ATHEMATICAL!METHODS!UNIT 2 CHAPTER 11 …drweiser.weebly.com/uploads/5/2/6/4/52647653/... ·...

16
EXPONENTIAL FUNCTIONS PAGE 1 of 16 ∙ = ( ∙ = 0 ∙ = − Φ . ∙ = ( + ( ( Φ 3 MATHEMATICAL METHODS UNIT 2 CHAPTER 11 – EXPONENTIAL FUNCTIONS Key knowledge the key features and properties of power and polynomial functions and their graphs the effect of transformations of the plane, dilation, reflection in axes, translation and simple combinations of these transformations, on the graphs of linear and power functions the relation between the graph of a onetoone function, its inverse function and reflection in the line y = x key mathematical content from one or more areas of study related to a given context specific and general formulations of concepts used to derive results for analysis within a given context the role of examples, counterexamples and general cases in working mathematically inferences from analysis and their use to draw valid conclusions related to a given context. Key skills draw graphs of polynomial functions of low degree, simple power functions and simple relations that are not functions specify the relevance of key mathematical content from one or more areas of study to the investigation of various questions in a given context develop mathematical formulations of specific and general cases used to derive results for analysis within a given context use a variety of techniques to verify results make inferences from analysis and use these to draw valid conclusions related to a given context communicate conclusions using both mathematical expression and everyday language, in particular, the interpretation of mathematics with respect to the context. CHAPTER 11 – SET QUESTIONS EXERCISE 11.2: INDICES AS EXPONENTS 2, 4, 6, 8, 10ac, 11ace, 12ac, 13ace, 14ace, 15, 17 EXERCISE 11.3: INDICES AS LOGARITHMS 2, 4, 6, 8, 10ace, 11ace, 12ac, 13ac, 14ace, 15ace, 18ace EXERCISE 11.4: GRAPHS OF EXPONENTIAL FUNCTIONS 1b, 2, 3b, 4, 5b, 6, 7, 9 EXERCISE 11.5: APPLICATIONS OF EXPONENTIAL FUNCTIONS 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14 EXERCISE 11.6: INVERSE OF EXPONENTIAL FUNCTIONS 1a, 2, 5, 6, 14 MORE RESOURCES http://drweiser.weebly.com

Transcript of ATHEMATICAL!METHODS!UNIT 2 CHAPTER 11 …drweiser.weebly.com/uploads/5/2/6/4/52647653/... ·...

Page 1: ATHEMATICAL!METHODS!UNIT 2 CHAPTER 11 …drweiser.weebly.com/uploads/5/2/6/4/52647653/... · exponential*functions* ***** *****page*2*of*16* table&of&contents! 11.2indices!as!exponents!

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  1  of  16  

𝑬 ∙ 𝑑𝑨 =𝑞𝜀(  

𝑩 ∙ 𝑑𝑨 = 0  

𝑬 ∙ 𝑑𝑺 = −𝑑Φ. 𝑑𝒕  

𝑩 ∙ 𝑑𝑺 = 𝜇(𝑖 + 𝜇(𝜀(𝑑Φ3 𝑑𝒕  

MATHEMATICAL  METHODS  UNIT  2  CHAPTER  11  –  EXPONENTIAL  FUNCTIONS  Key  knowledge  •  the  key  features  and  properties  of  power  and  polynomial  functions  and  their  graphs    •  the  effect  of  transformations  of  the  plane,  dilation,  reflection  in  axes,  translation  and  simple  combinations  of  these  transformations,  on  the  graphs  of  linear  and  power  functions    

•  the  relation  between  the  graph  of  a  one-­‐to-­‐one  function,  its  inverse  function  and  reflection  in  the  line  y  =  x  •  key  mathematical  content  from  one  or  more  areas  of  study  related  to  a  given  context    •  specific  and  general  formulations  of  concepts  used  to  derive  results  for  analysis  within  a  given  context    •  the  role  of  examples,  counter-­‐examples  and  general  cases  in  working  mathematically    •  inferences  from  analysis  and  their  use  to  draw  valid  conclusions  related  to  a  given  context.    

