Astronomy c ESO 2009 Astrophysics - UHRA Home

22
A&A 505, 441–462 (2009) DOI: 10.1051/0004-6361/200912531 c ESO 2009 Astronomy & Astrophysics High-resolution UVES/VLT spectra of white dwarfs observed for the ESO SN Ia Progenitor Survey III. DA white dwarfs D. Koester 1 , B. Voss 2,1 , R. Napiwotzki 3 , N. Christlieb 4 , D. Homeier 5 , T. Lisker 6,8 , D. Reimers 7 , and U. Heber 8 1 Institut für Theoretische Physik und Astrophysik, Universität Kiel, 24098 Kiel, Germany e-mail: [email protected] 2 Zeiss-Planetarium, LWL-Museum für Naturkunde, 48161 Münster, Germany 3 Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK 4 Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Königstuhl 12, 69117 Heidelberg, Germany 5 Institut für Astrophysik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany 6 Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12–14, 69120 Heidelberg, Germany 7 Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg, Germany 8 Dr. Karl Remeis Observatory, University of Erlangen-Nürnberg, Sternwartstr. 7, 96049 Bamberg, Germany Received 19 May 2009 / Accepted 24 July 2009 ABSTRACT Context. The ESO Supernova Ia Progenitor Survey (SPY) took high-resolution spectra of more than 1000 white dwarfs and pre-white dwarfs. About two thirds of the stars observed are hydrogen-dominated DA white dwarfs. Here we present a catalog and detailed spectroscopic analysis of the DA stars in the SPY. Aims. Atmospheric parameters eective temperature and surface gravity are determined for normal DAs. Double-degenerate binaries, DAs with magnetic fields or dM companions, are classified and discussed. Methods. The spectra are compared with theoretical model atmospheres using a χ 2 fitting technique. Results. Our final sample contains 615 DAs, which show only hydrogen features in their spectra, although some are double-degenerate binaries. 187 are new detections or classifications. We also find 10 magnetic DAs (4 new) and 46 DA+dM pairs (10 new). Key words. stars: white dwarfs 1. Introduction The ESO SN Ia Progenitor Survey (SPY) is a radial velocity sur- vey that was conducted to test the double-degenerate channel of the formation of supernovae Ia. About 800 white dwarfs were observed (most of them twice) in the course of the survey, as- sembling a large collection of high quality white dwarf spectra. Most of the targets for the SPY were selected from the White Dwarf catalog (McCook & Sion 1999), MCS further on, from the Hamburg/ESO Survey (Wisotzki et al. 1996; Christlieb et al. 2001), HES further on, and from the Hamburg Quasar Survey (Hagen et al. 1995), HQS further on. Some additional objects come from the Montreal-Cambridge survey (Demers et al. 1990; Lamontagne et al. 2000) and from the Edinburgh-Cape survey (Kilkenny et al. 1991). A detailed discussion of the target se- lection is given in Napiwotzki et al. (2001, 2003). While some of the input catalogs, e.g. HES and HQS, have fairly well un- derstood selection criteria, for the combined input catalog this would be very dicult, since the only criteria used were “spec- troscopic identification (at least from objective prism spectra) and B < 16.5” (Napiwotzki et al. 2001). The high quality spectra of white dwarfs were employed for a number of studies beyond the original scope of the SPY, Based on data obtained at the Paranal Observatory of the European Southern Observatory for programmes 165.H-0588 and 167.D-0407. the search for double-degenerate binaries. Koester et al. (2001) derived temperatures and gravities from a preliminary sample of about 200 objects; 71 helium-rich stars of spectral type DB and DBA were studied in Voss et al. (2007), and approximately 60 objects with detected Ca ii resonance lines were discussed in Koester et al. (2005). Pauli et al. (2003, 2006) studied the 3D kinematics using the SPY data, new DO and PG1159 stars have been identified by Werner et al. (2004). The hot subdwarf population has been studied by Lisker et al. (2005) and Stroeer et al. (2007). The number of newly detected white dwarfs is of course dwarfed by the results from the Sloan Digital Sky Survey (e.g. Kleinman et al. 2004; Eisenstein et al. 2006). It is also possible to extract samples with much better controlled and understood selection eects from the SDSS data base. Thus, we will not produce yet another white dwarf mass distribution or luminos- ity function here. However, our sample contains much brighter objects than the typical SDSS white dwarf. These objects, and in particular the magnetic stars, binaries, or new variables will be much easier to study in follow-up observations than the faint SDSS objects. Moreover, the white dwarf parameters presented here are an important ingredient of the kinematic studies men- tioned above and the analysis and interpretation of the binary results, starting with the simple distinction between helium core and carbon/oxygen core white dwarfs. Article published by EDP Sciences

Transcript of Astronomy c ESO 2009 Astrophysics - UHRA Home

A&A 505, 441–462 (2009)DOI: 10.1051/0004-6361/200912531c© ESO 2009

Astronomy&

Astrophysics

High-resolution UVES/VLT spectra of white dwarfsobserved for the ESO SN Ia Progenitor Survey

III. DA white dwarfs�

D. Koester1, B. Voss2,1, R. Napiwotzki3, N. Christlieb4, D. Homeier5, T. Lisker6,8, D. Reimers7, and U. Heber8

1 Institut für Theoretische Physik und Astrophysik, Universität Kiel, 24098 Kiel, Germanye-mail: [email protected]

2 Zeiss-Planetarium, LWL-Museum für Naturkunde, 48161 Münster, Germany3 Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK4 Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Königstuhl 12, 69117 Heidelberg, Germany5 Institut für Astrophysik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany6 Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12–14, 69120 Heidelberg,

Germany7 Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg, Germany8 Dr. Karl Remeis Observatory, University of Erlangen-Nürnberg, Sternwartstr. 7, 96049 Bamberg, Germany

Received 19 May 2009 / Accepted 24 July 2009

ABSTRACT

Context. The ESO Supernova Ia Progenitor Survey (SPY) took high-resolution spectra of more than 1000 white dwarfs and pre-whitedwarfs. About two thirds of the stars observed are hydrogen-dominated DA white dwarfs. Here we present a catalog and detailedspectroscopic analysis of the DA stars in the SPY.Aims. Atmospheric parameters effective temperature and surface gravity are determined for normal DAs. Double-degenerate binaries,DAs with magnetic fields or dM companions, are classified and discussed.Methods. The spectra are compared with theoretical model atmospheres using a χ2 fitting technique.Results. Our final sample contains 615 DAs, which show only hydrogen features in their spectra, although some are double-degeneratebinaries. 187 are new detections or classifications. We also find 10 magnetic DAs (4 new) and 46 DA+dM pairs (10 new).

Key words. stars: white dwarfs

1. Introduction

The ESO SN Ia Progenitor Survey (SPY) is a radial velocity sur-vey that was conducted to test the double-degenerate channel ofthe formation of supernovae Ia. About 800 white dwarfs wereobserved (most of them twice) in the course of the survey, as-sembling a large collection of high quality white dwarf spectra.Most of the targets for the SPY were selected from the WhiteDwarf catalog (McCook & Sion 1999), MCS further on, fromthe Hamburg/ESO Survey (Wisotzki et al. 1996; Christlieb et al.2001), HES further on, and from the Hamburg Quasar Survey(Hagen et al. 1995), HQS further on. Some additional objectscome from the Montreal-Cambridge survey (Demers et al. 1990;Lamontagne et al. 2000) and from the Edinburgh-Cape survey(Kilkenny et al. 1991). A detailed discussion of the target se-lection is given in Napiwotzki et al. (2001, 2003). While someof the input catalogs, e.g. HES and HQS, have fairly well un-derstood selection criteria, for the combined input catalog thiswould be very difficult, since the only criteria used were “spec-troscopic identification (at least from objective prism spectra)and B < 16.5” (Napiwotzki et al. 2001).

The high quality spectra of white dwarfs were employedfor a number of studies beyond the original scope of the SPY,

� Based on data obtained at the Paranal Observatory of the EuropeanSouthern Observatory for programmes 165.H-0588 and 167.D-0407.

the search for double-degenerate binaries. Koester et al. (2001)derived temperatures and gravities from a preliminary sampleof about 200 objects; 71 helium-rich stars of spectral type DBand DBA were studied in Voss et al. (2007), and approximately60 objects with detected Ca ii resonance lines were discussedin Koester et al. (2005). Pauli et al. (2003, 2006) studied the3D kinematics using the SPY data, new DO and PG1159 starshave been identified by Werner et al. (2004). The hot subdwarfpopulation has been studied by Lisker et al. (2005) and Stroeeret al. (2007).

The number of newly detected white dwarfs is of coursedwarfed by the results from the Sloan Digital Sky Survey (e.g.Kleinman et al. 2004; Eisenstein et al. 2006). It is also possibleto extract samples with much better controlled and understoodselection effects from the SDSS data base. Thus, we will notproduce yet another white dwarf mass distribution or luminos-ity function here. However, our sample contains much brighterobjects than the typical SDSS white dwarf. These objects, andin particular the magnetic stars, binaries, or new variables willbe much easier to study in follow-up observations than the faintSDSS objects. Moreover, the white dwarf parameters presentedhere are an important ingredient of the kinematic studies men-tioned above and the analysis and interpretation of the binaryresults, starting with the simple distinction between helium coreand carbon/oxygen core white dwarfs.

Article published by EDP Sciences

442 D. Koester et al.: High-resolution spectra observed for the SPY. III. DA white dwarfs

2. Observations

Since several of the papers above have given a detailed descrip-tion of the data properties and further references, we only brieflysummarize this information here.

The spectra were obtained with UVES, a high resolutionechelle spectrograph at the ESO VLT telescope. UVES was usedin a dichroic mode, resulting in small gaps, ≈80 Å wide, at4580 Å and 5640 Å in the final merged spectrum. The spectralresolution at Hα is R = 18 500 or better, and the S/N per binnedpixel (0.05 Å) is S/N = 15 or higher. The total wavelength rangecovered is ≈3500 to 6650 Å.

The spectra were reduced with the ESO pipeline for UVES,including the merging of the echelle orders and the wavelengthcalibration. Koester et al. (2001) found that the quality of theseautomatically extracted spectra was very good, except for aquasi-periodic wave-like pattern that occurs in some of the spec-tra. The reduction has since been further improved by addi-tional processing by collaborators of the SPY at the Universityof Erlangen-Nürnberg.The most important step was utilizing thefeatureless spectra of DC white dwarfs to remove almost com-pletely the large scale variations of the spectral response func-tion (Napiwotzki et al. 2001, 2003). Some artifacts remain in thedata, but they do not significantly affect the spectral analysis.

2.1. Model atmosphere fits

The spectral analysis of these data was originally performedby Voss (2006). Since then, the models were significantly im-proved by including in a consistent way the Balmer line broad-ening due to simultaneous interactions with neutral and chargedperturbers. An up-to-date description of the methods and inputphysics is presented in Koester (2009). We have therefore re-peated the whole fitting process for all objects; the major differ-ences to Voss (2006) appear, as expected, at the cool end of theDA sequence.

The χ2 minimization fitting routine is based on theLevenberg-Marquardt algorithm (Press et al. 1992) to derive thebest fitting effective temperature and surface gravity for eachspectrum. Some more details on the fitting process can be foundin Homeier et al. (1998). For the present study we appliedpure hydrogen models and fitted the Balmer lines Hα to H9.To demonstrate the typical quality of the data and of the modelfits, we present the results for the arbitrarily chosen entries 301to 310 from Table 1. The header of each panel gives the name,effective temperature, and surface gravity of the fit. Shown arethe six lowest Balmer lines.

3. Data and atmospheric parameters for DAs

Table 1 lists the results of the model fitting for 615 apparentlynormal DA white dwarfs. Of those, 187 are newly identifiedDAs, 111 from the HES (Christlieb et al. 2001, designationHE) and 76 from the HQS (Homeier et al. 1998, designationHS) surveys. The primary designation of the objects in thefirst column is WD, if the objects appear in the SIMBAD orMCS databases and were known to be spectroscopically iden-tified white dwarfs prior to the start of the SPY. A few objectshave EC or MCT designations, if they were identified in theEdinburgh-Cape (Kilkenny et al. 1991) or Montreal-Cambridge-Tololo (Demers et al. 1990; Lamontagne et al. 2000) surveys,but don’t seem to have WD designations. Column 5 gives a fewalternative names. This list is not intended to be complete, butadditional information can easily be found in SIMBAD or MCS.

For the remainder of the objects we use HE or HS designa-tions, depending on the original catalog. In this case there arethree different meanings of Col. 5

– if empty, there is no entry in either the SIMBAD or theMCS database and we assume that this is a new detectionof the HQS or HES;

– if there is an entry in parentheses, this means that there isan entry in SIMBAD, but no spectroscopic identification asa white dwarf, at least not prior to identification in a publi-cation related to HQS, HES, or SPY. This mostly concernscatalogs of blue or large proper motion objects. Some objectsare also contained in more recent catalogs, e.g. Sloan DigitalSky Survey = SDSS (Adelman-McCarthy et al. 2008), orTwo Micron All Sky Survey = 2MASS, (Cutri et al. 2003),but not identified as white dwarfs;

– if there is a regular entry in Col. 5, this describes a re-cent spectroscopic identification, which was unknown at thetime of our target selection. Catalog entries here are SDSS(Kleinman et al. 2004; Eisenstein et al. 2006), BGK (Brownet al. 2006), Kawka06 (Kawka & Vennes 2006).

The magnitude column lists the V magnitude, if available fromthe SIMBAD or MCS databases. If the number is followed bya B, this is either a Johnson B magnitude, or, in most cases, aphotographic magnitude from the MCT, HQS, or HES surveys.mc denotes a Greenstein multichannel magnitude, obtained fromthe MCS catalog. The errors of the photographic magnitudes aretypically much larger (0.1−0.2 mag) than suggested by the twodecimal places, which are kept only to obtain a more homoge-neous table.

Since most stars have more than one spectrum observed, theparameters are the weighted averages of the individual solutions,with the inverse square of the formal 1σ uncertainties as weights.The 1σ final uncertainties given in Table 1 are obtained from theindividual values and should only be used as an indicator of thequality of the data. As is well known, with spectra of the qual-ity used here, the systematic errors from the reduction and fit-ting process are usually much larger than the purely statisticaluncertainties. We estimated more realistic uncertainties by com-paring the differences between solutions from several spectra ofthe same object. For 592 objects with multiple solutions we ob-tain standard deviations of σ(Teff) ≈ 2.5% and σ(log g) ≈ 0.09.These should be regarded as lower limits, because the differentspectra still used the same observational setup, theoretical mod-els, and fitting procedures. The uncertainties are definitely largerthan this at the high temperature end above 50 000 K, becauseNLTE effects are not considered in our models. They are alsolarger, in particular for the surface gravity, at temperatures be-low 8000 K, because the spectra become less sensitive to this pa-rameter, and because the neutral broadening of the Balmer lineshigher than Hγ is only approximative.

Another method to estimate the size of the uncertainties isthe comparison of results by different authors for the same ob-jects. The most interesting recent study is the work by Liebertet al. (2005) on the DA white dwarfs in the Palomar GreenSurvey. Eliminating DAs with Teff below 8000 K or above50 000 K (see above), as well as the double degenerates, leaves85 objects in common. Figure 2 shows the comparison for theeffective temperatures, and Fig. 3 for the surface gravities. Thesystematic shift in Teff for the whole sample is 1.2%, with ourtemperatures being slightly higher. For log g the shift is 0.08,with our values lower. We can estimate the intrinsic uncer-tainties of our determinations by first correcting for these sys-tematic shifts. Comparing the corrected parameters with those

D. Koester et al.: High-resolution spectra observed for the SPY. III. DA white dwarfs 443Ta

ble

1.F

itre

sult

sfo

rhy

drog

enat

mos

pher

est

ars.

Obj

ect

RA

(200

0)D

ec(2

000)

mag

(ban

d)A

lias

esT

eff[K

(Teff

)[K

]lo

ggσ

(logg)

Spe

ctra

Rem

arks

WD

2359−3

2400

:02:

32.3

6−3

2:11

:50.

715

.87

BM

CT

2359−3

228

2247

857

7.74

20.

008

3W

D00

00−1

8600

:03:

11.2

1−1

8:21

:57.

616

.29

BM

CT

0000−1

838,

GD

575

1526

443

7.84

60.

009

2H

S00

02+

1635

00:0

4:43

.34+

16:5

2:16

.715

.30

B(P

HL

647)

2587

836

7.85

90.

005

2W

D00

05−1

6300

:07:

34.8

0−1

6:05

:31.

816

.29

mc

G15

8−13

2,G

R50

915

141

257.

594

0.00

92

NO

V(1

)11

684

317.

689

0.01

22

amb

WD

0011+

000

00:1

3:39

.19+

00:1

9:23

.115

.31

G03

1−03

5,W

OL

F1,

SD

SS

9472

78.

037

0.01

02

WD

0013−2

4100

:16:

12.6

3−2

3:50

:06.

415

.36

MC

T00

13−2

406,

GR

458

1852

926

7.89

60.

005

2W

D00

16−2

5800

:18:

44.4

9−2

5:36

:42.

216

.07

BM

CT

0016−2

553

1082

814

8.02

20.

008

2D

AV

WD

0016−2

2000

:19:

28.2

3−2

1:49

:04.

915

.31

GD

597,

PH

L28

5613

264

517.

779

0.00

62

WD

0017+

061

00:1

9:40

.99+

06:2

4:06

.214

.55

BP

G00

17+

061,

PH

L79

028

149

357.

749

0.00

62

WD

0018−3

3900

:21:

12.9

0−3

3:42

:27.

414

.70

GD

603,

BP

M46

232

2062

624

7.84

20.

005

2W

D00

24−5

5600

:26:

41.0

8−5

5:24

:44.

915

.21

L17

0−27

,BP

M16

115

1015

77

8.73

70.

006

2W

D00

27−6

3600

:29:

56.7

9−6

3:24

:58.

315

.29

BR

E00

29−6

32,E

UV

EJ0

030−

634

5812

921

07.

769

0.01

12

WD

0028−4

7400

:30:

47.1

6−4

7:12

:36.

915

.24

BH

E00

28−4

729,

JL19

217

394

277.

653

0.00

52

DD

dW

D00

29−1

8100

:32:

30.3

3−1

7:53

:23.

316

.05

BH

E00

29−1

809,

KU

V00

300−

1810

1357

876

7.83

10.

