ATaleofTwoEfiectiveField Theories · EfiectiveTheoryforl < m L=ˆy v µ iv¢D¡ D2 2„ ¶...

28
A Tale of Two Effective Field Theories Thomas Schaefer North Carolina State 1

Transcript of ATaleofTwoEfiectiveField Theories · EfiectiveTheoryforl < m L=ˆy v µ iv¢D¡ D2 2„ ¶...

Page 1: ATaleofTwoEfiectiveField Theories · EfiectiveTheoryforl < m L=ˆy v µ iv¢D¡ D2 2„ ¶ ˆv+L4f¡ 1 4 Ga „”G a „”+LHDL LHDL=¡ m2 2 X v Ga „fi vfivfl (v¢D)2 Gb

A Tale of Two Effective Field

Theories

Thomas Schaefer

North Carolina State

1

Page 2: ATaleofTwoEfiectiveField Theories · EfiectiveTheoryforl < m L=ˆy v µ iv¢D¡ D2 2„ ¶ ˆv+L4f¡ 1 4 Ga „”G a „”+LHDL LHDL=¡ m2 2 X v Ga „fi vfivfl (v¢D)2 Gb

2

Page 3: ATaleofTwoEfiectiveField Theories · EfiectiveTheoryforl < m L=ˆy v µ iv¢D¡ D2 2„ ¶ ˆv+L4f¡ 1 4 Ga „”G a „”+LHDL LHDL=¡ m2 2 X v Ga „fi vfivfl (v¢D)2 Gb

Motivation

There is a successful effective theory of fermionic many body systems

Landau Fermi-Liquid Theory

FLT theory: Quasi-particles near the Fermi surface. Interactions

characterized by FL parameters. Does not rely on weak coupling.

Predicts collective modes, thermodynamics, transport, . . .

Gauge Theories: Unscreened long range forces

Does a quasi-particle EFT exist?

3

Page 4: ATaleofTwoEfiectiveField Theories · EfiectiveTheoryforl < m L=ˆy v µ iv¢D¡ D2 2„ ¶ ˆv+L4f¡ 1 4 Ga „”G a „”+LHDL LHDL=¡ m2 2 X v Ga „fi vfivfl (v¢D)2 Gb

Effective Field Theories

p = pF

QCD

NonFL−EFTm

Fp

HDET

CFLChTh

4

Page 5: ATaleofTwoEfiectiveField Theories · EfiectiveTheoryforl < m L=ˆy v µ iv¢D¡ D2 2„ ¶ ˆv+L4f¡ 1 4 Ga „”G a „”+LHDL LHDL=¡ m2 2 X v Ga „fi vfivfl (v¢D)2 Gb

High Density Effective Theory

QCD lagrangian

L = ψ (iD/ + µγ0 −m)ψ − 1

4GaµνG

aµν

Quasi-particles (holes)

E± = −µ±√

~p2 +m2 ' −µ± |~p|

p p

particlesholesΛ

ε

F

Effective field theory on v-patches

ψv± = e−iµv·x(

1± ~α · ~v2

)

ψ

p = l+lv+µv

v’

5

Page 6: ATaleofTwoEfiectiveField Theories · EfiectiveTheoryforl < m L=ˆy v µ iv¢D¡ D2 2„ ¶ ˆv+L4f¡ 1 4 Ga „”G a „”+LHDL LHDL=¡ m2 2 X v Ga „fi vfivfl (v¢D)2 Gb

High Density Effective Theory, cont

Effective lagrangian for ψv+

L =∑

v

ψ†v

(

iv ·D − D2⊥

)

ψv −1

4GaµνG

aµν + . . .