Key  skills  •  draw  graphs  of  polynomial  functions  of  low  degree,  simple  power  functions  and  simple  relations  that  are  not  functions    •  specify   the   relevance   of   key  mathematical   content   from  one   or  more   areas   of   study   to   the   investigation   of   various  questions  in  a  given  context    

•  develop  mathematical  formulations  of  specific  and  general  cases  used  to  derive  results  for  analysis  within  a  given  context    •  use  a  variety  of  techniques  to  verify  results    •  make  inferences  from  analysis  and  use  these  to  draw  valid  conclusions  related  to  a  given  context    •  communicate  conclusions  using  both  mathematical  expression  and  everyday  language,  in  particular,  the  interpretation  of  mathematics  with  respect  to  the  context.    

 

CHAPTER  11  –  SET  QUESTIONS  EXERCISE  11.2:  INDICES  AS  EXPONENTS  

2,  4,  6,  8,  10ac,  11ace,  12ac,  13ace,  14ace,  15,  17  EXERCISE  11.3:  INDICES  AS  LOGARITHMS  

2,  4,  6,  8,  10ace,  11ace,  12ac,  13ac,  14ace,  15ace,  18ace  EXERCISE  11.4:  GRAPHS  OF  EXPONENTIAL  FUNCTIONS  

1b,  2,  3b,  4,  5b,  6,  7,  9  EXERCISE  11.5:  APPLICATIONS  OF  EXPONENTIAL  FUNCTIONS  

1,  2,  3,  4,  5,  6,  7,  8,  10,  12,  14  EXERCISE  11.6:  INVERSE  OF  EXPONENTIAL  FUNCTIONS  

1a,  2,  5,  6,  14    

MORE  RESOURCES    http://drweiser.weebly.com    

Page 2: ATHEMATICAL!METHODS!UNIT 2 CHAPTER 11 …drweiser.weebly.com/uploads/5/2/6/4/52647653/... · exponential*functions* ***** *****page*2*of*16* table&of&contents! 11.2indices!as!exponents!

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  2  of  16  

Table  of  Contents  

11.2  INDICES  AS  EXPONENTS   3  INDEX  OR  EXPONENTIAL  FORM   3  

REVIEW  OF  INDEX  LAWS   3  FRACTIONAL  INDICES   3  

Example  1  (Q1)   3  INDICIAL  EQUATIONS   4  

METHOD  OF  EQUATING  INDICES   4  Example  2  (Q3)   4  

INDICIAL  EQUATIONS  WHICH  REDUCE  TO  QUADRATIC  FORM   4  Example  3  (Q5)   4  

CAS  CALCULATOR   5  SCIENTIFIC  NOTATION  (STANDARD  FORM)   5  SIGNIFICANT  FIGURES   5  

Worked  Example  4   5  11.3  INDICES  AS  LOGARITHMS   6  INDEX-­‐LOGARITHM  FORMS   6  

USE  OF  A  CALCULATOR   6  Example  5   6  

LOG  LAWS   7  PROOFS  OF  THE  LOGARITHM  LAWS   7  

Example  6   8  Example  7   8  Example  8   8  CAS  calculator   8  Example  9   9  

CONVENTION   9  Example  10  (Q5)   9  

EQUATIONS  CONTAINING  LOGARITHMS   9  Example  11  (Q7)   9  

11.4  GRAPHS  OF  EXPONENTIAL  FUNCTIONS   10  EXPONENTIAL  FUNCTIONS   10  

Example  12  (Q1)   11  TRANSLATIONS  OF  EXPONENTIAL  GRAPHS   11  

THE  GRAPH  OF  𝑦   =  𝑎𝑥

 