010

2H

E00

31−5

525

00:3

3:36

.03− 5

5:08

:37.

515

.94

B(J

L19

7)11

662

287.

829

0.01

02

DA

VM

CT

0031−3

107

00:3

4:24

.85−3

0:51

:25.

616

.43

B40

698

236

7.77

70.

023

2H

E00

32−2

744

00:3

4:37

.91−2

7:28

:20.

016

.28

B23

947

607.

812

0.00

82

WD

0032−3

1700

:34:

49.8

2−3

1:29

:54.

315

.62

BM

CT

0032−3

146

3696

510

07.

192

0.01

42

WD

0032−1

7500

:35:

17.4

7−1

7:18

:51.

114

.94

BM

CT

0032−1

735,

GR

511

9652

78.

080

0.00

72

WD

0032−1

7700

:35:

25.2

0−1

7:30

:40.

415

.70

KU

V00

329−

1747

1721

038

7.81

60.

009

2W

D00

33+

016

00:3

5:35

.93+

01:5

3:06

.515

.52

L10

11−7

1,G

001−

007

1066

911

8.78

90.

006

2N

OV

(2)

MC

T00

33−3

440

00:3

6:13

.89−3

4:23

:35.

716

.42

BH

BQ

S00

33−3

440

1589

056

8.18

40.

007

2W

D00

37−0

0600

:40:

22.9

4−0

0:21

:31.

114

.85

PG

0037−0

06,P

B60

89,S

DS

S16

403

197.

738

0.00

43

DD

dH

E00

43−0

318

00:4

6:18

.38−0

3:02

:00.

815

.48

B14

086

337.

732

0.00

42

WD

0047−5

2400

:50:

03.7

4−5

2:08

:17.

114

.20

BP

M16

274,

L21

9−04

818

811

177.

732

0.00

32

HS

0047+

1903

00:5

0:12

.43+

19:1

9:49

.315

.50

B17

135

257.

823

0.00

53

WD

0048−5

4400

:51:

08.8

7−5

4:11

:21.

215

.29

HE

0048−5

427,

L22

0−14

517

870

207.

976

0.00

42

WD

0048+

202

00:5

1:11

.00+

20:3

1:22

.315

.36

PG

0048+

202

2036

324

7.89

00.

004

3H

E00

49−0

940

00:5

2:15

.30−0

9:24

:20.

316

.00

B(P

HL

3044

)13

592

427.

704

0.00

32

WD

0050−3

3200

:53:

17.4

3−3

2:59

:56.

813

.36

MC

T00

50−3

316,

SB

360

3557

021

7.87

40.

003

3W

D00

52−1

4700

:54:

55.8

6−1

4:26

:09.

115

.12

MC

T00

52−1

442,

GD

662

2595

026

8.22

40.

004

2W

D00

53−1

1700

:55:

50.3

3−1

1:27

:31.

315

.26

L79

6−10

,LP

706−

065

6515

77.

037

0.01

32

WD

0101+

048

01:0

3:50

.01+

05:0

4:29

.213

.96

G00

2−01

7,G

001−

045

8387

57.

992

0.00

72

DD

sW

D01

02−1

8501

:04:

53.1

0−1

8:19

:50.

216

.40

MC

T01

02−1

835,

KU

V01

024−

138

2196

966

7.64

20.

011

2W

D01

02−1

4201

:05:

22.1

6−1

3:59

:12.

815

.93

BM

CT

0102−1

414,

PH

L98

019

945

297.

858

0.00

52

HE

0103−3

253

01:0

5:30

.77−3

2:37

:54.

316

.12

B13

248

767.

853

0.00

92

WD

0103−2

7801

:05:

53.5

2−2

7:36

:56.

815

.45

G26

9−09

3,LT

T06

1514

410

27.

789

0.00

52

MC

T01

05−1

634

01:0

8:09

.81−1

6:18

:44.

516

.44

BP

HL

997

2821

213

07.

835

0.02

12

WD

0106−3

5801

:08:

20.7

5−3

5:34

:43.

014

.74

MC

T01

06−3

550,

GD

683

2919

833

7.86

00.

007

2H

E01

06−3

253

01:0

8:36

.07−3

2:37

:43.

515

.34

B(T

onS

193,

SG

PA23

4)17

234

257.

999

0.00

52

WD

0107−1

9201

:09:

33.1

3−1

9:01

:19.

216

.18

GD

685,

GR

563

1430

478

7.78

80.

013

2W

D01

08+

143

01:1

0:55

.14+

14:3

9:21

.316

.40

BG

033−

045,

LP

467−

027

9217

208.

530

0.02

62

WD

0110−1

3901

:13:

09.8

5−1

3:39

:35.

815

.68

BM

CT

0110−1

355

2469

255

7.99

00.

007

2

444 D. Koester et al.: High-resolution spectra observed for the SPY. III. DA white dwarfs

Tabl

e1.

cont

inue

d.

Obj

ect

RA

(200

0)D

ec(2

000)

mag

(ban

d)A

lias

esT

eff[K

(Teff

)[K

]lo

ggσ

(logg)

Spe

ctra

Rem

arks

MC

T01

10−1

617

01:1

3:14

.12−1

6:01

:45.

616

.37

B34

621

757.

747

0.01

52

MC

T01

11−3

806

01:1

4:03

.23−3

7:50

:41.

915

.48

B71

306

535

7.19

00.

024

2W

D01

12−1

9501

:15:

05.6

2−1

9:15

:20.

016

.20

BM

CT

0112−1

931

3636

418

77.

658

0.02

82

WD

0114−6

0501

:16:

19.5

5−6

0:16

:07.

614

.90

BH

K22

953−

1824

692

467.

754

0.00

62

WD

0114−0

3401

:16:

58.8

0−0

3:10

:55.

716

.20

BG

D82

1,G

R51

519

460

997.

771

0.01

92

WD

0124−2

5701

:26:

55.9

0−2

5:30

:53.

715

.66

BM

CT

0124−2

546,

GD

1352

2304

267

7.78

90.

010

2W

D01

26+

101

01:2

9:24

.38+

10:2

2:59

.714

.38

G00

2−04

0,W

OL

F72

8557

57.

621

0.01

02

WD

0127−0

5001

:30:

23.0

6−0

4:47

:57.

813

.60

HE

0127−0

503,

G27

1−08

116

718

237.

784

0.00

52

WD

0129−2

0501

:31:

39.2

1−2

0:19

:59.

114

.64

BM

CT

0129−2

035

1995

046

7.88

50.

008

2H

S01

29+

1041

01:3

1:45

.54+

10:5

6:59

.115

.60

B(N

LTT

5061

)16

738

447.

916

0.00

92

HS

0130+

0156

01:3

2:57

.38+

02:1

1:32

.616

.00

B(P

HL

1026

)41

083

155

7.74

20.

016

2H

E01

30−2

721

01:3

3:09

.08−2

7:05

:45.

016

.08

B(G

D13

72,K

UV

0130

8−27

21)

2188

045

7.90

20.

007

2H

E01

31+

0149

01:3

4:28

.46+

02:0

4:21

.414

.69

B(P

HL

1040

)15

228

347.

745

0.00

72

DD

sW

D01

33−1

1601

:36:

13.3

9−1

1:20

:31.

314

.10

G27

1−10

6,Z

ZC

ET

I12

249

157.

856

0.00

52

DA

VW

D01

35−0

5201

:37:

59.4

0−0

4:59

:44.

912

.84

G27

1−11

5,L

HS

1270

6942

107.

081

0.01

02

DD

dM

CT

0136−2

010

01:3

8:31

.67−1

9:54

:50.

616

.49

BP

HL

3537

8416

108.

405

0.01

22

DD

sM

CT

0138−4

014

01:4

0:10

.98−3

9:59

:24.

616

.37

BH

E01

38−4

014

2169

844

7.89

80.

007

2W

D01

37−2

9101

:40:

16.7

9−2

8:52

:53.

716

.04

BM

CT

0137−2

908,

GD

1384

2155

055

7.75

50.

009

2W

D01

38−2

3601

:40:

28.1

5−2

3:21

:22.

816

.10

BM

CT

0138−2

336,

PH

L11

0036

897

297

7.62

70.

039

2W

D01

40−3

9201

:42:

50.9

9−3

8:59

:06.

914

.37

MC

T01

40−3

914,

SB

702

2181

124

7.91

80.

004

2W

D01

43+

216

01:4

6:41

.34+

21:5

4:48

.115

.05

G94−9

,WO

LF

8292

229

8.34

00.

009

2W

D01

45−2

2101

:47:

21.7

6−2

1:56

:51.

415

.30

MC

T01

45−2

211,

GD

1400

1174

720

8.06

60.

007

2D

AV

WD

0145−2

5701

:48:

08.1

8−2

5:32

:44.

114

.51

2591

537

7.85

80.

005

2H

S01

45+

1737

01:4

8:21

.51+

17:5

2:13

.515

.70

B18

125

297.

894

0.00

62

HE

0145−0

610

01:4

8:22

.27−0

5:55

:36.

516

.45

B(P

HL

1166

,BP

SC

S22

962−

0027

)86

1310

8.01

70.

013

3H

E01

50+

0045

01:5

2:59

.22+

01:0

0:20

.216

.40

BS

DS

S12

625

957.

705

0.02

61

NO

V(3

)W

D01

51+

017

01:5

4:13

.88+

02:0

1:23

.515

.00

G07

3−00

4,G

159−

012

1244

025

7.83

60.

008

2N

OV

(2)

HE

0152−5

009

01:5

4:35

.98−4

9:55

:01.

916

.32

B(C

SI−

50−0

1527

,JL

265)

1318

543

7.65

10.

008

2W

D01

55+

069

01:5

7:41

.33+

07:1

2:03

.815

.34

GD

20,F

EIG

E17

2200

756

7.66

80.

008

2W

D01

58−2

2702

:00:

53.4

1−2

2:27

:35.

716

.00

BH

E01

58−2

24,P

HL

1251

6708

167

67.

463

0.03

12

HE

0201−0

513

02:0

3:37

.60−0

4:59

:12.

815

.94

B(P

B90

09,G

159−

31)

2462

610

27.

638

0.01

31

HS

0200+

2449

02:0

3:45

.80+

25:0

4:09

.115

.60

B23

281

537.

860

0.00

72

WD

0203−1

3802

:05:

49.0

5−1

3:38

:27.

415

.70

B48

529

275

7.99

70.

020

2W

D02

04−2

3302

:06:

45.1

0−2

3:16

:14.

015

.60

G27

4−15

0,L

P82

9−01

713

095

787.

775

0.01

02

HE

0204−3

821

02:0

6:47

.55−3

8:07

:04.

015

.60

B14

038

447.

794

0.00

62

HE

0204−4

213

02:0

6:49

.89−4

1:59

:25.

816

.43

B22

575

587.

902

0.00

92

WD

0205−3

6502

:07:

25.4

6−3

6:20

:49.

416

.10

BM

CT

0205−3

635

6124

044

87.

742

0.02

42

WD

0205−3

0402

:07:

40.8

6−3

0:10

:59.

615

.67

BG

D14

4217

209

317.

761

0.00

62

HE

0205−2

945

02:0

8:08

.00−2

9:31

:38.

816

.06

B10

476

107.

774

0.00

82

DD

dW

D02

08−2

6302

:10:

58.6

3−2

6:07

:01.

315

.80

BH

E02

08−2

621

3372

065

7.76

40.

012

2H

E02

10−2

012

02:1

3:01

.93−1

9:58

:35.

216

.29

B17

612

277.

800

0.00

62

HE

0211−2

824

02:1

3:56

.66−2

8:10

:17.

815

.27

B14

469

487.

951

0.00

32

WD

0212−2

3102

:14:

21.2

6−2

2:54

:49.

116

.40

BH

E02

12−2

308,

GR

286

2682

761

7.94

30.

009

2

D. Koester et al.: High-resolution spectra observed for the SPY. III. DA white dwarfs 445Ta

ble

1.co

ntin

ued.

Obj

ect

RA

(200

0)D

ec(2

000)

mag

(ban

d)A

lias

esT

eff[K

(Teff

)[K

]lo

ggσ

(logg)

Spe

ctra

Rem

arks

HS

0213+

1145

02:1

6:07

.61+

11:5

9:18

.915

.50

B17

518

847.

787

0.01

81

NO

VW

D02

16+

143

02:1

8:48

.27+

14:3

6:03

.214

.58

PG

0216+

144

2663

729

7.79

10.

005

2D

Ds

HE

0219−4

049

02:2

1:19

.69−4

0:35

:29.

716

.20

B15

373

367.

893

0.00

52

HE

0221−2

642

02:2

3:29

.40−2

6:29

:19.

715

.63

B32

008

447.

721

0.01

12

WD

0220+

222

02:2

3:36

.07+

22:2

7:28

.415

.83

G94−B

5B,E

G18

1563

065

7.89

00.

010

1H

E02

21−0

535

02:2

3:59

.88−0

5:21

:45.

915

.59

B(P

HL

1276

)24

747

497.

954

0.00

72

HE

0222−2

336

02:2

4:19

.89−2

3:23

:15.

616

.48

B31

816

817.

874

0.01

81

HE

0222−2

630

02:2

4:36

.06−2

6:16

:52.

215

.59

B23

198

387.

911

0.00

52

HS

0223+

1211

02:2

6:29

.98+

12:2

5:22

.816

.00

B14

721

867.

300

0.01

91

HE

0225−1

912

02:2

7:41

.43−1

8:59

:24.

516

.14

B(P

HL

1295

)17

269

377.

559

0.00

81

DD

dH

S02

25+

0010

02:2

7:55

.50+

00:2

3:39

.115

.90

B13

337

807.

835

0.01

02

WD

0226−3

2902

:28:

27.7

0−3

2:42

:35.

913

.73

BH

E02

26−3

255

2229

422

7.87

50.

003

3W

D02

27+

050

02:3

0:16

.66+

05:1

5:50

.712

.65

Fei

ge22

,EG

1919

341

127.

762

0.00

22

WD

0229−4

8102

:30:

53.3

1−4

7:55

:25.

914

.53

LB

1628

,RE

0230−4

7559

082

364

7.71

30.

020

2W

D02

31−0

5402

:34:

07.7

3−0

5:11

:39.

614

.24

GD

31,P

HL

1358

1730

611

8.44

50.

003

3H

S02

37+

1034

02:4

0:35

.57+

10:4

7:01

.516

.00

B17

259

707.

857

0.01

51

DD

sH

S02

41+

1411

02:4

4:00

.75+

14:2

4:29

.616

.20

B13

753

150

7.76

30.

019

1W

D02

42−1

7402

:45:

02.3

5−1

7:12

:20.

615

.33

HK

2218

9−19

2066

338

7.85

30.

007

1W

D02

43+

155

02:4

6:24

.06+

15:4

5:01

.916

.46

mc

PG

0243+

155

1761

161

7.95

80.

013

1H

E02

45−0

008

02:4

7:46

.45+

00:0

3:30

.416

.45

BS

DS

S18

813

115

7.97

70.

022

1H

E02

46−5

449

02:4

8:07

.16−5

4:36

:44.

916

.39

B15

949

457.

829

0.01

02

WD

0250−0

2602

:52:

51.0

5−0

2:25

:17.

414

.73

HE

0250−0

237,

KU

V02

503−

0238

1531

523

7.79

70.

005

2W

D02

50−0

0702

:53:

32.2

9−0

0:33

:45.

316

.40

KU

V02

510-

0046

,SD

SS

7948

137.

793

0.01

92

WD

0252−3

5002

:54:

37.2

5−3

4:49

:56.

615

.89

BH

E02

52−3

501

1693

434

7.36

60.

007

2W

D02

55−7

0502

:56:

16.9

0−7

0:22

:17.

714

.08

L54−5

,LF

T24

510

514

88.

080

0.00

62

NO

V(1

)H

E02

55−1

100

02:5

8:21

.72−1

0:48

:25.

715

.99

B(P

B94

04)

2082

713

27.

836

0.02

01

HE

0256−1

802

02:5

8:59

.54−1

7:50

:20.

316

.41

B26

212

627.

757

0.01

02

HE

0257−2

104

02:5

9:52

.65−2

0:52

:49.

616

.30

B17

362

427.

692

0.00

82

HE

0300−2

313

03:0

2:36

.69−2

3:01

:52.

015

.35

B22

369

378.

386

0.00

52

WD

0302+

027

03:0

4:37

.40+

02:5

6:56

.614

.97

GD

41,F

EIG

E31

3527

061

7.77

20.

009

2H

E03

03−2

041

03:0

6:04

.96−2

0:29

:31.

116

.26

B(P

HL

1467

)10

006

108.

131

0.01

02

HE

0305−1

145

03:0

8:10

.25−1

1:33

:45.

715

.40

B(P

HL

8567

)26

822

687.

812

0.01

02

WD

0307+

149

03:0

9:53

.95+

15:0

5:22

.115

.10

BH

S03

7+14

54,P

G03

07+

149

2141

327

7.90

90.

004

2H

S03

07+

0746

03:1

0:09

.13+

07:5

7:32

.616

.50

B10

127

148.

070

0.01

32

WD

0310−6

8803

:10:

30.9

9−6

8:36

:03.

311

.40

CP

D−6

9◦17

7,L

B33

0316

329

67.

908

0.00

14

HE

0308−2

305

03:1

1:07

.24−2

2:54

:05.

615

.16

B23

565

418.

538

0.00

62

WD

0308+

188

03:1

1:49

.22+

19:0

0:55

.513

.86

BP

G03

08+

188

1845

021

7.72

50.

004

2H

S03

09+

1001

03:1

2:34

.96+

10:1

2:27

.215

.60

B18

786

317.

725

0.00

62

WD

0315−3

3203

:17:

26.0

5−3

3:03

:05.

416

.53

BH

E03

15−3

314

4992

635

07.

472

0.02

53

HS

0315+

0858

03:1

7:43

.18+

09:0

9:55

.215

.90

B18

783

387.

871

0.00

72

HE

0315−0

118

03:1

8:13

.31−0

1:07

:13.

114

.71

BS

DS

S13

469

517.

614

0.00

72

DD

dH

E03

17−2

120

03:1

9:27

.22−2

1:09

:13.

215

.80

B96

8813

8.09

30.

014

2W

D03

17+

196

03:2

0:04

.07+

19:4

7:35

.415

.58

BP

G03

17+

196

1773

550

7.77

60.