6

Page 7: ATaleofTwoEfiectiveField Theories · EfiectiveTheoryforl < m L=ˆy v µ iv¢D¡ D2 2„ ¶ ˆv+L4f¡ 1 4 Ga „”G a „”+LHDL LHDL=¡ m2 2 X v Ga „fi vfivfl (v¢D)2 Gb

Four Fermion Operators

quark-quark scattering

(v1, v2)→ (v3, v4)

p1

p1

p2

p4

p3 p

3

p4

p2

BCS Landau

LBCS =1

µ2

V ΓΓ′

l RΓΓ′

l (~v · ~v′)(

ψvΓψ−v

)(

ψ†v′Γ′ψ†−v′

)

,

LFL =1

µ2

FΓΓ′

l (φ)RΓΓ′

l (~v · ~v′)(

ψvΓψv′)(

ψ†vΓ′ψ†v′

)

7

Page 8: ATaleofTwoEfiectiveField Theories · EfiectiveTheoryforl < m L=ˆy v µ iv¢D¡ D2 2„ ¶ ˆv+L4f¡ 1 4 Ga „”G a „”+LHDL LHDL=¡ m2 2 X v Ga „fi vfivfl (v¢D)2 Gb

Four Fermion Operators: Matching

Match scattering amplitudes on Fermi surface: forward scattering

v’ v’

v v v v

v’ v’ v’ v’

v v v v

v’ v’v A

f l

Color-flavor-spin symmetric terms

fs0 =CF

4NcNf

g2

p2F, fsi = 0 (i > 1)

8

Page 9: ATaleofTwoEfiectiveField Theories · EfiectiveTheoryforl < m L=ˆy v µ iv¢D¡ D2 2„ ¶ ˆv+L4f¡ 1 4 Ga „”G a „”+LHDL LHDL=¡ m2 2 X v Ga „fi vfivfl (v¢D)2 Gb

Power Counting

Naive power counting

L = L(

ψ,ψ†,D||

µ,D⊥µ,D||

µ,m

µ

)

Problem: hard loops (large N~v graphs)

v

v

v

1

~v

d2l⊥(2π)2

=µ2

2π2

4π.

Have to sum large N~v graphs

9

Page 10: ATaleofTwoEfiectiveField Theories · EfiectiveTheoryforl < m L=ˆy v µ iv¢D¡ D2 2„ ¶ ˆv+L4f¡ 1 4 Ga „”G a „”+LHDL LHDL=¡ m2 2 X v Ga „fi vfivfl (v¢D)2 Gb

Effective Theory for l < m

L = ψ†v

(

iv ·D − D2⊥

)

ψv + L4f −1

4GaµνG

aµν + LHDL

LHDL = −m2

2

v

Gaµα

vαvβ

(v ·D)2Gbµβ

Transverse gauge boson propagator

Dij(k) =δij − kikj

k20 − ~k2 + iπ2m2 k0

|~k|

,

Scaling of gluon momenta

|~k| ∼ k1/30 m2/3 À k0 gluons are very spacelike

10

Page 11: ATaleofTwoEfiectiveField Theories · EfiectiveTheoryforl < m L=ˆy v µ iv¢D¡ D2 2„ ¶ ˆv+L4f¡ 1 4 Ga „”G a „”+LHDL LHDL=¡ m2 2 X v Ga „fi vfivfl (v¢D)2 Gb

Non-Fermi Liquid Effective Theory

Gluons very spacelike |~k| À |k0|. Quark kinematics?

k0 ' k|| +k2⊥2µ

k⊥ k|| k0

k|| ∼k2

Scaling relations

k⊥ ∼ m2/3k1/30 , k|| ∼ m4/3k

2/30 /µ

Propagators

Sαβ =−iδαβ

p|| +p2⊥

2µ − iεsgn(p0)Dij =

−iδijk2⊥ − iπ2m2 k0

k⊥

,

11

Page 12: ATaleofTwoEfiectiveField Theories · EfiectiveTheoryforl < m L=ˆy v µ iv¢D¡ D2 2„ ¶ ˆv+L4f¡ 1 4 Ga „”G a „”+LHDL LHDL=¡ m2 2 X v Ga „fi vfivfl (v¢D)2 Gb

Non-Fermi Liquid Expansion

Scale momenta (k0, k||, k⊥)→ (sk0, s2/3k||, s

1/3k⊥)