+  𝑘   11  THE  GRAPH  OF  𝑦   =  𝑎𝑥 − ℎ   11  

Example  13  (Q3)   12  Dilations   12  

COMBINATIONS  OF  TRANSFORMATIONS   12  Example  14  (Q5a)   12  

11.5  APPLICATIONS  OF  EXPONENTIAL  FUNCTIONS   13  EXPONENTIAL  GROWTH  AND  DECAY  MODELS   13  

Example  15  (Q9)   13  ANALYSING  DATA   14  

Example  16  (Q3)   14  11.6  INVERSE  OF  EXPONENTIAL  FUNCTIONS   15  THE  INVERSE  OF  𝒚 = 𝒂𝒙, 𝒂 ∈ 𝑹 +\{𝟏}   15  

Worked  Example  14a   15  RELATIONSHIPS  BETWEEN  THE  INVERSE  PAIRS   16  

Worked  Example  16   16  

 

Page 3: ATHEMATICAL!METHODS!UNIT 2 CHAPTER 11 …drweiser.weebly.com/uploads/5/2/6/4/52647653/... · exponential*functions* ***** *****page*2*of*16* table&of&contents! 11.2indices!as!exponents!

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  3  of  16  

11.2  Indices  as  Exponents  Index  or  exponential  form    

When  the  number  8  is  expressed  as  a  power  of  2,  it  is  written  as  8   =  2F.  In  this  form,  the  base  is  2  and  the  power  (also  known  as  index  or  exponent)  is  3.    Review  of  index  laws    

Recall  the  basic  index  laws:    

 From  these,  it  follows  that:    

 Fractional  Indices  

 

Recall:   𝑎GH = 𝑎  and   𝑎

GHI= 𝑎H I

= 𝑎  𝑜𝑟   𝑎GHI= 𝑎

HH = 𝑎L = 𝑎    

hence  

 Example  1  (Q1)  

a)   Express  IGMN×PGQHN

LRGMN  as  a  power  of  2  

                 

b)   Evaluate  27THU + VW

PL

GH  

   

Page 4: ATHEMATICAL!METHODS!UNIT 2 CHAPTER 11 …drweiser.weebly.com/uploads/5/2/6/4/52647653/... · exponential*functions* ***** *****page*2*of*16* table&of&contents! 11.2indices!as!exponents!

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  4  of  16  

Indicial  equations    

An  indicial  equation  has  the  unknown  variable  as  an  exponent.  In  this  section  we  shall  consider  indicial  equations  which  have  rational  solutions.    Method  of  equating  indices    If  index  laws  can  be  used  to  express  both  sides  of  an  equation  as  single  powers  of  the  same  base,  then  this  allows  indices  to  be  equated.  

 Example  2  (Q3)  

Solve  IXYMU×PZMHY

VY= 1  for  𝑥.  

 

 

 

 

 

 

 

Indicial  equations  which  reduce  to  quadratic  form    

The  technique  of  substitution  to  form  a  quadratic  equation  may  be  applicable  to  indicial  equations.  To  solve  equations  of  the  form  𝑝×𝑎2𝑥

 

+ 𝑞×𝑎𝑥

 

+ 𝑟 = 0:    •   Note  that  𝑎2𝑥

 

=   (𝑎𝑥)2.    •   Reduce  the  indicial  equation  to  quadratic  form  by  using  a  substitution  for  𝑎𝑥.    •   Solve  the  quadratic  and  then  substitute  back  for  𝑎𝑥.    •   Since  𝑎𝑥  must  always  be  positive,  solutions  for  x  can  only  be  obtained  for  𝑎𝑥

 

>  0;  reject  any  negative  or  zero  values  for  𝑎𝑥.    

Example  3  (Q5)  Solve  30×102𝑥

 

+ 17×10𝑥 − 2 = 0  for  𝑥.    

 

 

   

Page 5: ATHEMATICAL!METHODS!UNIT 2 CHAPTER 11 …drweiser.weebly.com/uploads/5/2/6/4/52647653/... · exponential*functions* ***** *****page*2*of*16* table&of&contents! 11.2indices!as!exponents!

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  5  of  16  

CAS  calculator  

Solve  for  𝑥  given  3TIefL = LVX  writing  your  answer  to  2  

decimal  places.  Scientific  notation  (standard  form)    Index   notation   provides   a   convenient   way   to   express  numbers   which   are   either   very   large   or   very   small.  