011

1

446 D. Koester et al.: High-resolution spectra observed for the SPY. III. DA white dwarfs

Tabl

e1.

cont

inue

d.

Obj

ect

RA

(200

0)D

ec(2

000)

mag

(ban

d)A

lias

esT

eff[K

(Teff

)[K

]lo

ggσ

(logg)

Spe

ctra

Rem

arks

WD

0318−0

2103

:20:

58.7

7−0

1:59

:59.

516

.01

HE

0318−0

210,

KU

V03

184−

0211

1512

545

7.70

20.

008

2W

D03

20−5

3903

:22:

14.8

1−5

3:45

:16.

314

.99

BL

B16

63,R

EJ0

322−

534

3258

828

7.76

90.

006

3H

E03

20−1

917

03:2

2:31

.91−1

9:06

:47.

816

.00

B(P

HL

4402

)13

248

887.

168

0.01

62

DD

sH

E03

24−2

234

03:2

6:26

.88−2

2:24

:15.

016

.39

B(P

HL

1537

)16

905

357.

845

0.00

82

HE

0324−0

646

03:2

6:39

.97−0

6:36

:05.

215

.95

BB

GK

,SD

SS

1574

041

7.86

60.

008

2H

E03

24−1

942

03:2

7:05

.02−1

9:32

:23.

816

.25

B(P

HL

1541

)20

660

498.

078

0.00

82

DD

dH

E03

25−4

033

03:2

7:43

.92−4

0:23

:26.

116

.38

B16

737

507.

695

0.01

02

DD

sH

S03

25+

2142

03:2

8:25

.24+

21:5

3:08

.415

.30

B13

863

118

7.93

50.

011

1W

D03

26−2

7303

:28:

48.8

1−2

7:19

:01.

714

.00

LP

888−

064,

L05

87−0

77A

9190

57.

717

0.00

62

DD

sW

D03

28+

008

03:3

1:33

.93+

01:0

3:26

.516

.80

HE

0328+

0053

,SD

SS

3447

611

37.

920

0.02

22

HE

0330−4

736

03:3

2:03

.98−4

7:25

:57.

716

.03

B12

913

388.

034

0.00

82

HS

0329+

1121

03:3

2:35

.92+

11:3

1:31

.915

.80

B17

376

857.

855

0.01

81

WD

0330−0

0903

:32:

36.9

0−0

0:49

:36.

615

.74

BH

E03

30−0

059,

KU

V03

301−

0100

3404

459

7.74

00.

011

2H

S03

31+

2240

03:3

4:53

.26+

22:5

0:07

.815

.00

B21

452

547.

783

0.00

91

HE

0333−2

201

03:3

6:02

.77−2

1:51

:21.

515

.46

B(P

HL

4465

)16

046

478.

192

0.00

51

HE

0336−0

741

03:3

8:26

.79−0

7:31

:54.

616

.33

B15

854

227.

769

0.00

92

WD

0336+

040

03:3

8:56

.21+

04:0

9:43

.015

.90

KU

V03

363 +

0400

8703

127.

828

0.01

83

HS

0337+

0939

03:3

9:58

.55+

09:4

9:11

.316

.20

B14

371

797.

780

0.01

32

1248

357

7.97

00.

015

2am

bH

E03

38−3

025

03:4

0:18

.33−3

0:15

:36.

016

.25

B(P

HL

8735

)99

599

8.13

10.

010

2W

D03

39−0

3503

:41:

54.4

9−0

3:22

:40.

915

.20

GD

47,L

P65

3−02

614

759

277.

780

0.00

42

NO

V(1

)12

415

207.

940

0.00

52

amb

WD

0341+

021

03:4

4:10

.77+

02:1

5:29

.915

.30

BH

E03

41+

0206

,KU

V03

416+

0206

2215

361

7.27

30.

008

2D

Ds

WD

0343−0

0703

:46:

25.2

1−0

0:38

:39.

414

.91

KU

V08

98−0

6,S

DS

S62

994

563

7.67

70.

028

2W

D03

44+

073

03:4

6:51

.42+

07:2

8:01

.916

.10

KU

V03

442+

0719

1047

414

7.74

80.

012

3D

Ds,

NO

VH

S03

44+

0944

03:4

6:52

.31+

09:5

3:56

.116

.50

B15

321

205

8.22

70.

028

1H

E03

44−1

207

03:4

7:06

.71−1

1:58

:08.

515

.80

B11

352

858.

098

0.01

82

DA

VH

S03

45+

1324

03:4

8:39

.58+

13:3

3:29

.315

.90

B25

064

678.

182

0.00

82

HS

0346+

0755

03:4

9:15

.29+

08:0

4:53

.616

.30

B16

796

707.

720

0.01

42

WD

0346−0

1103

:48:

50.2

4−0

0:58

:33.

213

.99

GD

50,G

R28

8,S

DS

S40

455

779.

313

0.00

92

HE

0348−4

445

03:4

9:59

.27−4

4:36

:27.

416

.22

B19

951

398.

069

0.00

72

HE

0348−2

404

03:5

0:38

.82−2

3:55

:45.

216

.26

B14

735

547.

944

0.00

62

HE

0349−2

537

03:5

1:41

.37−2

5:28

:16.

615

.74

B20

974

447.

906

0.00

82

WD

0352+

049

03:5

4:40

.21+

05:0

8:45

.516

.20

KU

V03

520+

0500

3725

312

48.

611

0.02

01

WD

0352+

052

03:5

4:41

.09+

05:2

3:19

.415

.90

KU

V03

520+

0515

,GD

5410

136

147.

967

0.01

42

WD

0352+

018

03:5

4:43

.47+

01:5

8:41

.415

.63

HE

0352+

0149

,KU

V03

521+

0150

2210

758

7.79

70.

008

2W

D03

52+

096

03:5

5:22

.02+

09:4

7:17

.514

.47

HS

0352+

0938

,HZ

414

440

478.

178

0.00

52

HE

0358−5

127

03:5

9:38

.30−5

1:18

:41.

515

.60

B23

376

477.

927

0.00

62

HS

0400+

1451

04:0

3:42

.08+

14:5

9:28

.915

.10

B14

623

618.

250

0.00

52

HS

0401+

1454

04:0

4:35

.02+

15:0

2:26

.716

.20

B14

795

597.

796

0.01

11

NO

V12

527

497.

965

0.01

31

amb

HE

0403−4

129

04:0

5:30

.11−4

1:21

:10.

216

.13

B22

702

627.

937

0.01

02

HE

0404−1

852

04:0

7:11

.18−1

8:44

:33.

516

.00

B(P

PM

7105

47)

1921

859

7.66

50.

011

1

D. Koester et al.: High-resolution spectra observed for the SPY. III. DA white dwarfs 447Ta

ble

1.co

ntin

ued.

Obj

ect

RA

(200

0)D

ec(2

000)

mag

(ban

d)A

lias

esT

eff[K

(Teff

)[K

]lo

ggσ

(logg)

Spe

ctra

Rem

arks

WD

0406+

169

04:0

9:28

.89+

17:0

7:54

.015

.35

GH

7−11

2,L

P41

4−10

116

049

488.

236

0.00

81

WD

0407+

179

04:1

0:10

.33+

18:0

2:24

.014

.14

HZ

10,H

S04

07+

1754

1442

12

7.76

80.

003

3N

OV

(1)

WD

0408−0

4104

:11:

02.1

7−0

3:58

:22.

215

.50

GD

56,G

R57

115

414

457.

856

0.01

01

HE

0409−5

154

04:1

1:10

.33−5

1:46

:50.

815

.48

B26

315

677.

830

0.00

92

HE

0410−1

137

04:1

2:28

.99−1

1:30

:08.

316

.13

B(G

D57

)17

406

347.

601

0.00

72

DD

dW

D04

10+

117

04:1

2:43

.60+

11:5

1:48

.513

.86

HS

0409+

1144

,HZ

221

074

227.

843

0.00

42

HS

0412+

0632

04:1

4:58

.36+

06:4

0:07

.015

.50

B(G

D59

)13

290

527.

812

0.00

62

HE

0414−4

039

04:1

6:02

.87−4

0:32

:11.

715

.88

B20

941

577.

935

0.01

02

WD

0416−5

5004

:17:

11.5

1−5

4:57

:47.

915

.11

BH

E04

16−5

505

3054

751

7.11

80.

011

2H

E04

16−3

852

04:1

8:04

.14−3

8:45

:20.

616

.01

B19

324

497.

956

0.01

02

HE

0416−1

034

04:1

8:47

.84−1

0:27

:09.

615

.83

B24

845

357.

917

0.00

52

HE

0417−3

033

04:1

9:22

.07−3

0:26

:44.

016

.51

B19

103

627.

846

0.01

21

HE

0418−5

326

04:1

9:24

.83−5

3:19

:17.

416

.38

B(F

AU

ST

545,

FD

30)

2709

066

7.87

20.

011

2H

E04

18−1

021

04:2

1:12

.03−1

0:14

:09.

016

.21

B23

385

348.

287

0.00

71

WD

0421+

162

04:2

3:55

.81+

16:2

1:13

.914

.29

GH

7−19

1,V

R7

1961

622

8.02

50.

004

2H

E04

23−2

822

04:2

5:20

.85−2

8:15

:19.

916

.54

B10

907

218.

066

0.01

23

NO

VH

S04

24+

0141

04:2

6:52

.45+

01:4

7:47

.715

.60

B44

174

212

7.67

90.

019

2H

E04

25−2

015

04:2

7:39

.77− 2

0:09

:15.

216

.49

B19

801

548.

115

0.01

02

WD

0425+

168

04:2

8:39

.48+

16:5

8:10

.414

.01

GH

7−23

3,V

R16

2400

025

8.03

60.

004

2H

E04

26−1

011

04:2

8:42

.32−1

0:04

:48.

916

.07

B18

386

217.

854

0.00

42

WD

0426+

106

04:2

8:58

.29+

10:4

4:48

.716

.30

KU

V04

262+

1038

1005

826

8.40

70.

020

2H

E04

26−0

455

04:2

9:26

.32−0

4:48

:46.

714

.89

B14

129

557.

989

0.00

52

WD

0431+

126

04:3

3:45

.08+

12:4

2:40

.414

.18

HS

0430+

1236

,HZ

721

374

287.

968

0.00

52

HE

0436−1

633

04:3

8:47

.33−1

6:27

:21.

416

.22

B14

092

677.

959

0.00

62

WD

0437+

152

04:3

9:52

.97+

15:1

9:44

.015

.83

KU

V04

370+

1514

1871

139

7.24

70.

008

2W

D04

40−0

3804

:43:

07.0

7−0

3:46

:49.

516

.00

6846

861

88.

420

0.02

72

WD

0446−7

8904

:43:

46.6

7−7

8:51

:50.

213

.47

BP

M35

2323

627

227.

687

0.00

32

HE

0452−3

429

04:5

4:05

.85−3

4:25

:05.

916

.49

B14

825

477.

810

0.00

81

HE

0452−3

444

04:5

4:23

.69−3

4:39

:48.

715

.86

B21

206

407.

839

0.00

72

HE

0455−5

315

04:5

6:58

.35−5

3:10

:26.

616

.20

B24

432

947.

553

0.01

33

DD

sW

D04

55−2

8204

:57:

13.3

8−2

8:07

:53.

613

.95

RE

0457−2

80,E

UV

EJ0

457−

281

5438

615

57.

682

0.01

02

HE

0456−2

347

04:5

8:51

.47−2

3:42

:55.

716

.42

B23

645

667.

794

0.00

92

HS

0503+

0154

05:0

5:39

.24+

01:5

8:28

.215

.20

B(1

RX

SJ0

5053

9.1+

0158

25)

5456

328

97.

544

0.01

72

HE

0507−1

855

05:0

9:20

.47−1

8:51

:17.

316

.38

B20

421

488.

271

0.00

82

HS

0507+

0434

B05

:10:

13.5

9+

04:3

8:54

.015

.36

1148

818

8.05

70.

008

2D

AV

HS

0507+

0434

A05

:10:

14.0

1+

04:3

8:37

.414

.21

2083

826

7.89

70.

005

2H

E05

08−2

343

05:1

0:39

.43−2

3:40

:10.

116

.24

B16

811

647.

738

0.01

42

WD

0509−0

0705

:12:

06.5

1−0

0:42

:07.

213

.90

RE

0512−0

04,E

UV

EJ0

512−

007

3191

029

7.29

40.

007

2W

D05

11+

079

05:1

4:03

.61+

08:0

0:14

.515

.89

6137

127.

228

0.02

52

WD

0510−4

1805

:12:

23.0

3−4

1:45

:26.

316

.50

5049

036

67.

680

0.02

42

HE

0516−1

804

05:1

9:04

.27−1

8:01

:29.

116

.14

B12

976

103

7.76

50.

017

1W

D05

18−1

0505

:21:

18.9

5−1

0:29

:17.

415

.89

RE

0521−1

02,E

UV

EJ0

521−

104

3200

844

8.81

80.

010

2H

E05

32−5

605

05:3

3:06

.70−5

6:03

:53.

316

.12

B(E

C05

321−

5605

)11

285

218.

454

0.00

72

DA

VW

D05

48+

000

05:5

0:37

.62+

00:0

5:50

.414

.79

GD

257,

GR

289

4468

410

77.

822

0.01

02

WD

0549+

158

05:5

2:27

.63+

15:5

3:13

.113

.06

GD

71,L

TT

1173

332

959

167.

731

0.00

33

448 D. Koester et al.: High-resolution spectra observed for the SPY. III. DA white dwarfsTa

ble

1.co

ntin

ued.

Obj

ect

RA

(200

0)D

ec(2

000)

mag

(ban

d)A

lias

esT

eff[K

(Teff

)[K

]lo

ggσ

(logg)

Spe

ctra

Rem

arks

WD

0556+

172

05:5

9:44

.95+

17:1

2:03

.915

.79

KP

D05

56+

1712

1882

531

8.09

40.

006

2W

D05

58+

165

06:0

1:17

.67+

16:3

1:37

.215

.69

KP

D05

58+

1631

1680

727

8.18

30.

005

2W

D06

03−4

8306

:05:

02.7

5−4

8:19

:59.

816

.00

3473

161

7.84

20.

012

2W

D06

12+

177

06:1

5:18

.67+

17:4

3:40

.113

.39

G10

4−27

,LT

T11

818

2562

424

7.81

40.

003

2W

D06

21−3

7606

:23:

12.7

1−3

7:41

:30.

812

.09

RE

0623−3

74,E

UV

EJ0

623−

376

5780

612

07.

269

0.00

62

WD

0628−0

2006

:30:

38.5

9−0

2:05

:51.

015

.30

BL

P60

0−42

6414

127.

248

0.02

31

WD

0630−0

5006

:32:

57.7

9−0

5:05

:49.

815

.54

RE

0632−0

50,E

UV

EJ0

632−

050

4245

117

58.

335

0.01

52

WD

0642−2

8506

:44:

28.7

7−2

8:32

:38.

615

.20

BL

P89

5−04

191

3321

7.80

90.

032

1W

D06

46−2

5306

:48:

56.2

0−2

5:23

:48.

213

.80

2799

021

7.79

10.

004

2W

D06

59−0

6307

:01:

55.0

0−0

6:27

:48.

715

.27

LH

S18

92,L

P66

1−00

360

467

7.01

90.

016

2W

D07

10+

216

07:1

3:21

.61+

21:3

4:06

.815

.29

GD

83,E

G21

410

206

97.

990

0.00

82

NO

VW

D07

15−7

0407

:15:

17.0

0−7

0:25

:06.

514

.00

4491

512

47.

674

0.01

02

WD

0721−2

7607

:23:

20.0

6−2

7:47

:22.

814

.80

3652

053

7.70

40.

008

2W

D07

32−4

2707

:33:

37.8

4−4

2:53

:58.

814

.16

L38

4−24

,BP

M33

039

1499

528

8.00

00.

005

2W

D08

10−7

2808

:09:

31.9

9−7

2:59

:17.

215

.15

RE

0809−7

25,E

UV

EJ0

809−

729

3059

832

7.84

50.

007

3H

S08

20+

2503

08:2

3:46

.21+

24:5

3:45

.915

.00

BS

DS

S33

367

807.

660

0.01

42

WD

0830−5

3508

:31:

52.0

2−5

3:40

:33.

714

.46

RE

0831−5

34,E

UV

E08

31−5

3630

050

207.

763

0.00

43

WD

0838+

035

08:4

1:03

.90+

03:2

1:16

.115

.20

SD

SS

3834

248

7.71

60.

005

2W

D08

39−3

2708

:41:

32.6

2−3

2:56

:34.

811

.90

L53

2−81

,CD−3

2◦56

1391

743

7.82

80.

004

2W

D08

39+

231

08:4

2:53

.06+

23:0

0:25

.814

.42

PG

0839+

232

2585

239

7.63

60.

005

2W

D08

52+

192

08:5

5:30

.73+

19:0

4:37

.815

.70

BL

B88

88,H

S08

52+

1916

1513

039

7.84

80.

007

2W

D08

58+

160

09:0

1:33

.46+

15:5

1:43

.315

.83

HS

0858+

1603

1606

434

7.77

40.

008

2W

D08

59−0

3909

:02:

17.3

4−0

4:06

:56.

312

.40

2373

114

7.79

20.

002

3W

D09

08+

171

09:1

1:24

.05+

16:5

4:11

.516

.06

mc

PG

0908+

171,

SD

SS

1764

033

7.83

00.

007

2W

D09

11−0

7609

:14:

22.3

9−0

7:51

:25.

616

.16

EC

0911

9−07

3818

175

347.

854

0.00

72

WD

0916+

064

09:1

8:41

.87+

06:1

7:02

.215

.66

BP

G09

16+

065,

SD

SS

4304

823

27.

368

0.02

11

WD

0922+

162B

09:2

5:13

.22+

16:0

1:45

.617

.30

2578

317

89.

039

0.02

81

WD

0922+

162A

09:2

5:13

.55+

16:0

1:44

.716

.26

2353

748

8.22

60.

008

3W

D09

22+

183

09:2

5:18

.37+

18:0

5:34

.316

.46

mc

PG

0922+

183

2453

259

8.15

90.

008

2W

D09

28−7

1309

:29:

08.6

5−7

1:34

:02.

815

.44

L64−4

0,B

PM

0563

983

896

8.05

70.

009

3H

S09

26+

0828

09:2

9:36

.53+

08:1

5:46

.816

.20

B(S

DS

S)

1493

965

7.70

00.