[ψ] = 5/6 [Ai] = 5/6 [S] = [D] = 0

Scaling behavior of vertices

s1/6 s1/2 s5/6 s

Systematic expansion in ε1/3 ≡ (ω/m)1/3

12

Page 13: ATaleofTwoEfiectiveField Theories · EfiectiveTheoryforl < m L=ˆy v µ iv¢D¡ D2 2„ ¶ ˆv+L4f¡ 1 4 Ga „”G a „”+LHDL LHDL=¡ m2 2 X v Ga „fi vfivfl (v¢D)2 Gb

Loop Corrections: Quark Self Energy

= g2CF

dk02π

dk2⊥(2π)2

k⊥k3⊥ + iηk0

×∫

dk||

Θ(p0 + k0)

k|| + p|| − (k⊥+p⊥)2

2µ + iε

Transverse momentum integral logarithmic∫

dk3⊥k3⊥ + iηk0

∼ log

(

Λ

k0

)

Quark self energy

Σ(p) =g2

9π2p0 log

(

Λ

|p0|

)

13

Page 14: ATaleofTwoEfiectiveField Theories · EfiectiveTheoryforl < m L=ˆy v µ iv¢D¡ D2 2„ ¶ ˆv+L4f¡ 1 4 Ga „”G a „”+LHDL LHDL=¡ m2 2 X v Ga „fi vfivfl (v¢D)2 Gb

Quark Self Energy, cont

Higher order corrections?

Σ(p) =g2

9π2

(

p0 log

(

25/2m

π|p0|

)

+ iπ

2p0

)

+O(

ε5/3)

Scale determined by electric gluon exchange

No p0[αs log(p0)]n terms

quasi-particle velocity vanishes as

v ∼ log(Λ/ω)−1

anomalous term in the specific heat

cv ∼ γT log(T )

P

E

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

1.2

1.4

14

Page 15: ATaleofTwoEfiectiveField Theories · EfiectiveTheoryforl < m L=ˆy v µ iv¢D¡ D2 2„ ¶ ˆv+L4f¡ 1 4 Ga „”G a „”+LHDL LHDL=¡ m2 2 X v Ga „fi vfivfl (v¢D)2 Gb

Vertex Corrections, Migdal’s Theorem

Corrections to quark gluon vertex

+ + ∼ gv(1 +O(ε1/3))

Analogous to electron-phonon coupling

Can this fail? Yes, if external momenta fail to satisfy p⊥ À p0

=eg2

9π2vµ log (ε)

15

Page 16: ATaleofTwoEfiectiveField Theories · EfiectiveTheoryforl < m L=ˆy v µ iv¢D¡ D2 2„ ¶ ˆv+L4f¡ 1 4 Ga „”G a „”+LHDL LHDL=¡ m2 2 X v Ga „fi vfivfl (v¢D)2 Gb

Superconductivity

Same phenomenon occurs in anomalous self energy

=g2

18π2

dq0 log

(

ΛBCS|p0 − q0|

)

∆(q0)√

q20 +∆(q0)2

ΛBCS = 256π4g−5µ determined by electric exchanges

Have to sum all planar diagrams, non-planar suppressed by ε1/3

Solution at next-to-leading order (includes normal self energy)

∆0 = 2ΛBCS exp

(

−π2 + 4

8

)

exp

(

− 3π2√2g

)

∆0 ∼ 50MeV

16

Page 17: ATaleofTwoEfiectiveField Theories · EfiectiveTheoryforl < m L=ˆy v µ iv¢D¡ D2 2„ ¶ ˆv+L4f¡ 1 4 Ga „”G a „”+LHDL LHDL=¡ m2 2 X v Ga „fi vfivfl (v¢D)2 Gb

Summary

Systematic low energy expansion in (ω/m)1/3 and log(ω/m)

Standard FL channels (BCS, ZS, ZS’): Ladder diagrams have to be

summed, kernel has perturbative expansion

= +

= +

17

Page 18: ATaleofTwoEfiectiveField Theories · EfiectiveTheoryforl < m L=ˆy v µ iv¢D¡ D2 2„ ¶ ˆv+L4f¡ 1 4 Ga „”G a „”+LHDL LHDL=¡ m2 2 X v Ga „fi vfivfl (v¢D)2 Gb