Writing  a  number  as  a  ×  10b  (the  product  of  a  number  a  where1  ≤  a  <  10  and  a  power  of  10)  is  known  as  writing  the   number   in   scientific   notation   (or   standard   form).  The  age  of  the  earth  since  the  Big  Bang  is  estimated  to  

be4.54  ×  109  years,  while  the  mass  of  a  carbon  atom  is  approximately  1.994  ×  10−23  grams.  These  numbers  are  written  in  scientific  notation.  

 Significant  figures    When  a  number  is  expressed  in  scientific  notation  as  either  a  ×  10b  or  a  ×  10-­‐b,  the  number  of  digits  in  a  determines  the  number  of  significant  figures  in  the  basic  numeral.  The  age  of  the  Earth  is  4.54  ×  109  years  in  scientific  notation  or  4  540  000  000  years  to  three  significant  figures.  To  one  significant  figure,  the  age  would  be  5  000  000  000  years.    Worked  Example  4  

a)   Express  each  of  the  following  numerals  in  scientific  notation  and  state  the  number  of  significant  figures  each  numeral  contains.    i.   3  266  400      

ii.   0.009  876  03        

b)   Express  the  following  as  basic  numerals.    

i.   4.54  ×  109      

ii.   1.037  ×  10−5          

Page 6: ATHEMATICAL!METHODS!UNIT 2 CHAPTER 11 …drweiser.weebly.com/uploads/5/2/6/4/52647653/... · exponential*functions* ***** *****page*2*of*16* table&of&contents! 11.2indices!as!exponents!

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  6  of  16  

11.3  Indices  as  logarithms    Not  all  solutions  to  indicial  equations  are  rational.  To  obtain  the  solution  to  an  equation  such  as  2x  =  5,  we  need  to  learn  about  logarithms.    

Index-­‐logarithm  forms    

A  logarithm  is  also  another  name  for  an  index.    The  index  statement,  𝑛 = 𝑎𝑥,  with  base  𝑎  and  index  𝑥,  can  be  expressed  with  the  index  as  the  subject.  This  is  called  the  logarithm  statement  and  is  written  as  𝑥 = log𝑎(𝑛).  The  statement  is  read  as  ‘𝑥  equals  the  log  to  base  𝑎  of  𝑛’  (adopting  the  abbreviation  of  ‘log’  for  logarithm).    

 Use  of  a  calculator    

Calculators  have  two  inbuilt  logarithmic  functions.    Base  10   logarithms  are  obtained  from  the  LOG  key.  Thus   log10(2)   is  evaluated  as   log(2),  giving  the  value  of  0.3010  to  4  decimal  places.    Base  e  logarithms  are  obtained  from  the  LN  key.  Thus  loge(  2)  is  evaluated  as  ln  (2),  giving  the  value  0.6931  to  4  decimal  places.  Base  e  logarithms  are  called  natural  logarithms.  When  evaluating  logarithms,  we  need  to  write  each  equation  in  exponential  form  and  solve  the  same  way  we  solve  indicial  equations.  Example  5  Evaluate  the  following  without  a  calculator.  

(a)   logR 216  

                 

(b)   logILP  

                 

Page 7: ATHEMATICAL!METHODS!UNIT 2 CHAPTER 11 …drweiser.weebly.com/uploads/5/2/6/4/52647653/... · exponential*functions* ***** *****page*2*of*16* table&of&contents! 11.2indices!as!exponents!

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  7  of  16  

Log  laws  There  are  five  log  laws:  

 Note  that  there  is  no  logarithm  law  for  either  the  product  or  quotient  of  logarithms  or  for  expressions  such  as  loga(m  ±  n).    

