ASTR178 Other Worlds

79
ASTR178 Other Worlds A/Prof. Orsola De Marco 9850 4241 [email protected]

description

ASTR178 Other Worlds. A/Prof. Orsola De Marco 9850 4241 [email protected]. Announcements. Website of the book. It contains many articles and links: http://bcs.whfreeman.com/universe9e/. Help questions (For this week). 1-28, page 232, 233. - PowerPoint PPT Presentation

Transcript of ASTR178 Other Worlds

Page 1: ASTR178 Other Worlds

ASTR178Other Worlds

A/Prof. Orsola De Marco9850 4241

[email protected]

Page 2: ASTR178 Other Worlds

Announcements• Website of the book. It contains many articles and links: http://bcs.whfreeman.com/universe9e/

Help questions (For this week)

• 1-28, page 232, 233.• Most of the questions in this chapter are relevantsince I covered this chapter pretty thoroughly.

Page 3: ASTR178 Other Worlds

The Moon Practical• All instructions have been posted on the website.• Download the instructions and the sky chart.• Go out at least 5 times between 14 August and 27 August ~8-9PM.• Plot the Moon position on the Sky Chart provided, includingthe Moon’s phase.• Always go out at the same time for instance sometime between 8 and 9 pm. IF YOU DO NOT THE EXPERIMENTWILL NOT WORK.• Answer the questions.• Return the work to the boxes by September 17.

Page 4: ASTR178 Other Worlds

How to use a Sky Chart

Page 5: ASTR178 Other Worlds

In last class• A quick wrap up of the magnetic fields in the Solar System.• Earth’s energy sources• The Greenhouse effect• Earth’s inner layers (we started it, we will finish in this class).

Page 6: ASTR178 Other Worlds

In this class• Earth’s inner layers• Plate tectonics• A few rock definitions• Earth’s early atmosphere and the rise of oxygen• Earth’s current atmosphere, temperature, pressure and circulation.• The Human effect on the atmosphere and climate.• We started talking about the moon, but this will be the subject of Week 4, Class 1.

Page 7: ASTR178 Other Worlds
Page 8: ASTR178 Other Worlds
Page 9: ASTR178 Other Worlds

Richard Dixon Oldham (Irish) 1858-1936Hypothesized the existence of a molten core.

Inge Lehmann (Danish)1888-1993Hypothesized the existence of the inner core

Page 10: ASTR178 Other Worlds
Page 11: ASTR178 Other Worlds
Page 12: ASTR178 Other Worlds

Plate tectonics

Alfred Wegener (German) 1880-1930

Arthur Holmes (British) 1890-1965

Page 13: ASTR178 Other Worlds

Roethosaurus – Early-mid JurassicFrom Queensland!

Page 14: ASTR178 Other Worlds
Page 15: ASTR178 Other Worlds
Page 16: ASTR178 Other Worlds

Tectonic activity is cyclic

• What we know of the tectonic movement (Pangaea to today) lasted ~200 million years.• Before then another cycle had taken place.The supercontinent before Pangaea was named Rodenia (1100-700 million years ago).• Tectonic activity has a ~500 million year “cycle”.

“Pangaea Ultima” a possible next supercontinenthttp://science.nasa.gov/science-news/science-at-nasa/2000/ast06oct_1/

Page 17: ASTR178 Other Worlds

Types of tectonic activity

• Converging – subduction zones (Chile coast)Himalayas

• Spreading – mid-Atlantic rift• Sliding – St. Andreas fault

Page 18: ASTR178 Other Worlds

Show Science Bulletins “Earthquakes today”: www.amnh.org/sciencebulletins/

All plate boundaries are sources of volcanism and earthquakes

Page 19: ASTR178 Other Worlds

Constructive and destructive plate boundaries

Page 20: ASTR178 Other Worlds
Page 21: ASTR178 Other Worlds
Page 22: ASTR178 Other Worlds

The St. Andreas Fault –a type of conservative plate boundary

Page 23: ASTR178 Other Worlds

A few “rock” terms

• Chemical elements make minerals (single atom or compounds)

• Single atom: diamond, gold nugget.• Compound: feldspar=K,Al,Si,O; quartz=Si,O)

• One or more minerals make rocks • Rock: granite = feldspar + quartz

Feldspar Quartz Granite

Page 24: ASTR178 Other Worlds

Plate tectonics and the variety of rocksAn example:

In the early Earth CO2 was outgassed from volcanos. As it dissolved in the oceans it formed carbonate minerals.One such mineral, calcite becamepart of sedimentary rocks such as limestone, which werelater subducted, mixed up resulting in,e.g., marble is a metamorphic rock.