013

2N

OV

(3)

1202

751

7.91

10.

015

2am

bH

S09

29+

0839

09:3

2:29

.85+

08:2

6:37

.516

.10

BB

GK

1570

739

7.77

40.

014

2H

S09

31+

0712

09:3

4:32

.67+

06:5

8:48

.216

.50

BS

DS

S36

719

193

7.16

00.

025

2H

S09

33+

0028

09:3

6:07

.96+

00:1

4:35

.916

.00

B32

219

698.

100

0.01

62

HS

0937+

0130

09:3

9:58

.67+

01:1

6:38

.216

.50

BS

DS

S19

717

478.

314

0.00

82

WD

0937−1

0309

:40:

11.9

6−1

0:34

:25.

115

.97

EC

0937

7−10

2017

562

308.

502

0.00

52

WD

0939−1

5309

:41:

56.2

2−1

5:32

:14.

615

.92

EC

0939

5−15

1813

500

587.

787

0.00

72

HS

0940+

1129

09:4

3:14

.38+

11:1

6:11

.416

.10

B15

176

497.

838

0.00

92

1303

112

87.

878

0.01

41

amb

HS

0943+

1401

09:4

6:31

.60+

13:4

7:35

.816

.40

B16

863

258.

275

0.01

02

HS

0944+

1913

09:4

7:31

.67+

18:5

9:12

.715

.30

B17

444

177.

883

0.00

32

HS

0949+

0935

09:5

1:48

.94+

09:2

1:12

.616

.30

B(S

DS

S)

1835

765

7.69

40.

013

2H

S09

49+

0823

09:5

1:56

.17+

08:0

9:33

.716

.10

B14

755

667.

808

0.01

22

NO

V(3

)W

D09

50+

077

09:5

2:59

.15+

07:3

1:08

.316

.12

BP

G09

50+

078

1562

337

7.89

10.

006

2

D. Koester et al.: High-resolution spectra observed for the SPY. III. DA white dwarfs 449

Tabl

e1.

cont

inue

d.

Obj

ect

RA

(200

0)D

ec(2

000)

mag

(ban

d)A

lias

esT

eff[K

(Teff

)[K

]lo

ggσ

(logg)

Spe

ctra

Rem

arks

WD

0951−1

5509

:53:

40.3

6−1

5:48

:56.

616

.09

EC

0951

2−15

3417

973

337.

827

0.00

72

WD

0954+

134

09:5

7:18

.99+

13:1

2:57

.016

.41

BP

G09

54+

135,

SD

SS

1646

275

7.67

70.

015

2W

D09

55+

247

09:5

7:48

.37+

24:3

2:55

.515

.07

G49−3

3,LT

T12

661

8446

67.

985

0.00

92

WD

0956+

045

09:5

8:37

.24+

04:2

1:31

.015

.80

mc

PG

0956+

046

1822

841

7.77

90.

008

3W

D09

56+

020

09:5

8:50

.49+

01:4

7:23

.515

.61

BH

E09

56+

0201

,PG

0956+

021,

SD

SS

1649

525

7.80

60.

006

2W

D10

00−0

0110

:03:

16.3

4−0

0:23

:36.

916

.08

mc

PG

1000−0

02,L

B56

420

253

507.

803

0.00

92

WD

1003−0

2310

:05:

51.5

4−0

2:34

:19.

515

.43

PG

1003−0

2320

614

357.

889

0.00

62

HS

1003+

0726

10:0

6:23

.08+

07:1

2:12

.615

.30

BS

DS

S94

8616

8.02

00.

018

1W

D10

10+

043

10:1

3:12

.78+

04:0

5:12

.816

.34

BP

G10

10+

043

2861

756

7.90

30.

010

2H

E10

12−0

049

10:1

5:11

.75−0

1:04

:17.

115

.57

B(2

MA

SS

)23

204

478.

074

0.00

72

HS

1013+

0321

10:1

5:48

.15+

03:0

6:46

.815

.60

BS

DS

S11

600

247.

983

0.01

02

DA

VW

D10

13−0

1010

:16:

07.0

1−0

1:19

:18.

715

.33

G05

3−03

8,E

G25

380

666

7.50

90.

011

2D

Ds

WD

1015−2

1610

:17:

26.6

7−2

1:53

:43.

415

.66

EC

1015

0−21

3830

937

407.

891

0.00

82

WD

1015+

076

10:1

8:01

.69+

07:2

1:22

.415

.37

PG

1015+

076

2737

512

47.

728

0.01

81

WD

1015+

161

10:1

8:03

.84+

15:5

1:58

.315

.57

mc

PG

1015+

161

1994

833

7.92

50.

006

2W

D10

17−1

3810

:19:

52.4

5−1

4:07

:35.

514

.56

EC

1017

4−13

52,R

EJ1

019−

140

3179

826

7.84

50.

006

2W

D10

17+

125

10:1

9:56

.02+

12:1

6:29

.915

.75

mc

PG

1017+

125

2138

643

7.87

50.

007

2W

D10

19+

129

10:2

2:28

.77+

12:4

1:59

.415

.60

PG

1019+

129

1841

229

7.88

50.

006

2W

D10

20−2

0710

:22:

43.8

3−2

1:00

:02.

115

.09

EC

1020

3−20

4419

920

587.

926

0.01

01

WD

1022+

050

10:2

4:59

.90+

04:4

6:09

.014

.18

PG

1022+

050,

LP

550−

5214

693

557.

364

0.01

21

DD

s,N

OV

(2)

WD

1023+

009

10:2

5:49

.77+

00:3

9:04

.416

.40

mc

PG

1023+

009

3781

715

77.

650

0.01

72

WD

1026+

023

10:2

9:09

.87+

02:0

5:49

.714

.20

mc

PG

1026+

024,

LP

550−

292

1233

818

7.95

50.

004

3N

OV

(2)

WD

1031−1

1410

:33:

42.7

9−1

1:41

:40.

413

.00

EC

1031

2−11

26,L

0825−0

1425

502

277.

845

0.00

41

WD

1031+

063

10:3

4:05

.43+

06:0

2:45

.616

.26

mc

PG

1031+

063

2131

767

7.75

90.

010

2W

D10

36+

085

10:3

9:07

.48+

08:1

8:39

.116

.07

BP

G10

36+

086

2292

493

7.32

40.

012

2H

S10

43+

0258

10:4

6:23

.34+

02:4

2:35

.615

.60

BS

DS

S13

739

747.

756

0.01

02

WD

1049−1

5810

:52:

20.6

9−1

6:08

:05.

914

.36

EC

1049

8−15

5220

037

238.

276

0.00

42

WD

1053−5

5010

:55:

13.7

7−5

5:19

:05.

814

.32

L25

0−52

,BP

M20

383

1462

120

7.85

70.

004

2N

OV

(1)

WD

1053−2

9010

:55:

40.0

4− 2

9:19

:53.

415

.38

EC

1053

2−29

0310

664

108.

068

0.00

62

WD

1053−0

9210

:55:

45.4

1−0

9:30

:59.

116

.38

BH

E10

53−0

914,

PG

1053−0

9222

620

617.

694

0.00

92

HS

1053+

0844

10:5

5:51

.54+

08:2

8:46

.616

.50

B16

556

497.

813

0.01

12

WD

1056−3

8410

:58:

20.1

9−3

8:44

:26.

514

.08

RE

1058−3

84,E

UV

EJ1

058−

387

2794

725

7.89

80.

004

2W

D10

58−1

2911

:01:

12.2

8−1

3:14

:42.

714

.93

EC

1058

7−12

58,P

G10

58−1

2923

892

328.

651

0.00

54

HS

1102+

0934

11:0

4:36

.76+

09:1

8:22

.716

.40

BB

GK

,SD

SS

1696

155

7.36

70.

012

3D

Ds

WD

1102−1

8311

:04:

47.0

8−1

8:37

:15.

215

.99

EC

1102

3−18

2180

578

7.85

10.

011

3H

S11

02+

0032

11:0

5:15

.33+

00:1

6:26

.314

.80

(SD

SS

,GD

127)

1261

049

8.24

20.

011

2N

OV

(3)

WD

1105−0

4811

:07:

59.9

8−0

5:09

:27.

312

.92

LP

672−

001,

G16

3−05

015

995

117.

753

0.00

22

HS

1115+

0321

11:1

7:46

.18+

03:0

4:51

.315

.40

BB

GK

,SD

SS

,GD

131

1426

739

7.70

90.

007

2W

D11

16+

026

11:1

9:12

.55+

02:2

0:30

.914

.57

GD

133,

PG

1116+

026

1212

123

8.00

50.

005

2D

AV

HE

1117−0

222

11:1

9:34

.66−0

2:39

:06.

314

.25

B(G

D13

5)14

709

367.

978

0.00

52

WD

1121+

216

11:2

4:13

.08+

21:2

1:34

.814

.23

G12

0−45

,LH

S30

469

297

7.30

60.

011

2W

D11

22−3

2411

:24:

35.6

2−3

2:46

:25.

715

.86

EC

1122

1−32

2921

671

387.

855

0.00

62

WD

1123+

189

11:2

6:19

.11+

18:3

9:17

.214

.01

mc

PG

1123+

189,

RE

J112

6+18

358

126

205

7.49

80.

012

2H

E11

24+

0144

11:2

6:49

.74+

01:2

7:56

.416

.30

BG

K,S

DS

S16

246

357.

743

0.00

72

WD

1124−2

9311

:27:

09.3

2−2

9:40

:11.

815

.02

EC

1124

6−29

23,E

SO

0439−0

8093

976

8.09

90.

007

2W

D11

24−0

1811

:27:

21.3

3−0

2:08

:37.

716

.47

mc

PG

1124−0

19,S

DS

S23

942

457.

628

0.00

92

DD

s

450 D. Koester et al.: High-resolution spectra observed for the SPY. III. DA white dwarfsTa

ble

1.co

ntin

ued.

Obj

ect

RA

(200

0)D

ec(2

000)

mag

(ban

d)A

lias

esT

eff[K

(Teff

)[K

]lo

ggσ

(logg)

Spe

ctra

Rem

arks

WD

1125−0

2511

:28:

14.5

0−0

2:50

:27.

315

.32

BP

G11

25−0

26,R

EJ1

128−

025

3175

536

8.15

90.

008

2W

D11

25+

175

11:2

8:15

.68+

17:1

4:06

.915

.95

PG

1125+

175

6121

348

47.

490

0.02

72

WD

1126−2

2211

:29:

11.6

4−2

2:33

:44.

416

.17

EC

1126

6−22

1711

818

418.

009

0.01

22

DA

VW

D11

29+

071

11:3

2:03

.58+

06:5

5:07

.914

.90

mc

PG

1129+

072

1459

935

7.83

10.

006

2W

D11

29+

155

11:3

2:27

.46+

15:1

7:29

.114

.04

mc

PG

1129+

156

1773

916

8.02

90.

003

2W

D11

30−1

2511

:33:

19.5

0−1

2:49

:01.

215

.50

EC

1130

7−12

3214

138

618.

342

0.00

82

HS

1136+

1359

11:3

9:25

.42+

13:4

3:11

.016

.00

B(A

111

7)23

921

204

7.82

80.

028

1H

S11

36+

0326

11:3

9:26

.64+

03:1

0:19

.716

.20

B13

530

126

7.92

60.

017

2W

D11

41+

077

11:4

3:59

.45+

07:2

9:04

.714

.11

BP

G11

41+

078

6249

334

57.

554

0.01

81

WD

1144−2

4611

:47:

20.1

3−2

4:54

:56.

715

.71

EC

1144

8−24

3830

500

417.

161

0.00

92

HS

1144+

1517

11:4

7:25

.13+

15:0

0:38

.716

.30

BB

GK

,SD

SS

1538

559

7.77

30.

013

2W

D11

45+

187

11:4

8:03

.18+

18:3

0:46

.614

.22

PG

1145+

188,

RE

J114

8+18

327

167

277.

798

0.00

42

WD

1147+

255

11:5

0:20

.18+

25:1

8:32

.615

.55

G12

1−02

2,H

S14

06+

2229

9910

118.

046

0.01

12

NO

V(1

)W

D11

49+

057

11:5

1:54

.29+

05:2

8:38

.314

.91

mc

PG

1149+

058,

SD

SS

1102

321

8.05

70.

012

3D

AV

WD

1150−1

5311

:53:

15.3

7−1

5:36

:36.

816

.00

EC

1150

7−15

1912

132

428.

033

0.00

82

DA

VH

E11

52−1

244

11:5

4:34

.91−1

3:01

:16.

815

.81

B13

126

547.

780

0.00

62

WD

1152−2

8711

:54:

45.8

2−2

9:00

:40.

716

.38

EC

1152

2−28

4320

620

797.

628

0.01

31

HS

1153+

1416

11:5

5:59

.76+

14:0

0:13

.315

.80

(PB

3724

)15

553

657.

785

0.01

42

WD

1155−2

4311

:57:

33.6

5−2

4:39

:27.

916

.48

EC

1155

0−24

2213

831

967.

888

0.01

12

WD

1159−0

9812

:02:

07.7

1−1

0:04

:40.

815

.97

mc

HE

1159−0

947,

LP

734−

006

9261

88.

537

0.00

82

WD

1201−0

0112

:03:

47.5

3−0

0:23

:11.

815

.12

mc

HE

1201−0

06,S

DS

S19

853

278.

295

0.00

52

WD

1202−2

3212

:05:

26.8

0−2

3:33

:13.

612

.79

EC

1202

8−23

1686

154

8.04

20.

006

2W

D12

04−3

2212

:06:

47.6

3−3

2:34

:33.

815

.68

EC

1204

2−32

17,H

E12

04−3

217

2126

341

7.99

60.

007

2W

D12

04−1

3612

:06:

56.4

3−1

3:53

:53.

615

.52

EC

1204

3−13

3710

939

168.

190

0.00

82

NO

V(4

)H

S12

04+

0159

12:0

7:29

.51+

01:4

2:50

.616

.50

B24

756

867.

755

0.01

12

WD

1207−1

5712

:10:

09.3

4−1

6:00

:40.

416

.32

EC

1207

5−15

43,H

E12

07−1

543

1688

548

7.77

50.

010

2W

D12

10+

140

12:1

2:33

.89+

13:4

6:25

.114

.67

3212

736

6.92

40.

008

2D

Ds

WD

1214+

032

12:1

6:51

.84+

02:5

8:04

.315

.32

LP

544−

063,

SD

SS

6272

146.

915

0.03

01

HE

1215+

0227

12:1

7:56

.20+

02:1

0:45

.816

.35

B(S

DS

S)

5969

172

37.

595

0.04

02

WD

1216+

036

12:1

8:41

.15+

03:2

0:21

.715

.94

mc

PG

1216+

036,

SD

SS

1440

43

7.76

90.

009

2W

D12

18−1

9812

:21:

07.3

5−2

0:07

:05.

116

.35

EC

1218

5−19

5035

013

817.

912

0.01

52

WD

1220−2

9212

:23:

05.1

7−2

9:32

:28.

915

.79

EC

1220

4−29

1517

702

297.

890

0.00

52

HE

1225+

0038

12:2

8:07

.72+

00:2

2:19

.615

.09

B(S

DS

S)

9383

58.

094

0.00

53

WD

1229−0

1212

:31:

34.4

6−0

1:32

:08.

514

.24

HE

1229−0

115,

SD

SS

1954

021

7.50

00.

004

2W

D12

30−3

0812

:33:

00.6

7−3

1:08

:36.

415

.81

EC

1230

3−30

5222

764

388.

280

0.00

62

WD

1231−1

4112

:33:

36.8

9−1

4:25

:08.

616

.12

EC

1231

0−14

0817

217

357.

923

0.00

72

WD

1233−1

6412

:36:

14.0

2−1

6:41

:53.

515

.10

EC

1233

6−16

2524

892

338.

207

0.00

43

WD

1236−4

9512

:38:

50.0

2−4

9:48

:01.

113

.96

L32

7−18

6,LT

T48

1611

372

128.

743

0.00

42

DA

VW

D12

37−0

2812

:40:

09.6

6−0

3:10

:14.

815

.97

mc

PG

1237−0

29,S

DS

S99

3613

8.42

10.

012

2W

D12

41+

235

12:4

4:16

.57+

23:1

4:10

.815

.18

mc

PG

1241+

235,

LB

1626

982

507.

772

0.00

82

WD

1241−0

1012

:44:

28.6

6−0

1:18

:59.

614

.00

PG

1241−0

10,S

DS

S23

459

257.

379

0.00

32

DD

dH

S12

43+

0132

12:4

5:38

.74+

01:1

6:16

.115

.60

B(U

M51

7,L

ED

A43

016)

2164

465

7.81

70.

010

2W

D12

44−1

2512

:47:

26.8

8−1

2:48

:42.

014

.70

EC

1244

8−12

3213

429

397.

928

0.00

52

HE

1247−1

130

12:4

9:54

.26−1

1:47

:00.

214

.74

B28

110

627.

840

0.01

12

EC

1248

9−27

5012

:51:

41.0

8−2

8:06

:48.

816

.22

6104

545

97.

628

0.02

32

HS

1249+

0426

12:5

2:15

.19+

04:1

0:43

.015

.80

B(P

B43

04)

1138

219

8.02

90.

009

2D

AV

WD

1249+

160

12:5

2:17

.15+

15:4

4:43

.414

.63

GD

150,

SD

SS

2579

240

7.21

40.

006

2

D. Koester et al.: High-resolution spectra observed for the SPY. III. DA white dwarfs 451Ta

ble

1.co

ntin

ued.

Obj

ect

RA

(200

0)D

ec(2

000)

mag

(ban

d)A

lias

esT

eff[K

(Teff

)[K

]lo

ggσ

(logg)

Spe

ctra

Rem

arks

WD

1249+

182

12:5

2:23

.34+

17:5

6:53

.915

.48

GD

151

1991

125

7.72

90.

004

2H

E12

52−0

202

12:5

4:58

.10−0

2:18

:36.

716

.50

B(B

GK

,SD

SS

)15

934

647.

806

0.01

52

WD

1254+

223

12:5

7:02

.33+

22:0

1:52

.713

.33

GD

153,

BP

M88

611,

SD

SS

3953

742

7.58

70.

005

2W

D12

57+

047

12:5

9:50

.35+

04:3

1:26

.614

.99

GD

267,

LP

556−

035,

SD

SS

2175

932

7.94

90.