Proofs  of  the  logarithm  laws    1.   Consider  the  index  statement  𝑎0

 

=  1   ∴  𝑙𝑜𝑔𝑎(1)  =  0    2.   Consider  the  index  statement.  𝑎1

 

=  𝑎  ∴  𝑙𝑜𝑔𝑎(𝑎)  =  1    3.   Let  𝑥   =  𝑙𝑜𝑔𝑎(𝑚)  𝑎𝑛𝑑  𝑦   =  𝑙𝑜𝑔𝑎(𝑛)∴  𝑚   =  𝑎𝑥  and  𝑛   =  𝑎𝑦    

𝑚𝑛 = 𝑎𝑥

 

×  𝑎𝑦

 

 

= 𝑎efo  Convert  to  logarithm  form:     𝑥   +  𝑦   =  𝑙𝑜𝑔𝑎(𝑚𝑛)    Substitute  back  for  𝑥  and  𝑦: 𝑙𝑜𝑔𝑎(𝑚)  +  𝑙𝑜𝑔𝑎(𝑛)  =  𝑙𝑜𝑔𝑎(𝑚𝑛)    

4.   With  𝑥  and  𝑦  as  given  in  law  3:  𝑚𝑛 =

𝑎e

𝑎o  = 𝑎eTo  

Converting  to  logarithm  form,  and  then  substituting  back  for  𝑥  and  𝑦  gives:    

𝑥 − 𝑦 = logp𝑚𝑛  

Substitute  back  for  𝑥  and  𝑦:  

∴  𝑙𝑜𝑔𝑎(𝑚)  −  𝑙𝑜𝑔𝑎(𝑛)  =   logp𝑚𝑛  

5.   With  x  as  given  in  law  3:    𝑥   =  𝑙𝑜𝑔𝑎(𝑚)  ∴  𝑚   =  𝑎𝑥

 

 

Raise  both  sides  to  the  power  p:  ∴   (𝑚)𝑝

 

=   (𝑎𝑥)𝑝

 

 ∴  𝑚𝑝

 

= 𝑎𝑝𝑥

 

 Express  as  a  logarithm  statement  with  base  a:    

𝑝𝑥   =  𝑙𝑜𝑔𝑎(𝑚𝑝)  

Substitute  back  for  x:    ∴  𝑝𝑙𝑜𝑔𝑎(𝑚)  =  𝑙𝑜𝑔𝑎(𝑚

𝑝)    It  is  important  to  remember  that  the  log  laws  only  work  if  the  base  is  the  same  for  each  term.  To  solve  logarithmic  equations,  it  is  usually  best  to:  

•   simplify  first  using  log  laws  

•   express  it  in  exponential  form  

•   solve  it  as  required      

Page 8: ATHEMATICAL!METHODS!UNIT 2 CHAPTER 11 …drweiser.weebly.com/uploads/5/2/6/4/52647653/... · exponential*functions* ***** *****page*2*of*16* table&of&contents! 11.2indices!as!exponents!

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  8  of  16  

Example  6  Simplify  each  of  the  following  and  evaluate  where  possible,  without  a  calculator.  

(a)   logL( 5 + logL( 4                

(b)   logI 12 + logI 8 − logI 3  

Example  7  Simplify  3 logI 5 − 2 logI 10.            Example  8  Simplify  each  of  the  following:  

(a)   stuv VWstuv FVF

 

           

(b)  2 logL( 𝑥 + 1  

(c)   5 logL( 𝑥 − 2              CAS  calculator  Evaluate  each  of  the  following  expressions,  correct  to  3  decimal  places.  

(a)   logI 5            

(b)   logw 8  

Page 9: ATHEMATICAL!METHODS!UNIT 2 CHAPTER 11 …drweiser.weebly.com/uploads/5/2/6/4/52647653/... · exponential*functions* ***** *****page*2*of*16* table&of&contents! 11.2indices!as!exponents!

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  9  of  16  

Example  9  

a)   Find  𝑥  if  logF 9 = 𝑥 − 2.                

b)   Solve  for  𝑥  if  logR 𝑥 = −2.  

Sometimes  when  using  a  calculator  which  only  has  bases  10  and  𝑒,  the  logarithmic  equation  needs  to  be  rewritten  to  these  bases.  This  can  be  done  by  taking  the  log  of  both  sides  to  the  same  base,  then  simplifying  and  solving  as  required.  Convention    There  is  a  convention  that  if  the  base  of  a  logarithm  is  not  stated,  this  implies  it  is  base  10.  As  it  is  on  a  calculator,  log(n)  represents  log10(n).  When  working  with  base  10  logarithms  it  can  be  convenient  to  adopt  this  convention.    Example  10  (Q5)  a)   State  the  exact  solution  to  7𝑥

 =  15  and  

calculate  its  value  to  3  decimal  places.                        

b)   Calculate  the  exact  value  and  the  value  to  3  decimal  places  the  solution  to  the  equation:  3Iefz = 4𝑥.  