Page 25: ASTR178 Other Worlds

Earth’s early atmosphere

• Early atmosphere: H, He, C, O, …. Same mix as the solar nebula• H, He easily escape, some H forms H2O which remains• Early atmosphere very dense and filled with water vapour• Earth cools, vapour becomes liquid, forms oceans• Earth would be very cold at this point, but CO2 outgassed from volcanoes is a green-house gas and keeps Earth warmer than itwould be otherwise.• CO2 is a green-house gas: in the atmosphere to keep the Earthwarm• Some CO2 dissolves in water and goes in the oceans where it is locked in rocks – some CO2 remains in the atmosphere• When we release too much CO2 in the atmosphere we increase the green-house effect and … the end of the story when we talk more about the roasting surface of Venus!

Page 26: ASTR178 Other Worlds

The rise of Oxygen and complex life

• Photosynthesis + Respiration: regulation of O2

Page 27: ASTR178 Other Worlds
Page 28: ASTR178 Other Worlds

Life on Earth

Protoplanetary disk(~4.5 Gyr ago)

First life (~3.8 Gyr ago)

Cambrian explosion (~500 Myr ago)

Humans (~100,000 yr ago)

Page 29: ASTR178 Other Worlds

The rise of oxygen

• Science Bulletin’s piecewww.amnh.org/sciencebulletins/

Page 30: ASTR178 Other Worlds

Comparing Earth’s, Venus’ and Mars’ atmospheres

Page 31: ASTR178 Other Worlds

50% of the atmosphere is in the troposphere.

Pressure decreases with altitude.Temperature is more complicated …

At hundreds of degrees, why isthe Shuttle notburning up?

Page 32: ASTR178 Other Worlds
Page 33: ASTR178 Other Worlds

The Earth biosphere

Page 34: ASTR178 Other Worlds

The Earth biosphere

• Climate can vary by natural causes (uneven Sun’s radiation, Earth’s axisprecession …).• CO2 levels can also vary naturally (intense periods of volcanic activity:extinction 250 million years ago driven by volcanoes in Siberia ….).• However, human influence ha been far above these natural chances (deforestation, destruction of the ozone layer, increase in CO2 emission).

Page 35: ASTR178 Other Worlds
Page 36: ASTR178 Other Worlds
Page 37: ASTR178 Other Worlds

90% of Ozone is between 40 and 60 km above ground.Ozone is O3. It is broken down by UV light so it absorbs UV light and protects us from it. It is then made by a reaction of O2 an O. It is alsodestroyed by reacting with O, a reaction that is catalysed by other chemicalssuch as CFCs

Page 38: ASTR178 Other Worlds
Page 39: ASTR178 Other Worlds
Page 40: ASTR178 Other Worlds

An Inconvenient Truth, by Al Gorehttp://video.google.com/videoplay?docid=2078944470709189270

Page 41: ASTR178 Other Worlds

Observations of the Moon• Aristotle thought that the lunar imperfections wereactually changes in density and the Moon was a perfect orb.• Plutarch (46-120 AD) suggested that it was due to canyons and valleys and might be inhabited.• It was Galileo that finally put the matter to rest using a telescope.

• Influence of the Moon on human life.

Page 42: ASTR178 Other Worlds

The MoonThe MoonThe MoonThe Moon

Page 43: ASTR178 Other Worlds

http://www.youtube.com/watch?v=RMINSD7MmT4

One small step for (a) man, one giant leap for mankind

Must watch the great Aussie movies “The Dish”.

Page 44: ASTR178 Other Worlds

Key Ideas

• The Earth’s Energy Sources: All activity in the Earth’s atmosphere, oceans, and surface is powered by three sources of energy.

• Solar energy is the energy source for the atmosphere. In the greenhouse effect, some of this energy is trapped by infrared absorbing gases in the atmosphere, raising the Earth’s surface temperature.

• Tidal forces from the Moon and Sun help to power the motion of the oceans.

• The internal heat of the Earth is the energy source for geologic activity.

Page 45: ASTR178 Other Worlds

Key Ideas• The Earth’s Interior: Studies of seismic waves (vibrations

produced by earthquakes) show that the Earth has a small, solid inner core surrounded by a liquid outer core. The outer core is surrounded by the dense mantle, which in turn is surrounded by the thin low-density crust.

• Seismologists deduce the Earth’s interior structure by studying how longitudinal P waves and transverse S waves travel through the Earth’s interior.