18

Page 19: ATaleofTwoEfiectiveField Theories · EfiectiveTheoryforl < m L=ˆy v µ iv¢D¡ D2 2„ ¶ ˆv+L4f¡ 1 4 Ga „”G a „”+LHDL LHDL=¡ m2 2 X v Ga „fi vfivfl (v¢D)2 Gb

CFL Phase

Consider Nf = 3 (mi = 0)

〈qai qbj〉 = φ εabIεijI

〈ud〉 = 〈us〉 = 〈ds〉〈rb〉 = 〈rg〉 = 〈bg〉

Symmetry breaking pattern:

SU(3)L × SU(3)R × [SU(3)]C

× U(1)→ SU(3)C+F

All quarks and gluons acquire a gap

FLL C C F

R R

<q q > <q q >L L R R

... have to rotate right

flavor also !

Rotate left flavor Compensate by rotating

color

〈ψLψL〉 = −〈ψRψR〉

19

Page 20: ATaleofTwoEfiectiveField Theories · EfiectiveTheoryforl < m L=ˆy v µ iv¢D¡ D2 2„ ¶ ˆv+L4f¡ 1 4 Ga „”G a „”+LHDL LHDL=¡ m2 2 X v Ga „fi vfivfl (v¢D)2 Gb

EFT in the CFL Phase

Consider HDET with a CFL gap term

L = Tr(

ψ†L(iv ·D)ψL

)

+∆

2

Tr(

X†ψLX†ψL

)

− κ[

Tr(

X†ψL)]2

+ (L↔ R,X ↔ Y )

ψL → LψLCT , X → LXCT , 〈X〉 = 〈Y 〉 = 11

Quark loops generate a kinetic term for X,Y

Integrate out gluons, identify low energy fields (ξ = Σ1/2)

Σ = XY †

[8]+[1] GBs

NL = ξ(ψLX†)ξ†

[8]+[1] Baryons

20

Page 21: ATaleofTwoEfiectiveField Theories · EfiectiveTheoryforl < m L=ˆy v µ iv¢D¡ D2 2„ ¶ ˆv+L4f¡ 1 4 Ga „”G a „”+LHDL LHDL=¡ m2 2 X v Ga „fi vfivfl (v¢D)2 Gb

Effective theory: (CFL) baryon chiral perturbation theory

L =f2π4

Tr(

∇0Σ∇0Σ†)

− v2πTr(

∇iΣ∇iΣ†)

+Tr(

N†ivµDµN)

−DTr(

N†vµγ5 Aµ, N)

− FTr(

N†vµγ5 [Aµ, N ])

+∆

2

Tr (NN)− [Tr (N)]2

with DµN = ∂µN + i[Vµ, N ]

Vµ = − i2

(

ξ∂µξ† + ξ†∂µξ

)

Aµ = − i2ξ(

∂µΣ†)

ξ

f2π =21− 8 log 2

18

µ2

2π2v2π =

1

3D = F =

1

2

21

Page 22: ATaleofTwoEfiectiveField Theories · EfiectiveTheoryforl < m L=ˆy v µ iv¢D¡ D2 2„ ¶ ˆv+L4f¡ 1 4 Ga „”G a „”+LHDL LHDL=¡ m2 2 X v Ga „fi vfivfl (v¢D)2 Gb

Mass Terms: Match HDET to QCD

L = ψ†RMM†

2µψR + ψ†L

M†M

2µψL

+C

µ2(ψ†RMλaψL)(ψ

†RMλaψL)

L

R L

R L

M

M

R L

g

R

g

R R R RL

M MMM

g MM2

++

mass corrections to FL parameters µ and F 0(++→ −−)

22

Page 23: ATaleofTwoEfiectiveField Theories · EfiectiveTheoryforl < m L=ˆy v µ iv¢D¡ D2 2„ ¶ ˆv+L4f¡ 1 4 Ga „”G a „”+LHDL LHDL=¡ m2 2 X v Ga „fi vfivfl (v¢D)2 Gb

Phase Structure and Spectrum

Phase structure determined by effective potential

V (Σ) =f2π2Tr(

XLΣXRΣ†)

−ATr(MΣ†)−B1[

Tr(Mӆ)]2

+ . . .

