu/wp-content/uploads/2018/12/Mechanical-Propertie… · Hinds: Aerosol Technology: Properties, Behavior,

1

10

100

1000

1 10 100 1000 10000

Dp [nm]

Cunn

ingh

am‐Cor

rection

Cunningham correction factor as function of particle size

Page 8: Atmospheric Aerosol Physics, Physical Measurements, and ...samlac.uprrp.edu/wp-content/uploads/2018/12/Mechanical-Propertie… · Hinds: Aerosol Technology: Properties, Behavior,

Mechanical MobilityThe drag force on a particle in an uniform motion results in:

D 3 P PF u D

In Stokes' Law the drag force is directly proportional to the relative velocity between the particle and thegas. This fact can be used to introduce themechanical mobility B :

CP

PD 3CuB

DF

For particle diameters DP< 10000 nm,  the gas velocity at the particle surface is not equal to zero, which results in a reduced drag force.  This effect is accounted for by the Cunningham correction factor

))55.0exp(8.0514.2(1 P

PC

DD

C

Page 9: Atmospheric Aerosol Physics, Physical Measurements, and ...samlac.uprrp.edu/wp-content/uploads/2018/12/Mechanical-Propertie… · Hinds: Aerosol Technology: Properties, Behavior,

Sedimentation Velocity

If the gas density is small compared to the particle density, thesedimentation velocity us can be calculated as follows:

An important application of Stokes' law is the determination of the sedimentation velocity us of aerosolparticles. In this case, the drag forces FD is equal to the gravitational force FG acting on the particle.

D G

3s P GP P

C P

3 (1 )6

F F

u D D gC

18C

2PP

sgCD

u

Page 10: Atmospheric Aerosol Physics, Physical Measurements, and ...samlac.uprrp.edu/wp-content/uploads/2018/12/Mechanical-Propertie… · Hinds: Aerosol Technology: Properties, Behavior,

Brownian Motion of Aerosol Particles

Figure: Hinds: Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles

Page 11: Atmospheric Aerosol Physics, Physical Measurements, and ...samlac.uprrp.edu/wp-content/uploads/2018/12/Mechanical-Propertie… · Hinds: Aerosol Technology: Properties, Behavior,

Particle Diffusion

The particle diffusion results from interactions between particles and gas molecules. 

Due to the impulse exchange molecules and particles, the Brownian motion of the molecules istransferred to the particles.

The resulting particle motion is then called Brownian particle motion.

A measure of the Brownian particle motion is the particle diffusion coefficient D.

The Brownian particle motion is macroscopically non‐directional.

D k T B

Page 12: Atmospheric Aerosol Physics, Physical Measurements, and ...samlac.uprrp.edu/wp-content/uploads/2018/12/Mechanical-Propertie… · Hinds: Aerosol Technology: Properties, Behavior,

Stokes Number

The Stokes number characterizes the particle inertia in a flow

… relaxation timeu0 … wind velocityDpipe … tube diameter

The Stokes Number is the ratio between the particle stopping distance to characteristic dimensions ofthe flow profile.

P P CD C2

18

with

0

pipe

Stk uD

Page 13: Atmospheric Aerosol Physics, Physical Measurements, and ...samlac.uprrp.edu/wp-content/uploads/2018/12/Mechanical-Propertie… · Hinds: Aerosol Technology: Properties, Behavior,

Flow‐Reynolds‐Number

gas … gas densityuflow … flow velocityDpipe … tube diameter … dynamic viscosity

gas flow pipeflowRe

u D

The Flow‐Reynolds‐Number depends mainly on the flow rate and the tube diameter

Page 14: Atmospheric Aerosol Physics, Physical Measurements, and ...samlac.uprrp.edu/wp-content/uploads/2018/12/Mechanical-Propertie… · Hinds: Aerosol Technology: Properties, Behavior,

Example

Page 15: Atmospheric Aerosol Physics, Physical Measurements, and ...samlac.uprrp.edu/wp-content/uploads/2018/12/Mechanical-Propertie… · Hinds: Aerosol Technology: Properties, Behavior,

Particle Losses

Particle losses in transport systems can occur due to:

Sedimentation in horizontal or sloping pipes (coarse particles)

Inertia in bends (coarse particles)

Diffusion (ultrafine particles)

Page 16: Atmospheric Aerosol Physics, Physical Measurements, and ...samlac.uprrp.edu/wp-content/uploads/2018/12/Mechanical-Propertie… · Hinds: Aerosol Technology: Properties, Behavior,

Particle Losses in PipesFor coarse particles > 1 µm

Pipes should be vertically orientated.

In cases when horizontal or sloping pipes cannot be avoided, the flow should be high.

Bends should be avoided.

Highly turbulent flows cause increased inertial losses.

For ultrafine particles < 100 nm

Pipes should be kept as short as possible.

The transport system should be designed for a laminar flow with the optimum Reynoldsnumber of 2000.

Turbulent flows should be avoided, because of higher diffusional particle losses.