• The Earth’s inner and outer cores are composed of almost pure iron with some nickel mixed in. The mantle is composed of iron rich minerals.

• Both temperature and pressure steadily increase with depth inside the Earth.

Page 46: ASTR178 Other Worlds

Key Ideas

• Plate Tectonics: The Earth’s crust and a small part of its upper mantle form a rigid layer called the lithosphere. The lithosphere is divided into huge plates that move about over the plastic layer called the asthenosphere in the upper mantle.

• Plate tectonics, or movement of the plates, is driven by convection within the asthenosphere. Molten material wells up at oceanic rifts, producing seafloor spreading, and is returned to the asthenosphere in subduction zones. As one end of a plate is subducted back into the asthenosphere, it helps to pull the rest of the plate along.

Page 47: ASTR178 Other Worlds

Key Ideas

• Plate tectonics is responsible for most of the major features of the Earth’s surface, including mountain ranges, volcanoes, and the shapes of the continents and oceans.

• Plate tectonics is involved in the formation of the three major categories of rocks: igneous rocks (cooled from molten material), sedimentary rocks (formed by the action of wind, water, and ice), and metamorphic rocks (altered in the solid state by extreme heat and pressure).

Page 48: ASTR178 Other Worlds

Key Ideas• The Earth’s Magnetic Field and Magnetosphere: Electric currents in

the liquid outer core generate a magnetic field. This magnetic field produces a magnetosphere that surrounds the Earth and blocks the solar wind from hitting the atmosphere.

• A bow-shaped shock wave, where the supersonic solar wind is abruptly slowed to subsonic speeds, marks the outer boundary of the magnetosphere.

• Most of the particles of the solar wind are deflected around the Earth by the magnetosphere.

• Some charged particles from the solar wind are trapped in two huge, doughnut-shaped rings called the Van Allen belts. An excess of these particles can initiate an auroral display.

Page 49: ASTR178 Other Worlds

Key Ideas

• The Earth’s Atmosphere: The Earth’s atmosphere differs from those of the other terrestrial planets in its chemical composition, circulation pattern, and temperature profile.

• The Earth’s atmosphere evolved from being mostly water vapor to being rich in carbon dioxide. A strong greenhouse effect kept the Earth warm enough for water to remain liquid and to permit the evolution of life.

Page 50: ASTR178 Other Worlds

Key Ideas

• The appearance of photosynthetic living organisms led to our present atmospheric composition, about four-fifths nitrogen and one-fifth oxygen.

• The Earth’s atmosphere is divided into layers called the troposphere, stratosphere, mesosphere, and thermosphere. Ozone molecules in the stratosphere absorb ultraviolet light.

• Because of the Earth’s rapid rotation, the circulation in its atmosphere is complex, with three circulation cells in each hemisphere.

Page 51: ASTR178 Other Worlds

Key Ideas

• The Biosphere: Human activity is changing the Earth’s biosphere, on which all living organisms depend.

• Industrial chemicals released into the atmosphere have damaged the ozone layer in the stratosphere.

• Deforestation and the burning of fossil fuels are increasing the greenhouse effect in our atmosphere and warming the planet. This can lead to destructive changes in the climate.

Page 52: ASTR178 Other Worlds

Which of the following has the smallest effect on the motions of the Earth's atmosphere and oceans?

A. solar energy B. the Earth’s internal heat C. tidal forcesD. both B and CE. This is a misleading question. All of these have

comparably large effects on the atmosphere and oceans.

Q9.1

Page 53: ASTR178 Other Worlds

Which of the following has the smallest effect on the motions of the Earth's atmosphere and oceans?

A. solar energy B. the Earth’s internal heat C. tidal forcesD. both B and C.E. This is a misleading question. All of these have

comparably large effects on the atmosphere and oceans.

A9.1

Page 54: ASTR178 Other Worlds

What energy source creates clouds in our atmosphere?

A. The Sun B. Earth’s internal heat C. Tidal interactions with the MoonD. The solar windE. None of the above

Q9.2

Page 55: ASTR178 Other Worlds

What energy source creates clouds in our atmosphere?

A. The Sun B. Earth’s internal heat C. Tidal interactions with the MoonD. The solar windE. None of the above

A9.2

Page 56: ASTR178 Other Worlds

What energy source leads to mountain building on Earth?

A. The Sun B. Earth’s internal heat C. Tidal interactions with the MoonD. The solar windE. None of the above

Q9.3

Page 57: ASTR178 Other Worlds

What energy source leads to mountain building on Earth?