005

2W

D12

57+

032

12:5

9:56

.69+

02:5

5:56

.215

.60

BP

G12

57+

032,

PB

4421

,SD

SS

1757

924

7.81

40.

005

2H

E12

58+

0123

13:0

1:10

.50+

01:0

7:39

.916

.42

B(S

DS

S,2

MA

SS

)11

258

227.

946

0.01

32

DA

VW

D13

00−0

9813

:03:

16.7

7−1

0:09

:12.

516

.25

BP

G13

00−0

9915

327

638.

143

0.00

82

NO

VH

S13

05+

0029

13:0

8:20

.87+

00:1

3:30

.516

.20

BB

GK

,SD

SS

1472

551

7.84

60.

008

2H

E13

07−0

059

13:0

9:41

.67−0

1:15

:05.

915

.72

B18

191

457.

907

0.00

92

HS

1308+

1646

13:1

1:06

.06+

16:3

1:03

.415

.50

B10

727

158.

242

0.01

12

NO

VW

D13

08−3

0113

:11:

17.5

2−3

0:25

:57.

615

.11

EC

1308

5−30

1014

422

337.

899

0.00

42

HE

1310−0

337

13:1

3:28

.35−0

3:53

:19.

716

.31

B18

943

737.

825

0.01

31

WD

1310−3

0513

:13:

41.5

9−3

0:51

:33.

714

.48

EC

1310

9−30

3520

353

227.

819

0.00

43

EC

1312

3−25

2313

:15:

03.9

4−2

5:39

:01.

015

.69

7546

382

57.

682

0.02

71

WD

1314−1

5313

:16:

43.5

9−1

5:35

:58.

714

.86

EC

1314

0−15

20,L

HS

2712

1615

225

7.72

00.

005

3W

D13

14−0

6713

:17:

18.4

6−0

6:59

:28.

115

.87

BP

G13

14−0

6716

832

527.

847

0.01

12

HE

1315−1

105

13:1

7:47

.29−1

1:21

:06.

215

.76

B90

677

8.10

30.

009

2W

D13

23− 5

1413

:26:

09.6

2−5

1:41

:37.

914

.60

L25

8−46

,L25

7−47

1935

722

7.76

50.

004

2H

E13

25−0

854

13:2

8:23

.90−0

9:09

:53.

015

.14

B17

021

167.

810

0.00

42

HE

1326−0

041

13:2

9:24

.69−0

0:56

:43.

916

.27

B18

671

557.

841

0.01

12

WD

1326−2

3613

:29:

24.9

2−2

3:52

:18.

115

.97

EC

1326

6−23

3613

808

857.

919

0.01

02

WD

1327−0

8313

:30:

13.5

8−0

8:34

:30.

212

.31

G01

4−05

8,B

D−0

7D36

3214

699

87.

791

0.00

13

HE

1328−0

535

13:3

1:20

.03−0

5:50

:52.

416

.34

B36

420

137

7.87

20.

020

2W

D13

28−1

5213

:31:

34.8

2−1

5:30

:48.

015

.49

EC

1328

8−15

15,H

E13

28−1

515

6125

328

57.

719

0.01

52

WD

1330+

036

13:3

3:17

.80+

03:2

1:00

.215

.86

GD

269,

BP

M89

123,

SD

SS

1740

826

7.83

10.

005

2W

D13

32−2

2913

:35:

10.4

7−2

3:10

:38.

316

.30

EC

1332

4−22

5520

264

497.

859

0.00

82

HS

1334+

0701

13:3

6:33

.67+

06:4

6:26

.815

.00

B16

891

437.

270

0.00

92

DD

sW

D13

34−1

6013

:36:

59.2

9−1

6:19

:44.

115

.32

EC

1334

2−16

04,L

0762−0

2118

653

218.

316

0.00

42

WD

1334−6

7813

:38:

08.1

1−6

8:04

:37.

415

.57

L10

6−73

,LH

S27

6987

698

7.92

90.

012

2H

E13

35−0

332

13:3

8:22

.72−0

3:47

:19.

516

.47

B20

188

758.

470

0.01

32

HS

1338+

0807

13:4

1:27

.63+

07:5

2:29

.516

.00

B24

440

188

7.64

90.

024

1H

E13

40−0

530

13:4

3:17

.88−0

5:45

:35.

816

.40

B32

936

141

7.91

10.

024

2W

D13

42−2

3713

:45:

46.5

8−2

3:57

:11.

016

.06

EC

1342

9−23

4210

988

198.

092

0.01

12

DA

VW

D13

44+

106

13:4

7:24

.45+

10:2

1:36

.615

.08

G06

3−05

4,L

HS

2800

6480

77.

079

0.01

52

WD

1348−2

7313

:51:

22.8

4−2

7:33

:59.

115

.00

LP

846−

53,L

TT

5382

9835

98.

039

0.00

83

WD

1349+

144

13:5

1:54

.06+

14:0

9:44

.215

.34

PG

1349+

114,

PB

4117

1692

528

7.64

20.

006

2D

Dd

WD

1356−2

3313

:59:

07.9

7−2

3:33

:28.

714

.96

EC

1356

3−23

1894

986

8.10

00.

007

2W

D14

01−1

4714

:03:

57.1

6−1

5:01

:10.

415

.67

EC

1401

2−14

4611

768

238.

080

0.00

82

DA

VW

D14

03−0

7714

:06:

04.8

6−0

7:58

:31.

015

.82

PG

1403−0

77,E

UV

EJ1

406−

07.9

4903

325

37.

810

0.01

72

WD

1410+

168

14:1

2:27

.89+

16:3

5:40

.515

.70

BL

P43

9−38

721

323

407.

756

0.00

72

HS

1410+

0809

14:1

3:06

.56+

07:5

5:23

.515

.50

B16

217

142

8.37

00.

020

2W

D14

11+

135

14:1

3:58

.22+

13:1

9:19

.316

.20

US

3969

1856

255

8.10

80.

011

2W

D14

12−1

0914

:15:

07.7

5−1

1:09

:24.

215

.86

mc

2622

652

7.81

40.

007

2H

E14

13+

0021

14:1

6:00

.21+

00:0

7:59

.316

.03

1454

481

8.11

40.

011

2H

E14

14−0

848

14:1

6:52

.07−0

9:02

:03.

816

.15

B98

237

7.86

70.

010

2D

Dd

452 D. Koester et al.: High-resolution spectra observed for the SPY. III. DA white dwarfs

Tabl

e1.

cont

inue

d.

Obj

ect

RA

(200

0)D

ec(2

000)

mag

(ban

d)A

lias

esT

eff[K

(Teff

)[K

]lo

ggσ

(logg)

Spe

ctra

Rem

arks

WD

1418−0

8814

:20:

54.8

2−0

9:05

:08.

715

.36

G12

4−02

680

0310

7.91

10.

013

2W

D14

20−2

4414

:23:

26.2

5−2

4:43

:29.

416

.24

EC

1420

5−24

2920

917

408.

159

0.00

72

WD

1422+

095

14:2

4:39

.24+

09:1

7:12

.714

.32

GD

165,

L11

24−0

1012

525

217.

917

0.00

72

DA

VW

D14

26−2

7614

:29:

27.3

8−2

7:51

:01.

315

.92

EC

1426

5−27

3718

087

287.

661

0.00

62

HE

1429−0

343

14:3

2:03

.15−0

3:56

:37.

815

.84

B11

199

278.

041

0.01

52

DA

VH

S14

30+

1339

14:3

3:05

.47+

13:2

6:32

.416

.10

B10

012

128.

321

0.01

42

WD

1425−8

1114

:33:

08.9

2−8

1:20

:12.

613

.75

L19−2

,BP

M00

784

1206

917

7.91

60.

003

2D

AV

WD

1431+

153

14:3

4:06

.80+

15:0

8:17

.915

.80

BH

S14

31+

1521

,PG

1431+

153

1394

172

7.88

30.

008

2N

OV

(1)

HS

1432+

1441

14:3

5:20

.85+

14:2

8:41

.316

.00

BB

GK

,SD

SS

,GD

167

1620

442

7.74

80.

009

2W

D14

34−2

2314

:37:

14.7

4−2

2:31

:16.

016

.37

EC

1434

3−22

1827

690

138

7.37

40.

021

1H

E14

41−0

047

14:4

4:33

.85−0

0:59

:59.

516

.40

B(S

DS

S)

1577

572

8.02

50.

014

2N

OV

(3)

HS

1447+

0454

14:5

0:09

.91+

04:4

1:45

.715

.60

B13

926

387.

820

0.00

52

WD

1448+

077

14:5

0:49

.46+

07:3

3:32

.915

.46

G13

6−02

2,L

P56

1−01

314

921

307.

686

0.00

62

WD

1449+

168

14:5

2:11

.37+

16:3

8:03

.515

.44

PG

1449+

168

2234

646

7.78

50.

007

2W

D14

51+

006

14:5

3:50

.48+

00:2

5:29

.315

.19

GD

173,

GR

297,

SD

SS

2548

331

7.89

10.

004

2W

D14

57−0

8614

:59:

52.9

9− 0

8:49

:29.

515

.77

EC

1457

2−08

37,P

G14

57−0

8621

448

547.

917

0.00

92

WD

1500−1

7015

:03:

14.4

5−1

7:11

:56.

715

.27

EC

1500

4−17

0031

757

237.

926

0.00

52

WD

1501+

032

15:0

4:23

.92+

03:0

2:30

.515

.43

mc

PG

1501+

032

1474

150

7.93

20.

007

2W

D15

03−0

9315

:06:

19.4

4−0

9:30

:20.

915

.15

EC

1503

6−09

1812

681

208.

032

0.00

52

WD

1507+

220

15:0

9:39

.99+

21:5

0:15

.515

.00

BP

G15

07+

220

1987

227

7.74

50.

005

3W

D15

07+

021

15:0

9:56

.98+

01:5

6:07

.516

.49

PG

1507+

021,

SD

SS

2022

267

7.79

60.

012

1W

D15

07−1

0515

:10:

29.0

8−1

0:45

:19.

815

.42

GD

176

1006

38

7.66

30.

008

2N

OV

(1)

HE

1511−0

448

15:1

4:12

.97−0

4:59

:33.

915

.41

B(P

G15

11−0

48)

5089

912

67.

447

0.00

94

DD

sW

D15

11+

009

15:1

4:21

.31+

00:4

7:52

.315

.87

PG

1511+

009,

LB

769

2804

148

7.82

20.

009

2W

D15

15−1

6415

:18:

35.0

7−1

6:37

:29.

216

.03

EC

1515

7−16

2614

248

627.

969

0.00

32

HS

1517+

0814

15:2

0:06

.00+

08:0

3:27

.415

.90

BB

GK

,SD

SS

1449

444

7.76

10.

008

2H

E15

18−0

344

15:2

0:46

.03−0

3:54

:52.

216

.03

B28

493

507.

808

0.00

92

HE

1518−0

020

15:2

1:30

.87−0

0:30

:54.

715

.25

B15

392

297.

820

0.00

62

HE

1522−0

410

15:2

5:12

.26−0

4:21

:29.

316

.36

B10

357

128.

130

0.01

22

HS

1527+

0614

15:2

9:41

.47+

06:0

4:01

.915

.90

B14

925

397.

769

0.00

72

WD

1527+

090

15:2

9:50

.41+

08:5

5:46

.614

.29

PG

1527+

091

2119

727

7.84

60.

005

2W

D15

24−7

4915

:30:

36.6

4−7

5:05

:24.

215

.93

L72−9

1,B

PM

9518

2309

140

7.74

30.

006

3W

D15

31+

184

15:3

3:49

.31+

18:1

8:55

.416

.20

GD

186

1362

510

47.

774

0.01

31

NO

V(1

)W

D15

31−0

2215

:34:

06.0

8−0

2:27

:07.

314

.03

GD

185,

BP

M77

964

1923

418

8.35

40.

004

2W

D15

32+

033

15:3

5:09

.96+

03:1

1:13

.916

.02

PG

1532+

034

6190

732

77.

761

0.01

82

WD

1537−1

5215

:40:

23.7

7−1

5:23

:43.

215

.90

EC

1537

5−15

1416

954

297.

942

0.00

62

WD

1539−0

3515

:42:

14.1

5−0

3:41

:31.

415

.20

GD

189,

PG

1539−0

3598

756

8.24

60.

006

2W

D15

43−3

6615

:46:

58.2

3−3

6:46

:44.

115

.81

RE

1546−3

64,E

UV

EJ1

546−

367

4270

111

98.

974

0.01

22

WD

1544−3

7715

:47:

30.0

0−3

7:55

:08.

812

.72

CD−3

7◦65

71B

,L48

1−06

010

547

58.

089

0.00

32

NO

V(1

)W

D15

47+

057

15:4

9:34

.93+

05:3

5:15

.915

.92

PG

1547+

057

2435

558

8.35

50.

007

2W

D15

47+

015

15:4

9:44

.93+

01:2

5:55

.115

.90

mc

PG

1547+

016

7658

859

17.

497

0.02

22

WD

1548+

149

15:5

1:15

.52+

14:4

6:58

.315

.06

mc

PG

1548+

149

2145

246

7.85

70.

007

2W

D15

50+

183

15:5

2:26

.38+

18:1

0:18

.814

.83

GD

194,

LTT

1470

514

860

728.

248

0.00

72

NO

V(1

)W

D15

55−0

8915

:58:

04.8

3−0

9:08

:06.

914

.80

G15

2−B

4B,E

G17

414

531

627.

944

0.00

42

NO

V(1

)

D. Koester et al.: High-resolution spectra observed for the SPY. III. DA white dwarfs 453Ta

ble

1.co

ntin

ued. O

bjec

tR

A(2

000)

Dec

(200

0)m

ag(b

and)

Ali

ases

Teff

[K]σ

(Teff

)[K

]lo

ggσ

(logg)

Spe

ctra

Rem

arks

WD

1609+

135

16:1

1:25

.67+

13:2

2:17

.115

.10

G13

8−00

8,L

HS

3163

9256

68.

560

0.00

72

WD

1609+

044

16:1

1:49

.11+

04:1

9:38

.015

.22

PG

1609+

045

2959

322

7.79

10.

005

2H

S16

09+

1426

16:1

2:06

.51+

14:1

9:05

.816

.10

B14

387

457.

821

0.00

83

WD

1614+

136

16:1

6:52

.31+

13:3

4:21

.515

.24

PG

1614+

137

2201

530

7.21

10.

005

2W

D16

14+

160

16:1

7:08

.79+

15:5

4:37

.816

.08

BP

G16

14+

160

1796

125

7.81

50.

005

2H

S16

14+

1136

16:1

7:09

.44+

11:2

9:01

.816

.40

B13

644

174

8.00

00.

019

1W

D16

14−1

2816

:17:

28.0

2−1

2:57

:45.

615

.00

G15

3−04

0,LT

T64

9416

293

257.

750

0.00

52

WD

1615−1

5416

:17:

55.2

4−1

5:35

:52.

713

.40

G15

3−04

1,L

P74

4−04

029

465

148.

031

0.00

32

HS

1616+

0247

16:1

9:18

.91+

02:4

0:14

.116

.00

B18

468

357.

957

0.00

72

WD

1619+

123

16:2

2:03

.92+

12:1

3:32

.014

.57

mc

PG

1619+

123

1685

329

7.68

50.

006

2W

D16

20−3

9116

:23:

33.8

7−3

9:13

:47.

910

.97

mc

CD−3

8◦10

980

2467

710

7.92

70.

001

2W

D16

25+

093

16:2

7:53

.57+

09:1

2:14

.816

.14

G13

8−03

1,G

R32

763

808

7.42

50.

016

2W

D16

36+

057

16:3

8:54

.53+

05:4

0:40

.115

.76

G13

8−04

9,L

HS

3230

8428

118.

392

0.01

42

WD

1640+

113

16:4

2:54

.87+

11:1

6:40

.616

.03

PG

1640+

114

1971

840

7.85

40.

008

2H

S16

41+

1124

16:4

3:54

.12+

11:1

8:50

.216

.10

B12

323

407.

951

0.01

12

HS

1646+

1059

16:4

8:40

.74+

10:5

3:52

.816

.10

B19

890

507.

782

0.00

82

HS

1648+

1300

16:5

1:02

.78+

12:5

5:12

.715

.60

B18

693

287.

785

0.00

62

WD

1655+

215

16:5

7:09

.84+

21:2

6:48

.414

.04

G16

9−34

,LH

S35

2492

046

8.03

40.

007

2H

S17

05+

2228

17:0

7:08

.03+

22:2

4:30

.014

.40

B15

702

317.

749

0.00

62

WD

1716+

020

17:1

8:35

.27+

01:5

6:51

.414

.26

WO

LF

672A

,G01

9−02

013

644

397.

645

0.00

42

NO

V(2

)W

D17

33−5

4417

:37:

00.7

6−5

4:25

:56.

915

.80

L27

0-37

,LT

T69

9961

657

7.23

30.

015

2W

D17

36+

052

17:3

8:41

.72+

05:1

6:06

.315

.89

GR

140−

002,

GR

371

8838

78.

063

0.01

03

WD

1755+

194

17:5

7:38

.92+

19:2

4:18

.515

.91

mc

GD

370,

GR

548

2443

941

7.80

40.

006

3W

D18

02+

213

18:0

4:23

.53+

21:2

1:02

.515

.77

mc

GD

372,

GR

496

1678

746

7.64

50.

010

2W

D18

24+

040

18:2

7:13

.13+

04:0

3:45

.913

.90

G02

1−01

5,R

OS

S13

714

787

157.

460

0.00

34

DD

sW

D18

26−0

4518

:29:

09.8

7−0

4:29

:36.

514

.57

G02

1−01

6,L

0993−0

1890

578

7.99

30.

010

1W

D18

27−1

0618

:30:

39.6

0−1

0:37

:00.

914

.25

G15

5−01

9,E

G17

713

670

397.

561

0.00

72

NO

V(1

)12

697

137.

683

0.00

62

amb

WD

1834−7

8118

:42:

25.5

0−7

8:05

:06.

415

.45

L44−9

5,B

PM

1159

317

723

227.

772

0.00

52

WD

1840+

042

18:4

3:25

.83+

04:2

0:20

.614

.92

GD

215,

EG

225

8769

68.

114

0.00

82

WD

1845+

019

18:4

7:37

.00+

01:5

7:30

.012

.96

KP

D18

45+

0154

2975

416

7.81

70.