Equations  containing  logarithms    Example  11  (Q7)  

Solve  the  equation  logF(𝑥)  +   logF(2𝑥 + 1)  =  1  for  𝑥.                            

 

   

Page 10: ATHEMATICAL!METHODS!UNIT 2 CHAPTER 11 …drweiser.weebly.com/uploads/5/2/6/4/52647653/... · exponential*functions* ***** *****page*2*of*16* table&of&contents! 11.2indices!as!exponents!

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  10  of  16  

11.4  Graphs  of  Exponential  functions  Exponential  functions  

Are  functions  of  the  form  𝑓: 𝑅 → 𝑅, 𝑓(𝑥) = 𝑎e, 𝑎 ∈ 𝑅f  \   1  .  They  provide  mathematical  models  of  exponential   growth   and   exponential   decay   situations   such   as   population   increase   and   radioactive  decay  respectively.    

The  graph  of  𝒚 = 𝒂𝒙  where  𝒂 > 𝟏  

 

 

 

The  graph  of  𝒚 = 𝒂𝒙  where  𝟎 < 𝒂 < 𝟏  

 

     

Page 11: ATHEMATICAL!METHODS!UNIT 2 CHAPTER 11 …drweiser.weebly.com/uploads/5/2/6/4/52647653/... · exponential*functions* ***** *****page*2*of*16* table&of&contents! 11.2indices!as!exponents!

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  11  of  16  

Example  12  (Q1)  a)   On  the  same  set  of  axes,  sketchthe  graphs  of  𝑦   =  3𝑥  and  𝑦 = −3𝑥,  stating  their  ranges.    

 

b)   Give  a  possible  equation  for  the  graph  shown.    

 

 

 

 

 

Translations  of  exponential  graphs    Once  the  basic  exponential  growth  or  exponential  decay  shapes  are  known,  the  graphs  of  exponential  functions  can  be  translated  in  similar  ways  to  graphs  of  any  other  functions  previously  studied.      The  graph  of  𝑦   =  𝑎e

 

+  𝑘    Under  a  vertical  translation  the  position  of  the  asymptote  will  be  altered  to  𝑦 = 𝑘.   If  𝑘 < 0,   the  graph  will  have  𝑥-­‐axis   intercepts  which  are  found  by  solving  the  exponential  equation  𝑎𝑥 + 𝑘 = 0.    The  graph  of  𝑦   =  𝑎eT�    Under  a  horizontal  translation,  the  asymptote  is  unaffected.  The  point  on  the  y-­‐axis  will  no  longer  occur  at  𝑦   =  1.  An  additional  point   to   the  y-­‐intercept   that  can  be  helpful   to   locate   is   the  one  where  𝑥   =  ℎ,  since  𝑎eT�  will  equal  1  when  𝑥   =  ℎ.      

Page 12: ATHEMATICAL!METHODS!UNIT 2 CHAPTER 11 …drweiser.weebly.com/uploads/5/2/6/4/52647653/... · exponential*functions* ***** *****page*2*of*16* table&of&contents! 11.2indices!as!exponents!

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  12  of  16  

Example  13  (Q3)  Sketch  the  graph  of  the  following  and  state  the  range.    

𝑦   =  4𝑥

 

−  2    

                 Dilations    Exponential  functions  of  the  form  𝑦 = 𝑏×𝑎𝑥  have  been  dilated  by   a   factor   𝑏  (𝑏 > 0)   from   the   𝑥-­‐axis.   This   affects   the   y-­‐intercept,  but  the  asymptote  remains  at  y  =  0.    Exponential  functions  of  the  form  𝑦 = 𝑎�e  have  been  dilated  by   a   factor   L

�  (𝑛 > 0)   from   the   𝑦-­‐axis.   This   affects   the  

steepness   of   the   graph   but   does   not   affect   either   the   𝑦-­‐intercept  or  the  asymptote.    