V (Σ0) ≡ min

Fermion spectrum determined by

L = Tr(

N†ivµDµN)

+Tr(

N†γ5ρAN)

+∆

2

Tr (NN)− [Tr (N)]2

,

ρV,A =1

2

ξM†M

2pFξ† ± ξ†MM†

2pFξ

ξ =√

Σ0

23

Page 24: ATaleofTwoEfiectiveField Theories · EfiectiveTheoryforl < m L=ˆy v µ iv¢D¡ D2 2„ ¶ ˆv+L4f¡ 1 4 Ga „”G a „”+LHDL LHDL=¡ m2 2 X v Ga „fi vfivfl (v¢D)2 Gb

Phase Structure and Spectrum

10-8

10-6

10-4

10-2

100

-40

-30

-20

-10

0

10

20

µ Q (

MeV

)

10 20 30

ms

2/2µ (MeV)

CFL

CFLK0

CFLπ−

CFLK+

meson condensation: CFLK

s-wave condensate

20 40 60 80 100

20

40

60

80

gapless modes? (gCFLK)

p-wave condensation

24

Page 25: ATaleofTwoEfiectiveField Theories · EfiectiveTheoryforl < m L=ˆy v µ iv¢D¡ D2 2„ ¶ ˆv+L4f¡ 1 4 Ga „”G a „”+LHDL LHDL=¡ m2 2 X v Ga „fi vfivfl (v¢D)2 Gb

Instabilities

Consider meson current

Σ(x) = UY (x)ΣKUY (x)† UY (x) = exp(iφK(x)λ8)

~V(x) =~∇φK4

(−2I3 + 3Y ) ~A(x) = ~∇φK(eiφK u+ + e−iφK u−)

Gradient energy

E =f2π2v2π

2K ~k = ~∇φK

Fermion spectrum

ωl = ∆+l2

2∆− 4µs

3− 1

4~v · ~K

E =µ2

2π2

dl

dΩ ωlΘ(−ωl) j

Ω

25

Page 26: ATaleofTwoEfiectiveField Theories · EfiectiveTheoryforl < m L=ˆy v µ iv¢D¡ D2 2„ ¶ ˆv+L4f¡ 1 4 Ga „”G a „”+LHDL LHDL=¡ m2 2 X v Ga „fi vfivfl (v¢D)2 Gb

Energy Functional

10 20 30 40 50 60 70

-0.1

0.1

0.2

20 40 60 80 100

-20

-15

-10

-5

!

"

#$

%& '

( %& '

) ( %& '

3µs − 4∆

crit

= ahcrit hcrit = −0.067 a =2

152c2πv4π

[Figures include baryon current jB = αB/αKjK ]

26

Page 27: ATaleofTwoEfiectiveField Theories · EfiectiveTheoryforl < m L=ˆy v µ iv¢D¡ D2 2„ ¶ ˆv+L4f¡ 1 4 Ga „”G a „”+LHDL LHDL=¡ m2 2 X v Ga „fi vfivfl (v¢D)2 Gb

Notes

No net current, meson current canceled by backflow of gapless modes

(δE)/(δ∇φ) = 0

Instability related to “chromomagnetic instability”

CFL phase: gluons carry SU(3)F quantum numbers

Meson current equivalent to a color gauge field

27

Page 28: ATaleofTwoEfiectiveField Theories · EfiectiveTheoryforl < m L=ˆy v µ iv¢D¡ D2 2„ ¶ ˆv+L4f¡ 1 4 Ga „”G a „”+LHDL LHDL=¡ m2 2 X v Ga „fi vfivfl (v¢D)2 Gb

Happy Birthday

Wolfram, Peter & Gerry

28