Astronomy)314)–)Homework)#1)(due)Feb)2)@)9:35)AM...

5
Astronomy 314 – Homework #1 (due Feb 2 @ 9:35 AM) Show your work. On homework and exams your answers must show the steps toward the solution in order to receive the full score. Answers given with little justification will receive much lower scores. Solutions with some correct steps will receive partial credit. Part I. Carroll and Ostlie, problems 1.5, 2.6, 2.8, and 2.12. Part II. How many times stronger/weaker is the Sun’s mean gravitational force on our Moon compared to the Earth’s mean gravitational force on our Moon? (You do not need to know Newton’s gravitational constant, G, or the mass of the Moon to get the answer.) Part III. Consider a spherical asteroid of radius r. A tiny pebble orbits the asteroid just above its surface with period P. Using Kepler’s Third Law derive an expression for the mean density of the asteroid <ρ> as a function of P. A bucket of dirt and rocks from your garden has a mean density of about 2 times that of water. If we fashion an asteroid out of such material, what would be the orbital period (in hours) of a tiny pebble that orbits just above its surface? Note that the period is the same whether the asteroid is 1 meter in size or 10 km. Part IV. In the fall/winter of 2014/2015 Jupiter has been visible before sunrise in the direction of the constellation Leo. Over the course of this semester Leo will be seen earlier and earlier in the night. Kevin Krisciunas has been making some measurements of Jupiter’s position using a simple hand held cross staff:

Transcript of Astronomy)314)–)Homework)#1)(due)Feb)2)@)9:35)AM...

Astronomy  314  –  Homework  #1  (due  Feb  2  @  9:35  AM)    

Show   your   work.     On   homework   and   exams   your   answers   must   show   the   steps  toward   the   solution   in   order   to   receive   the   full   score.     Answers   given   with   little  justification  will  receive  much  lower  scores.    Solutions  with  some  correct  steps  will  receive  partial  credit.    Part  I.  Carroll  and  Ostlie,  problems  1.5,  2.6,  2.8,  and  2.12.    Part   II.  How  many  times  stronger/weaker  is  the  Sun’s  mean  gravitational  force  on  our  Moon  compared  to  the  Earth’s  mean  gravitational  force  on  our  Moon?    (You  do  not  need  to  know  Newton’s  gravitational  constant,  G,  or  the  mass  of  the  Moon  to  get  the  answer.)    Part  III.    Consider  a  spherical  asteroid  of  radius  r.    A  tiny  pebble  orbits  the  asteroid  just  above  its  surface  with  period  P.    Using  Kepler’s  Third  Law  derive  an  expression  for  the  mean  density  of  the  asteroid  <ρ>  as  a  function  of  P.        A  bucket  of  dirt  and  rocks   from  your  garden  has  a  mean  density  of  about  2   times  that   of  water.     If  we   fashion   an   asteroid   out   of   such  material,  what  would   be   the  orbital  period  (in  hours)  of  a  tiny  pebble  that  orbits  just  above  its  surface?    Note  that  the  period  is  the  same  whether  the  asteroid  is  1  meter  in  size  or  10  km.    Part   IV.   In  the  fall/winter  of  2014/2015  Jupiter  has  been  visible  before  sunrise   in  the  direction  of  the  constellation  Leo.    Over  the  course  of  this  semester  Leo  will  be  seen   earlier   and   earlier   in   the   night.     Kevin   Krisciunas   has   been   making   some  measurements  of  Jupiter’s  position  using  a  simple  hand  held  cross  staff:        

     

Given  the  primitive  nature  of   this   instrument,   the  positional  measurements  are  no  more  accurate  than  about  ¼  deg.    Here  we  plot  the  derived  positions  of  Jupiter  from  October  18,  2015,  to  January  4,  2016.      

 Table  I  –  positional  data  for  Jupiter  

   JD-­‐2457000                                                        RA                      DEC                                      λ β λSun                              days                                                                    deg                      deg                                    deg                    deg                                  deg  

 

 In  Table   I,   column  1   is   the   Julian  Date  minus  2,457,000.    Columns  2  and  3  are   the  right   ascension   and   declination   of   Jupiter.     Columns   4   and   5   are   the   ecliptic  longitude  and  latitude  of  Jupiter.    The  final  column  gives  the  ecliptic  longitude  of  the  Sun,   as   derived   from   chapter   18   of   Astronomical   Formulae   for   Calculators,   4th  edition,  by  Jean  Meeus,  Richmond,  Virginia:  Willman-­‐Bell,  1988.    Make  a  plot  of  λ  vs.  JD,  such  as  that  shown  below.        Fit  a  2nd  order  curve  to  the  data:  λ  =  A  +  B  X  +  C  X2,  where  X  =  the  Julian  Date  starting  with   the  hundreds  digit,   or   the   tens  digit,   or   even   subtracting  off   the   JD  of   the  6th  point.    What  is  the  root-­‐mean-­‐square  scatter  of  the  data  points?    Approximately  on  what  date  will  Jupiter  start  exhibiting  retrograde  motion?    In  other  words,  when  will  Jupiter  stop  moving  east  against  the  stars  and  start  moving  west  against  the  stars?  (January  1  at  6  AM  is  the  same  as  Julian  Date  2,457,389.0000.)      

       

 We  know  the  size  of  the  Astronomical  Unit  (1.496  X  108  km),  the  number  of  seconds  in  a  year,  and  therefore  the  mean  orbital  speed  of  the  Earth,  29.786  km/sec.    We  also  know   that   the   circular   velocity   of   an   orbiting   body   decreases   proportional   to  1/sqrt(r).    So  for  a  planet  with  a  circular  orbit  at  rpl  Astronomical  Units  from  the  Sun,  its  orbital  velocity  is  29.786/sqrt(rpl)  km/sec.    From  the  slope  of  the  second  order  fit  of  λ  vs.  JD  it  is  possible  to  estimate  the  size  of  the  orbit  of  Jupiter  compared  to  that  of  the  Earth.        What   value   of   dλ/dt   do   you   get   at   the   time   of   the   6th   data   point,  when   the   Sun’s  ecliptic  longitude  was  237.812  deg?    Assuming  that  both  Jupiter  and  the  Earth  have  perfectly  circular  orbits,  what  is  the  implied  size  of  Jupiter’s  orbit  in  Astronomical  Units?      The  diagram  shown  on  the  next  page  will  be  helpful.