Combinations  of  transformations    Exponential   functions   with   equations   𝑦   =  𝑏  ×  𝑎�(eT�) + 𝑘  are   derived   from   the   basic   graph   of   𝑦 = 𝑎𝑥   by   applying   a  combination  of  transformations.  The  key  features  to  identify,  to  sketch  the  graphs  of  such  exponential  functions  are:    

•   the  asymptote •   the  𝑦-­‐intercept •   the  𝑥-­‐intercept,  if  there  is  one.    

Another  point  that  can  be  obtained  simply  could  provide  assurance  about  the  shape.  Always  aim  to  show  at  least  two  points  on  the  graph.      

Example  14  (Q5a)  Sketch  the  graph  the  following  and  state  the  range.    

     

Page 13: ATHEMATICAL!METHODS!UNIT 2 CHAPTER 11 …drweiser.weebly.com/uploads/5/2/6/4/52647653/... · exponential*functions* ***** *****page*2*of*16* table&of&contents! 11.2indices!as!exponents!

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  13  of  16  

11.5  Applications  of  exponential  functions  The   importance  of  exponential   functions   lies   in  models  of  phenomena   involving  growth  and  decay  situations,  in  chemical  and  physical  laws  of  nature  and  in  higher-­‐level  mathematical  analysis.    Exponential  growth  and  decay  models    

For  time  𝑡,  the  exponential  function  defined  by  𝑦 = 𝑏  ×  𝑎𝑛𝑡  where  𝑎   >  1  represents:  

•   exponential  growth  over  time  if  𝑛   >  0     •   exponential  decay  over  time  if𝑛   <  0  The   domain   of   this   function   would   be   restricted   according   to   the   waythe   independent   time  variable  𝑡  is  defined.    

In  some  mathematical  models  such  as  population  growth,  the  initial  population  may  be  represented  by  a  symbol  such  as  𝑁0.  For  the  radioactive  exponential  decay  model,  the  time  it  takes  for  50%  of  the  initial  amount  of  the  substance  to  decay  is  called  its  half-­‐life.  

Example  15  (Q9)  The  contents  of  a  meat  pie   immediately  after  being  heated   in  a  microwave  have  a  temperature  of    95  °𝐶.  The  pie  is  removed  from  the  microwave  and  left  to  cool.A  model  for  the  temperature  of  the  pie  as  it  cools  is  given  by  𝑇 = 𝑎×3T(.LF� + 25  where  𝑇  is  the  temperature  after  𝑡  minutes  of  cooling.   a)  Calculate  the  value  of  𝑎.

b)  What  is  the  temperature  of  the  contents  of  the  pie  after  being  left  to  cool  for  2  minutes?        

c)  Determine  how  long,  to  the  nearest  minute,  it  will  take  for  the  contents  of  the  meat  pie  to  cool  to  65  °C.              

Page 14: ATHEMATICAL!METHODS!UNIT 2 CHAPTER 11 …drweiser.weebly.com/uploads/5/2/6/4/52647653/... · exponential*functions* ***** *****page*2*of*16* table&of&contents! 11.2indices!as!exponents!

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  14  of  16  

d)  Sketch   the  graph   showing   the   temperature  over   time  and  state   the   temperature   to  which   this  model  predicts  the  contents  of  the  pie  will  eventually  cool  if  left  unattended.    

   Analysing  data    

One  method  for  detecting  if  data  has  an  exponential  relationship  can  be  carried  out  using  logarithms.  If  the  data  is  suspected  of  following  an  exponential  rule  such  as  𝑦 = 𝐴×10𝑘𝑥,  then  the  graph  of  log(𝑦)  against  𝑥  should  be  linear.  