003

2D

Ds

WD

1844

4-22

318

:47:

56.5

7−2

2:19

:37.

913

.90

3244

327

7.98

50.

005

2W

D18

57+

119

18:5

9:49

.27+

11:5

8:39

.815

.52

G14

1−05

4,E

G12

898

6811

8.00

60.

011

3W

D19

11+

135

19:1

3:38

.77+

13:3

6:26

.314

.00

G14

2−B

2A,E

G13

013

783

757.

870

0.00

82

NO

V(1

)W

D19

14+

094

19:1

6:50

.53+

09:3

4:46

.515

.43

KP

D19

14+

0929

3252

533

7.85

00.

007

4W

D19

14−5

9819

:18:

44.8

5−5

9:46

:33.

514

.39

HK

2289

1−12

219

756

297.

837

0.00

52

WD

1918+

110

19:2

0:35

.29+

11:1

0:43

.316

.23

GD

218

1926

843

7.80

90.

008

2W

D19

19+

145

19:2

1:40

.51+

14:4

0:40

.512

.94

GD

219,

BP

M94

172

1525

213

8.00

70.

002

2W

D19

32−1

3619

:35:

42.0

5−1

3:30

:07.

815

.95

L85

2−03

7,L

P75

3−00

516

931

367.

730

0.00

82

WD

1943+

163

19:4

5:31

.73+

16:2

7:38

.813

.99

G14

2−50

,LT

T15

765

1976

323

7.79

10.

004

2W

D19

48−3

8919

:52:

19.6

9−3

8:46

:13.

614

.63

HK

2296

4−60

3719

964

7.75

10.

010

2W

D19

50−4

3219

:53:

47.7

2−4

3:07

:13.

614

.86

MC

T19

50-4

314

4083

513

57.

602

0.01

32

WD

1952−2

0619

:55:

46.9

9−2

0:31

:02.

915

.00

L70

9−20

,LT

T78

7313

814

407.

818

0.00

52

NO

V(1

)

454 D. Koester et al.: High-resolution spectra observed for the SPY. III. DA white dwarfsTa

ble

1.co

ntin

ued.

Obj

ect

RA

(200

0)D

ec(2

000)

mag

(ban

d)A

lias

esT

eff[K

(Teff

)[K

]lo

ggσ

(logg)

Spe

ctra

Rem

arks

WD

1952−5

8419

:56:

12.9

9−5

8:20

:49.

016

.06

HK

2287

3−42

3350

961

7.75

20.

011

2W

D19

53−7

1519

:58:

38.6

4−7

1:23

:43.

615

.15

L80−5

6,LT

T78

7519

267

257.

873

0.00

52

WD

1959+

059

20:0

2:12

.92+

06:0

7:35

.416

.41

GD

226

1084

615

8.07

00.

010

2D

AV

WD

2004−6

0520

:09:

05.8

3−6

0:25

:43.

913

.33

RE

2009−6

02,E

UV

EJ2

009−

604

4099

460

8.39

30.

006

2W

D20

07−2

1920

:10:

17.4

8−2

1:46

:46.

014

.40

L71

0−30

,LT

T79

8397

886

8.07

30.

006

2W

D20

07−3

0320

:10:

56.8

2−3

0:13

:06.

712

.18

LTT

7987

1543

69

7.80

30.

002

2W

D20

14−5

7520

:18:

54.8

8−5

7:21

:33.

813

.00

RE

2018−5

72,E

UV

EJ2

018−

573

2680

427

7.92

90.

003

2W

D20

18−2

3320

:21:

28.7

1−2

3:08

:30.

414

.40

BH

K22

955−

3715

585

297.

808

0.00

62

WD

2020−4

2520

:23:

59.5

7−4

2:24

:26.

714

.87

RE

2023−4

22,E

UV

EJ2

024−

424

2841

226

8.14

50.

005

2D

Dd

WD

2021−1

2820

:24:

42.9

4−1

2:41

:48.

414

.20

BH

K22

950−

122

2075

361

7.82

00.

011

1W

D20

29+

183

20:3

2:02

.91+

18:3

1:15

.116

.31

GD

230

1352

577

7.64

70.

008

2N

OV

(1)

WD

2032+

188

20:3

5:13

.84+

18:5

9:21

.815

.34

GD

231,

BP

M95

701

1819

928

7.35

50.

005

2D

Ds

WD

2039−2

0220

:42:

34.6

4−2

0:04

:35.

612

.33

LTT

8189

,L71

1−01

019

738

107.

786

0.00

22

WD

2039−6

8220

:44:

21.3

5−6

8:05

:21.

413

.25

L11

6−79

,LT

T81

9016

943

128.

336

0.00

22

HS

2046+

0044

20:4

8:38

.26+

00:5

6:00

.815

.90

B27

096

328.

153

0.00

53

WD

2046−2

2020

:49:

46.1

8−2

1:54

:43.

115

.48

HK

2288

0−12

423

413

377.

828

0.00

52

WD

2051+

095

20:5

3:43

.18+

09:4

1:14

.516

.20

BL

P51

6−01

3,H

S20

51+

0929

1527

430

7.79

00.

007

2H

S20

56+

0721

20:5

8:45

.03+

07:3

3:37

.515

.30

B27

289

428.

321

0.00

71

WD

2056+

033

20:5

8:46

.84+

03:3

1:49

.416

.26

PG

2056+

033

5183

525

27.

696

0.01

62

HS

2058+

0823

21:0

1:13

.36+

08:3

5:09

.114

.70

B(1

RX

SJ2

1011

3.4+

0835

17)

3684

457

7.78

00.

009

2W

D20

58+

181

21:0

1:16

.50+

18:2

0:55

.415

.00

GD

232,

GR

279

1734

923

7.75

40.

005

3H

S20

59+

0208

21:0

1:47

.77+

02:2

0:27

.616

.50

B18

641

547.

840

0.01

12

WD

2059+

190

21:0

2:02

.68+

19:1

2:57

.516

.36

G14

4−51

,GR

377

6215

126.

969

0.03

02

HS

2108+

1734

21:1

0:59

.52+

17:4

6:32

.815

.20

B(1

RX

SJ2

1105

7.6+

1747

12)

2881

237

8.30

90.

008

2W

D21

15+

010

21:1

7:33

.58+

01:1

5:47

.115

.60

PG

2115+

011

2581

539

7.75

50.

005

2W

D21

15−5

6021

:19:

36.6

0−5

5:50

:15.

614

.28

L21

2−19

,BP

M27

273

9625

78.

011

0.00

72

WD

2120+

054

21:2

2:34

.98+

05:4

2:38

.816

.38

PG

2120+

055

3555

979

7.68

10.

011

2W

D21

22−4

6721

:25:

30.1

9−4

6:30

:36.

816

.13

BH

E21

22−4

643

1633

437

8.05

40.

008

3W

D21

24−2

2421

:27:

43.2

1−2

2:11

:48.

914

.70

4778

014

97.

707

0.01

02

HS

2130+

1215

21:3

3:01

.47+

12:2

8:30

.416

.30

BS

DS

S32

995

897.

738

0.01

62

HS

2132+

0941

21:3

4:50

.91+

09:5

5:19

.015

.80

B13

204

717.

720

0.00

82

HE

2133−1

332

21:3

6:16

.18−1

3:18

:33.

013

.94

B98

515

7.79

60.

005

2W

D21

34+

218

21:3

6:36

.15+

22:0

4:32

.814

.45

GD

234,

EG

227

1800

119

7.86

40.

004

2W

D21

36+

229

21:3

8:46

.21+

23:0

9:20

.915

.25

G12

6−18

,GR

582

1008

411

8.06

00.

009

1N

OV

(1)

HE

2135−4

055

21:3

8:49

.70−4

0:41

:28.

913

.43

B(N

LTT

5171

3)19

211

177.

959

0.00

32

WD

2137−3

7921

:40:

18.4

8−3

7:42

:46.

716

.03

BH

E21

37−3

756

2101

346

7.85

50.

008

2H

S21

38+

0910

21:4

1:03

.02+

09:2

3:45

.415

.90

B92

637

7.88

30.

010

2W

D21

39+

115

21:4

1:28

.37+

11:4

6:22

.115

.80

GD

235,

GR

280

1555

128

7.79

40.

007

2H

E21

40−1

825

21:4

3:42

.73−1

8:11

:32.

616

.04

B13

950

397.

751

0.00

62

WD

2146−4

3321

:49:

38.9

6−4

3:06

:14.

415

.81

HK

2295

1−67

6279

238

87.

230

0.02

02

HS

2148+

1631

21:5

1:14

.54+

16:4

5:23

.115

.90

B16

776

347.

793

0.00

72

HE

2148−3

857

21:5

1:19

.23−3

8:43

:04.

516

.27

B26

758

968.

015

0.01

41

WD

2149+

021

21:5

2:25

.43+

02:2

3:17

.812

.72

G09

3−04

8,E

G15

017

926

97.

862

0.00

22

WD

2150+

021

21:5

3:30

.29+

02:2

3:11

.616

.40

PG

2150+

021

4087

415

87.

659

0.01

62

WD

2152−0

4521

:54:

41.1

8−0

4:18

:18.

015

.00

BH

K22

965−

2019

837

367.

380

0.00

63

WD

2151−3

0721

:54:

53.3

8−3

0:29

:19.

614

.82

BR

E21

54−3

02,E

UV

EJ2

154−

304

2858

026

8.27

30.

005

2

D. Koester et al.: High-resolution spectra observed for the SPY. III. DA white dwarfs 455Ta

ble

1.co

ntin

ued.

Obj

ect

RA

(200

0)D

ec(2

000)

mag

(ban

d)A

lias

esT

eff[K

(Teff

)[K

]lo

ggσ

(logg)

Spe

ctra

Rem

arks

WD

2152−5

4821

:56:

21.3

2−5

4:38

:24.

114

.50

4517

112

17.

878

0.00

92

WD

2153−4

1921

:56:

35.3

2−4

1:42

:17.

015

.89

HE

2153−4

156,

RE

J215

6−41

446

503

177

7.93

90.

015

2W

D21

54−0

6121

:57:

29.9

2−0

5:51

:54.

815

.10

BH

K22

965−

8,P

B70

2636

259

857.

744

0.01

22

HE

2155−3

150

21:5

8:46

.08−3

1:36

:06.

516

.06

B16

302

407.

833

0.00

92

WD

2157+

161

21:5

9:34

.35+

16:2

5:39

.016

.20

GD

272,

GR

282

1918

831

7.88

90.

006

3H

E21

59−1

649

22:0

2:20

.82−1

6:34

:38.

315

.90

B19

486

347.

841

0.00

62

WD

2159−4

1422

:02:

28.5

7−4

1:14

:30.

615

.88

HE

2159−4

129,

EU

VE

J220

2−41

.254

343

219

7.70

70.

015

2W

D22

00−1

3622

:03:

35.6

3−1

3:26

:49.

915

.36

HE

2200−1

341

2473

447

7.61

10.

006

2D

Dd

WD

2159−7

5422

:04:

21.2

7−7

5:13

:25.

915

.06

LH

S35

72,B

PM

1452

589

116

8.62

20.

008

2H

E22

03−0

101

22:0

6:02

.44−0

0:46

:33.

515

.82

B(P

B50

70)

1804

733

7.87

10.

007

2W

D22

04+

071

22:0

7:16

.20+

07:1

8:36

.015

.86

PG

2204+

071

2445

439

7.95

00.

005

3W

D22

05−1

3922

:08:

29.6

0−1

3:41

:13.

215

.08

HE

2205−1

355

2523

132

8.24

60.

004

3W

D22

07+

142

22:0

9:47

.19+

14:2

9:46

.615

.61

G01

8−03

4,LT

T16

482

7229

207.

603

0.03

22

HE

2209−1

444

22:1

2:18

.05−1

4:29

:48.

015

.32

BK

awka

06,N

LTT

5317

782

900

8.19

10.

030

1D

Dd

HS

2210+

2323

22:1

2:53

.48+

23:3

8:00

.415

.70

B23

233

478.

238

0.00

62

WD

2211−4

9522

:14:

11.9

3−4

9:19

:27.

111

.70

RE

2214−4

91,E

UV

EJ2

214−

493

6233

618

17.

544

0.00

72

HS

2216+

1551

22:1

8:57

.15+

16:0

6:56

.915

.70

B17

112

297.

872

0.00

62

DD

dH

E22

18−2

706

22:2

1:23

.91−2

6:50

:55.

214

.89

B15

039

307.

795

0.00

52

HE

2220−0

633

22:2

2:44

.44−0

6:17

:54.

915

.97

B(P

HL

243)

1552

338

7.88

50.

007

2H

S22

20+

2146

B22

:23:

01.6

4+

22:0

1:31

.015

.00

B18

743

448.

241

0.00

82

HS

2220+

2146

A22

:23:

01.7

4+

22:0

1:25

.015

.00

B14

601

328.

080

0.01

21

WD

2220+

133

22:2

3:13

.95+

13:3

8:55

.515

.60

PG

2220+

134,

SD

SS

2258

329

8.29

90.

005

3H

E22

21−1

630

22:2

4:17

.51−1

6:15

:47.

016

.18

B(P

HL

5103

)99

379

8.16

10.

008

2H

S22

25+

2158

22:2

8:11

.47+

22:1

4:15

.115

.30

B25

989

437.

856

0.00

62

WD

2226+

061

22:2

9:08

.66+

06:2

2:46

.314

.70

GD

236,

LP

580−

021

1642

929

7.65

50.

006

2W

D22

26−4

4922

:29:

19.4

7−4

4:41

:39.

415

.50

HK

2296

0−99

1392

321

7.74

30.

003

3H

S22

29+

2335

22:3

1:45

.45+

23:5

1:23

.915

.60

B19

300

387.

900

0.00

72

HE

2230−1

230

22:3

3:38

.69−1

2:15

:30.

416

.08

B(P

HL

315,

GD

237)

2094

941

7.80

70.

007

2H

E22

31−2

647

22:3

4:02

.59−2

6:32

:21.

114

.96

B21

592

417.

700

0.00

62

HS

2233+

0008

22:3

6:03

.20+

00:0

7:23

.913

.90

B(P

HL

329)

2452

922

7.98

90.

003

2W

D22

35+

082

22:3

7:35

.56+

08:2

8:48

.515

.42

PG

2235+

082

3651

949

7.73

40.

007

4H

E22

38−0

433

22:4

1:04

.90−0

4:18

:09.

114

.30

B(P

HL

372)

1754

211

68.

178

0.02

32

HS

2240+

125B

22:4

2:30

.33+

12:5

0:02

.216

.50

B13

935

112

7.98

90.

012

2H

S22

40+

125A

22:4

2:31

.14+

12:5

0:04

.716

.20

B15

636

97.

857

0.00

82

WD

2240− 0

4522

:42:

44.6

2−0

4:14

:15.

115

.21

GD

240,

FE

IGE

106

4410

210

77.

721

0.01

02

WD

2240−0

1722

:43:

04.7

6−0

1:27

:53.

616

.17

G02

8−01

3,P

HL

386

9114

108.

050

0.01

32

WD

2241−3

2522

:44:

43.2

3−3

2:19

:43.

715

.97

BH

E22

41−3

235,

PH

L39

632

316

327.

945

0.00

72

HS

2244+

2103

22:4

6:45

.28+

21:1

9:47

.715

.70

B24

113

607.

889

0.00

82

HS

2244+

0305

22:4

7:22

.35+

03:2

1:45

.816

.20

B(P

B51

60)

6046

041

37.

540

0.02

32

HE

2246−0

658

22:4

8:40

.05−0

6:42

:44.

214

.14

B(P

B72

25)

1137

150

8.18

60.

021

WD

2248−5

0422

:51:

02.0

2−5

0:11

:31.

814

.96

L28

5−14

,BP

M28

016

1633

637

7.73

70.

007

2H

E22

51−6

218

22:5

4:59

.62−6

2:02

:10.

215

.89

B18

033

447.

827

0.00

92

WD

2253−0

8122

:55:

49.4

9−0

7:50

:03.

316

.50

G15

6−06

4,B

D−0

8◦59

80B

6211

136.

926

0.02

63

WD

2254+

126

22:5

6:46

.26+

12:5

2:49

.916

.00

BG

D24

4,L

P52

1−04

911

707

237.

989

0.00

93

DA

V

456 D. Koester et al.: High-resolution spectra observed for the SPY. III. DA white dwarfs

Tabl

e1.

cont

inue

d.

Obj

ect

RA

(200

0)D

ec(2

000)

mag

(ban

d)A

lias

esT

eff[K

(Teff

)[K

]lo

ggσ

(logg)

Spe

ctra

Rem

arks

HS

2259+

1419

23:0

1:55

.18+

14:3

6:00

.515

.80

BB

GK

,SD

SS

1381

657

7.74

30.

007

212

672

307.

821

0.00

92

amb

WD

2303+

017

23:0

6:13

.09+

01:5

8:51

.615

.76

BP

G23

03+

017,

PH

L40

040

977

112

7.66

70.

011

3W

D23

03+

242

23:0

6:17

.70+

24:3

2:07

.515

.29

PG

2303+

243,

KR

Peg

1114

711

8.01

80.

006

2D

AV

WD

2306+

130

23:0

8:30

.58+

13:1

9:22

.715

.10

PG

2306+

131,

KU

V23

060+

1303

1351

351

7.82

60.

006

2N

OV

(1)

WD

2306+

124

23:0

8:35

.07+

12:4

5:39

.015

.23

PG

2306+

125,

KU

V23

061+

1229

2036

038

7.99

30.

006

2W

D23

08+

050

23:1

1:18

.05+

05:1

9:27

.916

.02

PG

2308+

050,

PB

5280

3606

268

7.60

60.

010

2W

D23

09+

105

23:1

2:21

.71+

10:4

7:02

.813

.00

GD

246,

BP

M97

895

5700

713

67.

816

0.00

72

WD

2311−2

6023

:13:

53.2

0−2

5:48

:49.

016

.05

BG

D16

36,T

ON

S09

451

160

332

7.77

20.

021

2W

D23

12−3

5623

:15:

34.9

5−3

5:24

:51.

815

.20

BH

K22

888−

3215

122

217.

818

0.00

43

WD

2314+

064

23:1

6:50

.36+

06:4

1:27

.615

.93

mc

PG

2314+

064,

PB

5312

1798

130

7.87

50.

006

2H

E23

15−0

511

23:1

8:04

.31−0

4:54

:45.

715

.37

B(P

HL

444)

3345

182

7.72

10.

014

3W

D23

18+

126

23:2

0:31

.30+

12:5

8:14

.516

.10

BH

S23

18+

1241

,LP

582−

4113

788

597.

803

0.00

82

WD

2318−2

2623

:21:

26.4

3−2

2:20

:22.

516

.05

GD

1648

,PH

L47

529

851

507.

890

0.01

12

WD

2321−5

4923

:24:

30.8

5−5

4:41

:35.

515

.20

HE

2321−5

458,

RE

J232

4−54

443

583

947.

783

0.00

82

WD

2322+

206

23:2

4:35

.22+

20:5

6:33

.915

.59

PG

2322+

207,

HS

2322+

2040

1263

628

7.84

20.

006

2N

OV

(1)

WD

2322−1

8123

:25:

18.4

0−1

7:51

:57.

815

.38

BG

273−

040,

LP

822−

081

2168

335

7.90

00.

006

2W

D23

24+

060

23:2

6:44

.55+

06:1

7:41

.415

.33

mc

PG

2324+

060,

PB

5379

1626

120

7.82

70.

005

2W

D23

26+

049

23:2

8:47

.74+

05:1

4:53

.513

.10

G02

9−03

8,LT

T16

907

1148

58

8.07

10.

002

2D

AV

WD

2328+

107

23:3

0:41

.79+

11:0

2:05

.015

.53

PG

2328+

108,

KU

V23

282+

1046

2239

030

7.77

80.

004

2W

D23

29−3

3223

:32:

10.9

0−3

3:01

:08.

116

.26

BH

E23

29−3

317,

GD

1670

2045

770

7.91

40.

012

2W

D23

30−2

1223

:32:

59.4

8−2

0:57

:12.

116

.25

BH

E23

30−2

113,

PH

L55

926

442

697.

443

0.01

02

DD

sW

D23

31−4

7523

:34:

02.3

2−4

7:14

:27.

613

.42

RE

2334−4

71,E

UV

EJ2

334−

472

5157

394

7.87

50.

006

2W

D23

33−1

6523

:35:

36.5

9−1

6:17

:42.

513

.80

BG

D11

92,B

PM

8275

813

303

197.

875

0.00

32

WD

2333−0

4923

:35:

53.9

6−0

4:42

:14.

815

.65

G15

7−08

210

608

128.

040

0.00

92

NO

VH

E23

34−1

355

23:3

7:30

.38−1

3:38

:33.

415

.64

B(G

D12

07,P

B77

13)

3049

827

7.28

80.

006

2W

D23

36−1

8723

:38:

52.7

8−1

8:26

:11.

915

.60

PG

273−

097,

GR

557

7774

97.

492

0.01

42

DD

dW

D23

36+

063

23:3

8:58

.25+

06:3

5:28

.615

.60

mc

PG

2336+

063,

PB

5486

1701

220

8.02

50.

004

2M

CT

2343−1

740

23:4

6:25

.63−1

7:24

:10.

216

.12

BG

D13

2421

827

104

7.88

30.

015

2H

E23

45−4

810

23:4

7:46

.16−4

7:53

:42.

815

.99

B29

352

357.

324

0.00

72

DD

sM

CT

2345−3

940

23:4

8:26

.42−3

9:23

:47.

416

.06

B19

197

467.

866

0.00

82

WD

2347+

128

23:4

9:53

.51+

13:0

6:12

.516

.05

G03

0−02

0,G

R40

510

874

197.

999

0.01

12

DA

VW

D23

47−1

9223

:50:

02.9

6−1

8:59

:21.

916

.03

MC

T23

47−1

916,

GD

1248

2627

249

7.94

10.

007

2H

E23

47−4

608

23:5

0:32

.90−4

5:51

:34.

816

.20

B17

738

337.

304

0.00

72

WD

2348−2

4423

:51:

22.1

0−2

4:08

:17.

015

.33

EC

2348

7−24

2411

406

148.

040

0.00

62

DA

VM

CT

2349−3

627

23:5

2:08

.16−3

6:10

:40.

116

.41

B44

455

265

7.87

70.

022

2W

D23

49−2

8323

:52:

23.1

8−2

8:03

:15.

915

.54

BM

CT

2349−2

819,

PH

L57

817

427

247.

730

0.00

52

WD

2350−2

4823

:53:

03.7

9−2

4:32

:03.

115

.21

BM

CT

2350−2

448,

PH

L58

028

867

268.

375

0.00

52

WD

2350−0

8323

:53:

27.6

3−0

8:04

:39.

516

.18

mc

G27

3−B

1B,G

R55

818

529

377.

790

0.00

72

WD

2351−3

6823

:54:

18.8

2−3

6:33

:55.

115

.10

BL

505−

42,L

P93

6−02

514

438

287.

869

0.00

52

MC

T23

52−1

249

23:5

5:13

.68−1

2:32

:55.

116

.49

PH

L58

4,P

B80

9840

294

351

7.95

20.

040

2W

D23

53+

026

23:5

6:27

.70+

02:5

7:06

.015

.83

PG

2353+

027,

PB

5617

6174

028

67.

590

0.01

62

WD

2354−1

5123

:57:

33.4

4−1

4:54

:09.

115

.02

BM

CT

2354−1

510,

PH

L59

934

984

407.

195

0.00

72

HE

2356−4

513

23:5

8:57

.83−4

4:57

:13.

515

.38

B17

418

177.

861

0.00

43

D. Koester et al.: High-resolution spectra observed for the SPY. III. DA white dwarfs 457

0.50

1.00

1.50

2.00

HE1124+0144 16221 7.76

0.50

1.00

1.50

2.00

WD1124-293 9476 8.09

0.50

1.00

1.50

2.00

WD1124-018 24325 7.54

0.50

1.00

1.50

2.00

WD1125-025 31819 8.16

-100.0 -50.0 0.0 50.0 100.0

0.50

1.00

1.50

2.00

Δ λ [Α]

WD1125+175 61488 7.57

WD1126-222 12032 7.93

WD1129+071 14297 7.84

WD1129+155 17712 8.03

WD1130-125 14468 8.25

-100.0 -50.0 0.0 50.0 100.0

Δ λ [Α]

HS1136+1359 23920 7.83

Fig. 1. Typical example for observations and fit, taking arbitrarily the entries 301 to 310 from Table 1. The header of each panel gives the name,effective temperature, and surface gravity of the fit. Shown are the six lowest Balmer lines. Vertical axis is relative intensity in arbitrary units,higher lines are offset for clarity. The light grey lines are the models.

of Liebert et al. (2005), the remaining standard deviations areσ(Teff) = 2.3%, and σ(log g) = 0.08. These values should betaken as indicative of the statistical errors of our results, and arecompatible with the estimates derived above for the internal un-certainties from multiple spectra within our sample.

The surprisingly large systematic shift in surface grav-ity is unsatisfactory. A similar trend was also noted byLiebert et al. (2005) in their comparison with studies by otherauthors. In four out of five cases their log g was higher by0.06−0.10 dex. Three of these used similar models to those used

458 D. Koester et al.: High-resolution spectra observed for the SPY. III. DA white dwarfs

10000. 15000. 20000. 25000. 30000. 35000. 40000. 45000.

10000.

15000.

20000.

25000.

30000.

35000.

40000.

45000.

Teff [K]

Tef

f [K

] (L

BH

)

Fig. 2. Comparison of effective temperatures from this work with theresults of Liebert et al. (2005), (=LBH) for 85 objects in common.

7.25 7.50 7.75 8.00 8.25 8.50 8.75

7.25

7.50

7.75

8.00

8.25

8.50

8.75

log g

log

g (L

BH

)

Fig. 3. Comparison of surface gravities from this work with the resultsof Liebert et al. (2005), (=LBH) for 85 objects in common.

here, and the differences could arise from differences betweenthe “Bergeron” and the “Koester” models, or from the fittingprocedures used. We are, however, not aware of any obviousexplanations for such differences. Systematic differences of thismagnitude were also found by Napiwotzki et al. (1999) in a com-parison of different studies using low-resolution spectra.

A possible reason for systematic differences may also comefrom the nature of our observational data. The main purpose ofthe SPY was the determination of radial velocities, which neededhigh resolution; therefore the echelle spectrograph UVES wasused. The wavelength interval per order ranges from ≈30 Å inthe blue to ≈50 Å in the red region. Thus, e.g. Hα at maximumstrength will extend over six or more orders, which have to beflatfielded and merged, removing the strong sensitivity changewithin orders. A real flux calibration was not possible, but thequality of the spectra obtained after some reprocessing of theESO pipeline results was still very impressive. Before the startof this project, we were not certain that the spectra would beuseful for anything else except radial velocity determinations.

Nevertheless, the merging of the orders and the approximateflux calibration attempted may have left very subtle artifacts in-fluencing the far wings of the strong lines, thus influencing inparticular the surface gravity results. An indication for this isvisible in Table 1 in Koester et al. (2001), which compares theresults of fits to echelle vs. single-order low-resolution spectra

for the same seven DAs. The average surface gravity is lower by0.07 in the results from the echelle spectra. Another hint towardsthis effect can be found in the study of low-resolution SDSSspectra of brighter DA white dwarfs by Koester et al. (2009),which used the same models and fitting routines as this work.The average surface gravity for 578 DAs with magnitude g < 19,S/N > 10, and 8000 K ≤ Teff ≤ 16 000 K is 8.014, while the valuefrom our current sample for the same temperature range is 7.947from 211 objects. These are not the same objects of course, butthe samples are so large, that the difference is significant.

Also marked in Table 1 are known ZZ Ceti variables (DAV),as well as objects, which have been observed photometrically,but were not found to vary (NOV). The references for the NOVdesignations are: (1) Gianninas et al. (2005); (2) Kepler et al.(1995); (3) Mukadam et al. (2004); and (4) Bergeron et al.(2004). If no reference is given the classification is a result ofthe SPY and/or follow-up observations (Voss 2006; Voss et al.2006; Castanheira et al. 2006; Silvotti et al. 2005). We have notmarked candidates for variability studies, but obviously all ob-jects in the range of Teff 10 000−13 000 K are interesting in thisrespect.

The Balmer lines reach their maximum strength near Teff =13 000, the exact value depending on the surface gravity.Therefore quite often two different fitting solutions exist, whichproduce the same overall strength (i.e. equivalent width) of thelines. The χ2 values of the two minima are often similar, sincemodel and observation are fitted in the far line wings and dif-ferences show up only in the inner core of the line. Visual in-spection is usually sufficient to determine the correct solution.In a few cases, however, the difference was so small that we pre-ferred to give both solutions in Table 1.

Because of the selection of the targets – as mentioned in theintroduction – our sample is not well suited for a study of whitedwarf population characteristics such as the mass distribution.However, it can be used to demonstrate an effect well known formany years (Bergeron et al. 1990a; Bergeron 1992; Kleinmanet al. 2004; Eisenstein et al. 2006; Kepler et al. 2007; DeGennaroet al. 2008; Koester et al. 2009). This is the fact that the sur-face gravity seems to increase around Teff ≈ 12 000 K towardslower temperatures. Figure 4 clearly shows this for 465 objectsbetween 7500 and 25 000 K. Taking the direct averages withoutany weighting we find 〈log g〉 = 7.86 for effective temperaturesabove 12 500 K and 〈log g〉 = 8.06 below. This is very similar tothe results in the SDSS (Data Release 4) as studied by Koesteret al. (2009). A number of possible explanations is discussed inthat study, and the most likely is found to be an inadequate de-scription of convection with the mixing-length approximation.However, this problem is certainly not yet solved.

4. Double-degenerate white dwarfs

Two or more spectra were taken for the vast majority of theSPY targets. Close binaries among them could be detected witha high level of confidence by checking for radial velocity vari-ations indicating orbital motion. A total of 36 close binarieswere detected among DA sample presented here from the spec-tra taken for the SPY. This count includes only the doubledegenerates, i.e. systems consisting of two white dwarfs. TheDA+dM systems listed in Table 3 are not included in this count.Seventeen of the double-degenerates are double-lined, i.e. spec-tral lines of both white dwarfs are present in the spectra. Thewhite dwarf companion in the single-lined systems is already socool and faint that it does not produce a significant contributionto the combined spectrum.

D. Koester et al.: High-resolution spectra observed for the SPY. III. DA white dwarfs 459

Table 2. Magnetic or helium-contaminated hydrogen-rich stars.

Object RA(2000) Dec(2000) mag(band) Aliases RemarksWD 2359−434 00:02:10.73 −43:09:55.3 13.05 L362−81, LHS 1005 DAPHS 0051+1145 00:54:18.25 +12:01:59.9 15.60 (PHL 886) DAHWD 0058−044 01:01:02.25 −04:11:11.2 15.38 GD 9, GR 407 DAHHS 0209+0832 02:12:04.90 +08:46:50.1 13.90 DABWD 0239+109 02:42:08.54 +11:12:31.8 16.18 G 004−034, LTT 10886 DAHWD 0257+080 02:59:59.24 +08:11:55.3 15.90 LHS 5064, G 76−48 DAHHS 1031+0343 10:34:30.14 +03:27:36.0 16.50 B DAHHE 1233−0519 12:35:37.58 −05:35:36.7 16.48 DAHWD 1953−011 19:56:29.21 −01:02:32.2 13.69 G 092−040, L 0997−021 DAHWD 2051−208 20:54:42.76 −20:39:25.9 15.06 HK 22880−134 DAHWD 2105−820 21:13:16.52 −81:49:14.3 13.50 L 24−52, LTT8381 DAH

10000.12500.15000.17500.20000.22500.

7.25

7.50

7.75

8.00

8.25

8.50

8.75

Teff [K]

log

g

Fig. 4. Distribution of surface gravities for all objects between Teff

7500−25 000 K.

Four more double-degenerates are marked in Table 1 asDD, but were found by independently obtained observations:HE 1511-0448 (Nelemans et al. 2005), WD 1241-010 (Marshet al. 1995), WD 1022+050 and WD 2032+188 (Morales-Ruedaet al. 2005).

The fitting procedure for the model atmosphere analysis isnot affected by the binary nature of the single-lined binaries. Theresulting fit parameters are those of the visible bright component.The situation is different for the double-lined systems. In thesecases a deconvolution of simultaneous fit of both componentswould be necessary for accurate parameters. We have tools forthis kind of analysis available (Napiwotzki et al. 2004), but inmost cases more than the two spectra taken during the survey areneeded to derive reliable parameters of both components. Herewe present the results of a fit assuming a single star. Althoughthese have to be taken with a pinch of salt, they are still a usefulindication of the nature of properties of the binary. Double-linedsystems are indicated in Table 1.

5. Objects with magnetic fields or heliumcontamination

Table 2 summarizes the data for some objects, which appearhydrogen-rich with some peculiarities, either Zeeman splittingof the Balmer lines due to a magnetic field or helium lines inaddition to the stronger Balmer lines. For most of the stars weobtained fits with pure hydrogen model atmospheres. Since theseare obviously not very reliable, we do not publish the parametershere, but discuss these stars individually.

Four magnetic DA stars in the SPY sample havenot been published before, HS 0051+1145, HE 1233−0519,HS 1031+0343, and WD 2051−208. Two more objects werepublished first as DAH stars in Koester et al. (2001),WD 0058−044 and WD 0239+109. Four more magnetic DA, al-ready described in the literature, are in the sample. Below, theseten objects and some additional white dwarfs of special interestare discussed.

HS 1031+0343. This object is a new magnetic DA star. Theonly Zeeman triplet that is completely present, and for whichthe three components are well discernible, is that of Hβ. The σ−,π, σ+ components are found at 4771 Å, 4851 Å, and 4905 Å.The components of the higher lines are blended together, andthe σ+ component of Hα is shifted by an amount that placesit outside of the observed spectral range; thus only the σ− andπ components of Hα are available in the SPY data, at 6560 Å and6420 Å. The magnetic field is estimated as B = 6.1 ± 0.3 MG.

WD 0058−044. This star has been published as a magnetic DAby Koester et al. (2001). The shifts of the σ components withrespect to the π components are 6.2 ± 0.3 Å and 3.6 ± 0.3 Å, forHα and Hβ, respectively. The components of the higher Balmerlines are blended. The quadratic splitting of the lines is negligi-ble here since the split is small and thus the field strength has tobe low. The field is B = 330 ± 30 kG, from Hα, and B = 310 ±20 kG, from Hβ.

WD 0239+109. Greenstein & Liebert (1990) recognized an un-usual line shape for this object, and suggested a magnetic fieldas one of the possible reasons. Bergeron et al. (1990b) inter-preted the spectrum as that of an unresolved DA+DC binary.The SPY spectra in Koester et al. (2001) revealed the presenceof Zeeman splitting of Hα and thus proved the magnetic natureof the object. In the first SPY spectrum, the Hα components areplaced at 6576.6 Å, 6562.3 Å, and 6548.4 Å, and those of Hβat 4868.9 Å, 4861.0 Å, 4853.0 Å, and from that field strengthsof 700 ± 20 kG, from Hα, and 720 ± 30 kG, from Hβ, can bederived.

WD 0257+080. Bergeron et al. (1997) found a flat-bottomHα core for this object which is typical for white dwarfs witha low-strength magnetic field, but they were not able to identifya Zeeman triplet and estimated the field strength to be ∼100 kG.One of the two SPY spectra of WD 0257+080 clearly shows anHα triplet. In the other spectrum, which has a slightly lower S/N,

460 D. Koester et al.: High-resolution spectra observed for the SPY. III. DA white dwarfs

Table 3. Data for DA+dM binaries. In boldface are the new SPY detections. For explanations of the magnitude column see text.