 This  equation  can  be  written  in  the  form:   𝑌 = 𝑘𝑥 + 𝑐    where  𝑌 = log(𝑦)  and  𝑐 = log(𝐴)  The  graph  of  𝑌  𝑣𝑒𝑟𝑠𝑢𝑠  𝑥  is  a  straight  line  with  gradient  𝑘  and  vertical  axis  𝑌-­‐intercept  (0, log(𝐴)).  Such  an  analysis  is  called  a  semi-­‐log  plot.  While  experimental  data  is  unlikely  to  give  a  perfect  fit,  the  equation  would  describe  the  line  of  best  fit  for  the  data.    Logarithms   can   also   be   effective   in   determining   a   power   law   that   connects   variables.   If   the   law  connecting  the  variables  is  of  the  form  𝑦   =   𝑥�  then  log(𝑦) = 𝑝log(𝑥).  Plotting  log(𝑦)  values  against  log(𝑥)  values  will  give  a  straight  line  of  gradient  𝑝  if  the  data  does  follow  such  a  law.  Such  an  analysis  is  called  a  log-­‐log  plot.    Example  16  (Q3)    For  a  set  of  data  (𝑥, 𝑦),  plotting  log(𝑦)  versus  log(𝑥)  gave  the  straight  line  shown   in   the   diagram.   From   the   equation   of   the   graph   and   hence  determine  the  rule  connecting  𝑦  and  𝑥.      

 

   

Page 15: ATHEMATICAL!METHODS!UNIT 2 CHAPTER 11 …drweiser.weebly.com/uploads/5/2/6/4/52647653/... · exponential*functions* ***** *****page*2*of*16* table&of&contents! 11.2indices!as!exponents!

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  15  of  16  

11.6  Inverse  of  exponential  functions  The  inverse  of  𝒚 = 𝒂𝒙, 𝒂 ∈ 𝑹f\{𝟏}  

The  exponential  function  has  a  one-­‐to-­‐one  correspondence  so  its  inverse  must  also  be  a  function.  To  form  the  inverse  of  𝑦   =  𝑎𝑥,  interchange  the  𝑥-­‐  and  𝑦-­‐coordinates.    

function:       𝑦   =  𝑎𝑥        domain  𝑅,  range  𝑅+  

inverse  function:                  𝑥   =  𝑎𝑦     domain  𝑅+,  range  𝑅    

                   ∴  𝑦   =  log𝑎(𝑥)    

Therefore,  the  inverse  of  an  exponential  function  is  a   logarithmic  function:  𝑦 = log𝑎(𝑥)  and  𝑦 = 𝑎𝑥  are  the  rules  for  a  pair  of  inverse  functions.  This  means  the  graph  of  𝑦 = log𝑎(𝑥)  can  be  obtained  by  reflecting  the  graph  of  𝑦 = 𝑎𝑥  in  the  line  𝑦 = 𝑥.    

 Worked  Example  14a  Form  the  exponential  rule  for  the  inverse  of  y  =  log2(x)  and  hence  deduce  the  graph  of  y  =  log2(x)  from  the  graph  of  the  exponential.    

 

   

Page 16: ATHEMATICAL!METHODS!UNIT 2 CHAPTER 11 …drweiser.weebly.com/uploads/5/2/6/4/52647653/... · exponential*functions* ***** *****page*2*of*16* table&of&contents! 11.2indices!as!exponents!

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  16  of  16  

Relationships  between  the  inverse  pairs    

As  the  exponential  and  logarithmic  functions  are  a  pair  of  inverses,  each  ‘undoes’  the  effect  of  the  other.  From  this  it  follows  that:    

 The  first  of  these  statements  could  also  be  explained  using  logarithm  laws:    

log𝑎(𝑎𝑥)  =  𝑥  log𝑎(𝑎)  

= 𝑥×1  = 𝑥  

The   second   statement   can   also   be   explained   from   the   index-­‐logarithm   definition   that   𝑎𝑛 = 𝑥  ⇔    𝑛 = log𝑎(𝑥).  Replacing  𝑛  by  its  logarithm  form  in  the  definition  gives:    

𝑎𝑛

 

=  𝑥  𝑎stu�(e)

 

=  𝑥  Worked  Example  16  

a)   Simplify  log12(22𝑥×3𝑥)  using  the  inverse  relationship  between  exponentials  and  logarithms.    

 

 

 

 

 

 

 

 

 

b)   Evaluate  10I stuG�(z)