Object RA(2000) Dec(2000) mag(band) Aliases TypeHE 0016−4340 00:19:06.10 −43:24:18.5 15.62 B DA2WD 0034−211 00:37:24.99 −20:53:43.6 14.53 MCT 0034−2110, LP 852−559 DA3HE 0105−0232 01:08:06.33 −02:16:53.1 15.77 B (PB6272) DA2WD 0131−163 01:34:24.08 −16:07:08.2 13.98 MCT 0131−1622, PHL 1043 DA1WD 0137−349 01:39:42.88 −34:42:39.1 15.33 HK 29504−36 DA3WD 0205+133 02:08:03.59 +13:36:23.9 13.78 B PG 0205+134 DA1WD 0232+035 02:35:07.67 +03:43:55.6 12.25 Feige 24 DA1WD 0303−007 03:06:07.21 −00:31:14.3 16.21 HE 0303−0042, KUV 03036−0043 DA2WD 0308+096 03:10:54.90 +09:49:31.6 15.23 PG 0308+096 DA2HE 0331−3541 03:33:52.53 −35:31:18.9 14.79 B DA2WD 0347−137 03:50:14.55 −13:35:13.5 14.00 GD 51, LP 713−034 DA3HE 0409−3233 04:11:21.14 −32:26:14.9 16.03 B DA3WD 0429+176 04:32:23.76 +17:45:02.4 13.93 GH 7−255, HZ9B DA3WD 0430+136 04:33:10.59 +13:45:12.4 16.50 KUV 04304+1339 DA1HE 0523−3856 05:25:28.11 −38:54:12.5 16.07 B DA3WD 0718−316 07:20:47.92 −31:47:04.6 15.10 RE 0720−314, EUVE J 0720−317 DAOWD 0933+025 09:35:40.69 +02:21:59.6 16.01 B PG 0933+026 DA2WD 0950+185 09:52:45.80 +18:21:02.9 15.30 PG 0950+186 DA2WD 1001+203 10:04:04.30 +20:09:22.5 15.35 TON 1150, HS1001+2023 DA2WD 1026+002 10:28:34.88 −00:00:29.6 13.89 B PG 1026+002, HE 1026+014 DA3WD 1042−690 10:44:10.63 −69:18:22.9 13.09 BPM 06502, L 101−080 DA2WD 1049+103 10:52:27.82 +10:03:36.5 15.83 B PG 1049+103 DA3HE 1103−0049 11:06:27.66 −01:05:14.9 16.30 B DA3HE 1208−0736 12:11:01.08 −07:52:42.9 15.67 B DA2WD 1247−176 12:50:22.13 −17:54:48.2 16.19 EC 12477−1738, HE 1247−1738 DA3WD 1319−288 13:22:40.46 −29:05:35.0 15.99 EC 13198−2849 DA5HE 1333−0622 13:36:19.64 −06:37:58.9 16.05 WD 1333−063 DA2WD 1334−326 13:37:50.77 −32:52:22.5 16.34 EC 13349−323 DA1HE 1346−0632 13:48:48.34 −06:47:21.0 16.27 B DA2EC 13471−125 13:49:51.95 −13:13:37.5 14.80 WD 1347−129, RXS DA3WD 1415+132 14:17:40.22 +13:01:48.6 15.29 US 3974, Feige 93 DA1EC 14329−162 14:35:45.70 −16:38:17.0 14.89 WD 1432−164, HE 1432−1625 DA3WD 1436−216 14:39:12.70 −21:50:14.6 15.94 EC 14363−2137, HE 1436−2137 DA2WD 1458+171 15:00:19.36 +16:59:14.7 16.12 B PG 1458+172 DA5WD 1541−381 15:45:10.97 −38:18:51.3 14.90 LDS 539B, L 480−085 DA4HS 1606+0153 16:08:55.22 +01:45:48.6 15.00 B DA3WD 1643+143 16:45:39.05 +14:17:42.0 15.38 PG 1643+144 DA2WD 1646+062 16:49:07.83 +06:08:43.6 15.84 B PG 1646+062 DA2WD 1845+019 18:47:39.09 +01:57:33.5 12.95 LAN 18, KPD 1845+0154 DA2WD 1844−654 18:49:02.00 −65:25:14.2 15.80 B HK 22959−81 DA1HS 2120+0356 21:23:09.53 +04:09:28.3 16.20 B DA3HE 2123−4446 21:26:41.88 −44:33:38.8 15.97 B DA3HE 2147−1405 21:50:03.69 −13:51:45.9 15.94 B (PHL 167) DA2WD 2151−015 21:54:06.53 −01:17:10.9 14.41 G 093−053,L 1003−016 DA2HE 2217−0433 22:20:05.80 −04:18:44.5 16.28 B DA3WD 2313−330 23:16:02.90 −32:46:41.4 15.74 B HK 22888−45, MCT DA1

only the σ− component is discernible. The Hα components ofthe first spectrum are split by 1.8 ± 0.3 Å, from which B = 90 ±15 kG can be derived, a more precise value than the previousestimate.

WD 1953−011. A weak Zeeman-split triplet of Hα was foundby Koester et al. (1998), from which they derived a field strengthof 93 kG. Maxted et al. (2000) had noticed a variable depressionin the wings of Hα which they identified as additional Zeeman-split Hα features, which led them to assume a non-simple fieldgeometry with a strong spot-like field of ∼500 kG combinedwith a weaker 70 kG dipole field. Comparing the two SPY spec-tra, the Hα wings appear deformed near 6550 Å and 6575 Å,which might allow a very rough estimate of field strengths of∼500 kG up to ∼750 kG, if it is assumed that these features areof magnetic origin. However no variation of these features as

described by Maxted et al. can be found, the line shape is verysimilar in both SPY spectra. The central triplet however is obvi-ous, and the splitting of the core is 1.9 ± 0.2 Å. This correspondsto a dipole B field of 95 ± 10 kG.

WD 2105−820. The spectrum of this star was found to show aflat-bottom Hα core, probably due to a low magnetic field, byKoester et al. (1998), from which they derive a field strength of43 kG. No Zeeman triplet is obvious in the SPY spectra as well,they also only exhibit the broadened, flat core; the full width ofthe core of 1.8 Å in the SPY spectra is consistent with the fieldstrength derived by Koester et al. (1998).

WD 2359−434. Koester et al. (1998) suspected that this DAcould be magnetic due to its flat Hα core, and a very low field

D. Koester et al.: High-resolution spectra observed for the SPY. III. DA white dwarfs 461

of only 3 kG was polarimetrically found by Aznar Cuardradoet al. (2004). They selected this object as one of their programstars based on the criterion that the SPY spectra show no signs ofZeeman splitting; however they themselves note that flat Balmerline cores are present in the spectra of that object, and if theseare caused by the B field, it would indicate a higher field strengththan that derived from the polarimetry data. Kawka et al. (2007)measure a low field of 3.4 ± 4.4 kG.

The SPY spectra indeed do not only show a flat-bottomHα core, but within that core also a pronounced π compo-nent and less clear, broad σ components, centered at 6561.1 Å,6563.5 Å, and 6565.8 Å. Thus a field strength of 110± 10 kG canbe derived. This is two orders of magnitude stronger than foundby Aznar Cuardrado et al. (2004) and Kawka et al. (2007). Thereason for these different results is unclear.

WD 0446−789 and WD 1105−048. These objects are the tworemaining of the three for which Aznar Cuardrado et al. (2004)discovered magnetic fields of only a few kG from polarimetrydata. The Hα core of WD 0446−789 appears slightly broadened,the width is 1.8 Å, which is slightly wider than the average linecore width of ∼1 Å. If we interpret this excess width as due tomagnetic broadening, this would correspond to a field strengthon the order of 10 kG. The line core of WD1105-048 shows nopeculiarities, it has a normal width of 1 Å and thus no detectablefield.

HS 0051+1145. This object has previously been found as ablue source, PHL 886, but was not observed spectroscopicallybefore the SPY. It is a new magnetic DA. The SPY spectrahave a rather low S/N and thus only the Hα triplet of one ofthe spectra is resolved. The components are placed at 6558.9 Å,6563.6 Å, and 6568.6 Å, yielding an approximate field strengthof 240 ± 10 kG.

HE 1233−0519. This DA was published by Koester et al.(2001), but not recognized as a magnetic star. The SPY spec-tra have a low S/N such that only the Hα triplet is discernible inone of the spectra. With the components at 6552.2 Å, 6564.4 Å,and 6576.6 Å, a field strength of 610 ± 10 kG results.

WD 2051−208. Beers et al. (1992) published this object as aDA, but it was not further investigated since. It is a new mag-netic DA, and shows a variable Zeeman splitting of Hα andHβ. The Hα components in the two SPY spectra are found at6562.0 Å, 6566.6 Å, 6570.7 Å, and at 6560.2 Å, 6566.6 Å,6571.9 Å, respectively, and those of Hβ at 4861.2 Å, 4864.0 Å,4866.7 Å, and at 4861.0 Å, 4863.9 Å, 4866.9 Å. The resultingfield strengths are 220 ± 20 kG and 290 ± 20 kG (from Hα) aswell as 250 ± 30 kG and 270 ± 30 kG (from Hβ). The values de-rived from Hα are significantly different, and each is consistentwith the corresponding value from Hβ.

WD 2253−081 and WD 1344+106. Bergeron et al. (2001) sus-pected that shallow line cores which they found for theseobjects might indicate low-strength magnetic fields. The linecores of both objects have since been fitted with rotation-ally broadened line profiles, corresponding to projected rotationvelocities of 36+14

−7 km s−1 for WD 2253−081 (Karl et al. 2005)and 4.5 ± 2 km s−1 for WD 1344+106 (Berger et al. 2005). The

6540.0 6560.0 6580.0 6600.0

0.40

0.60

0.80

1.00

4700.0 4800.0 4900.0 5000.0

0.100

0.200

0.300

0.400

Δ λ [Α]

Fig. 5. Four new magnetic DAs. Top panel: Hα in WD2051-208, HS0051+1145, HE1223-0519 (from top). Bottom: Hβ inHS1031+0343. Vertical axis is relative intensity, with arbitrary offsetsbetween spectra for clarity.

Hα line cores in the SPY spectra of both objects neither showZeeman triplets nor flat bottoms that could indicate the presenceof a B field. They are non-magnetic objects.

HS0209+0832. This DAB star is well studied since it is oneof very few objects that exhibit helium features at a temperaturethat places it in the DB gap (Jordan et al. 1993). Heber et al.(1997) found a helium abundance that is variable at timescalesof a few months, which has been interpreted as a sign of he-lium accretion from a clumpy interstellar medium. The equiva-lent widths of the He i 4471 Å and 5876 Å lines show no signif-icant differences between both SPY spectra, i.e., no variation ofthe abundance is found. This is however not surprising since thespectra were recorded within 3 days of each other.

Zeeman splitted Hα or Hβ for the four new magnetic DAsare displayed in Fig. 5.

6. Binaries with DA white dwarfsand dM companions

Table 3 gives the data on binaries containing a DA and a M dwarfcompanion, identified from molecular features in the redspectrum and/or Balmer emission components. The names inboldface indicate new detections from the SPY. The magnitude

462 D. Koester et al.: High-resolution spectra observed for the SPY. III. DA white dwarfs

is the Johnson V magnitude, unless indicated otherwise (see de-scription for Table 1). The type is estimated from the effectivetemperature obtained with a fit with hydrogen models, usingonly the higher Balmer lines from Hγ.

7. Conclusions

We present the data – coordinates, magnitudes, and alias names –for the hydrogen-rich objects in the SPY sample. These in-clude 615 objects with pure hydrogen spectra, for which atmo-spheric parameters derived from fits with hydrogen models aregiven in Table 1. Of these, 187 are new white dwarf detectionsfrom this survey, or the HES and HQS surveys used to definethe target list. In addition to the 615 DAs, our sample also in-cludes 46 DA+dM binaries, of which 10 are new, and 10 mag-netic DA (4 new). The results show that with careful reductioneven high-resolution echelle spectra can be used to determinestellar parameters through line profile fitting, although the lineprofiles may extend over many echelle orders. However, thereis an indication that the surface gravities obtained are lowerby 0.05−0.08 dex, compared to results from high S/N low-resolution spectra. The surface gravities of the normal DAs showthe well known, but still unexplained, trend to a larger value (by0.2 dex) for temperatures below approximately 12 500 K.

Acknowledgements. T.L. is supported within the framework of the ExcellenceInitiative by the German Research Foundation (DFG) through the HeidelbergGraduate School of Fundamental Physics (grant number GSC 129/1). Researchat Bamberg in the context of the SPY project was funded by the DFG throughgrants Na 365/2-1/2 and He 1356/40-3/4. This research has made extensive useof the SIMBAD database, operated at CDS, Strasbourg, France.

ReferencesAdelman-McCarthy, J. K., Agueros, M. A., Allam, S. S., et al. 2008, ApJS, 175,

297Aznar Cuardrado, R., Jordan, S., Napiwotzki, R., et al. 2004, A&A, 423, 1081Beers, T. C., Preston, G. W., Shectman, S. A., Doinidis, S. P., & Griffin, K. E.

1992, AJ, 103, 267Berger, L., Koester, D., Napiwotzki, R., Reid, I., & Zuckerman, B. 2005, A&A,

444, 565Bergeron, P. 1992, JRASC, 86, 309Bergeron, P., Wesemael, F., Fontaine, G., & Liebert, J. 1990a, ApJ, 351, L21Bergeron, P., Liebert, J., & Greenstein, J. L. 1990b, ApJ, 361, 190Bergeron, P., Ruiz, M. T., & Leggett, S. K. 1997, ApJS, 108, 339Bergeron, P., Leggett, S. K., & Ruiz, M. T. 2001, ApJS, 133, 413Bergeron, P., Fontaine, G., Billéres, M., et al. 2004, ApJ, 600, 404Brown, W. R., Geller, M. J., Kenyon, S. J., & Kurtz, M. J. 2006, ApJ, 640, L35Castanheira, B. G., Kepler, S. O., Mullally, F., et al. 2006, A&A, 450, 227Christlieb, N., Wisotzki, L., Reimers, D., et al. 2001, A&A, 366, 898

Cutri, R. M., Skrutskie, M. F., Van Dyk, S., et al. 2003, CDS/ADC Collection ofElectronic Catalogues, 2MASS All Sky Catalog of point sources, 2246, 0

DeGennaro, S., von Hippel, T., Winget, D. E., et al. 2008, AJ, 135, 1Demers, S., Wesemael, F., Irwin, M. J., et al. 1990, ApJ, 351, 271Eisenstein, D. J., Liebert, J., Koester, D., et al. 2006, AJ, 132, 676Gianninas, A., Bergeron, P., & Fontaine, G. 2005, ApJ, 631, 1100Greenstein, J. L., & Liebert, J. W. 1990, ApJ, 360, 662Hagen, H.-J., Groote, D., Engels, D., & Reimers, D. 1995, A&AS, 111, 195Heber, U., Napiwotzki, R., Lemke, M., & Edelmann, H. 1997, A&A, 324, 53Homeier, D. 2001, Ph.D. Thesis, University of KielHomeier, D., Koester, D., Hagen, H.-J., et al. 1998, A&A, 338, 563Jordan, S., Heber, U., Engels, D., & Koester, D. 1993, A&A, 273, L27Karl, C. A., Heber, U., & Napiwotzki, R. 2005, in 14th European Workshop on

White Dwarfs, ed. D. Koester, & S. Moehler, ASP Conf. Ser., 334, 369Kawka, A., & Vennes, S. 2006, ApJ, 643, 402Kawka, A., Vennes, S., Schmidt, G. D., Wickramasinghe, D. T., & Koch, R.

2007, ApJ, 654, 499Kepler, S. O., Giovannini, O., Kanaan, A., Wood, M. A., & Claver, C. F. 1995,

BaltA, 4, 157Kepler, S. O., Kleinman, S. J., Nitta, A., et al. 2007, MNRAS, 375, 1315Kilkenny, D., O’Donogue, D., & Stobie, R. S. 1991, MNRAS, 248, 664Kleinman, S. J., Harris, H. C., Eisenstein, D. J., et al. 2004, ApJ, 607, 426Koester, D. 2009, in press in Mem. Soc. Astron. Ital. [arXiv:0903.1499]Koester, D., Dreizler, S., Weidemann, V., & Allard, N. F. 1998, A&A, 338, 612Koester, D., Napiwotzki, R., Christlieb, N., et al. 2001, A&A, 378, 556Koester, D., Rollenhagen, K., Napiwotzki, R., et al. 2005, A&A, 432, 1025Koester, D., Kepler, S. O., Kleinman, S. J., & Nitta, A. 2009, in Proceedings

of the 16th European Workshop on White Dwarfs, Barcelona 2008, in press[arXiv:0812.0491]

Lamontagne, R., Demers, S., Wesemael, F., Fontaine, G., & Irwin, M. J. 2000,AJ, 119, 241

Liebert, J., Bergeron, P., & Holberg, J. B. 2005, ApJS, 156, 47Lisker, T., Heber, U., Napiwotzki, R., et al. 2005, A&A, 430, 223Marsh, T. R., Dhillon, V. S., & Duck, S. R. 1995, MNRAS, 275, 828Maxted, P. F. L., Ferrario, L., Marsh, T. R., & Wickramasinghe, D. T. 2000,

MNRAS, 315, 41McCook, G. P., & Sion, E. M. 1999, ApJS, 121, 1Morales-Rueda, L., Marsh, T. R., Maxted, P. F. L., et al. 2005, MNRAS, 359,

648Mukadam, A. S., Mullally, F., Nather, R. E., et al. 2004, ApJ, 607, 982Napiwotzki, R., Green, P, J., & Saffer, R. A. 1999, ApJ, 517, 399Napiwotzki, R., Christlieb, N., Drechsel, H., et al. 2001, Astron. Nachr., 322,

411Napiwotzki, R., Christlieb, N., Drechsel, H., et al. 2003, The Messenger, 112, 25Napiwotzki, R., Yungelson, L., Nelemans, G., et al. 2004, ASPC, 318, 402Nelemans, G., Napiwotzki, R., Karl, C., et al. 2005, A&A, 440, 1087Pauli, E.-M., Napiwotzki, R., Altmann, M., et al. 2003, A&A, 400, 877Pauli, E.-M., Napiwotzki, R., Heber, U., Altmann, M., & Odenkirchen, M. 2006,

A&A, 447, 173Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992,

Numerical Recipes, second edition, University of Cambridge, CambridgeSilvotti, R., Voss, B., Bruni, I., et al. 2005, A&A, 443, 195Stroeer, A., Heber, U., Lisker, T., et al. 2007, A&A, 462, 269Voss, B. 2006, Ph.D. Thesis, Universität KielVoss, B., Koester, D., Østensen, R., et al. 2006, A&A, 450, 1061Voss, B., Koester, D., Napiwotzki, R., Christlieb, N., & Reimers, D. 2007, A&A,

470, 1079Werner, K., Rauch, T., Napiwotzki, R., et al. 2004, A&A, 424, 657Wisotzki, L., Koehler, T., Groote, D., & Reimers, D. 1996, A&AS, 115, 227