A. The Sun B. Earth’s internal heat C. Tidal interactions with the MoonD. The solar windE. None of the above

A9.3

Page 58: ASTR178 Other Worlds

In the greenhouse effect,

A. some infrared radiation emitted by the Earth’s surface is absorbed by the atmosphere.

B. some ultraviolet radiation emitted by the Earth’s surface is absorbed by the atmosphere.

C. vegetation traps thermal energy near the surface. D. infrared radiation from the Sun is captured as it

enters the Earth’s atmosphere. E. infrared radiation from the Sun is reflected by the

Earth’s atmosphere into space.

Q9.4

Page 59: ASTR178 Other Worlds

In the greenhouse effect,

A. some infrared radiation emitted by the Earth’s surface is absorbed by the atmosphere.

B. some ultraviolet radiation emitted by the Earth’s surface is absorbed by the atmosphere.

C. vegetation traps thermal energy near the surface. D. infrared radiation from the Sun is captured as it

enters the Earth’s atmosphere. E. infrared radiation from the Sun is reflected by the

Earth’s atmosphere into space.

A9.4

Page 60: ASTR178 Other Worlds

Which of the follow best describes the natural greenhouse effect (not including human influence) on Earth?A. There is no natural greenhouse effect. B. The natural greenhouse effect keeps Earth’s average

temperature relatively constant and above freezing. C. The natural greenhouse effect has continuously

increased the average temperature of the atmosphere and surface over the past 4.56 billion years.

D. The natural greenhouse effect has continuously decreased the average temperature of the atmosphere and surface over the past 4.56 billion years.

Q9.5

Page 61: ASTR178 Other Worlds

Which of the follow best describes the natural greenhouse effect (not including human influence) on Earth?A. There is no natural greenhouse effect. B. The natural greenhouse effect keeps Earth’s average

temperature relatively constant and above freezing. C. The natural greenhouse effect has continuously

increased the average temperature of the atmosphere and surface over the past 4.56 billion years.

D. The natural greenhouse effect has continuously decreased the average temperature of the atmosphere and surface over the past 4.56 billion years.

A9.5

Page 62: ASTR178 Other Worlds

Which of the following is not an important greenhouse gas?

A. Carbon dioxide B. Methane C. Water D. Ammonia E. All of these are important greenhouse gases.

Q9.6

Page 63: ASTR178 Other Worlds

Which of the following is not an important greenhouse gas?

A. Carbon dioxide B. Methane C. Water D. Ammonia E. All of these are important greenhouse gases.

A9.6

Page 64: ASTR178 Other Worlds

Which of the following is a correct statement about seismic waves used to map the Earth’s interior structure?

A. P waves are longitudinal and are able to travel through solids and liquids; S waves are transverse and can only travel through liquids.

B. P waves are transverse and are able to travel through solids and liquids; S waves are longitudinal and can only travel through liquids.

C. P waves are transverse and are able to travel through solids and liquids; S waves are longitudinal and can only travel through solids.

D. P waves are longitudinal and are able to travel through solids and liquids; S waves are transverse and can only travel through solids.

Q9.7

Page 65: ASTR178 Other Worlds

Which of the following is a correct statement about seismic waves used to map the Earth’s interior structure?

A. P waves are longitudinal and are able to travel through solids and liquids; S waves are transverse and can only travel through liquids.

B. P waves are transverse and are able to travel through solids and liquids; S waves are longitudinal and can only travel through liquids.

C. P waves are transverse and are able to travel through solids and liquids; S waves are longitudinal and can only travel through solids.

D. P waves are longitudinal and are able to travel through solids and liquids; S waves are transverse and can only travel through solids.

A9.7

Page 66: ASTR178 Other Worlds

The Earth’s magnetic field is generated by

A. electric currents in the liquid outer core; the field has never changed direction.

B. electric currents in the liquid inner core; the field has never changed direction.

C. electric currents in the liquid outer core; the field has reversed many times in the past.

D. electric currents in the liquid inner core; the field has reversed many times in the past.

E. electric currents caused by interactions with the solar wind.

Q9.8

Page 67: ASTR178 Other Worlds

The Earth’s magnetic field is generated by

A. electric currents in the liquid outer core; the field has never changed direction.

B. electric currents in the liquid inner core; the field has never changed direction.

C. electric currents in the liquid outer core; the field has reversed many times in the past.

D. electric currents in the liquid inner core; the field has reversed many times in the past.

E. electric currents caused by interactions with the solar wind.

A9.8

Page 68: ASTR178 Other Worlds

The Red Sea rift is

A. formed by two tectonic plates moving apart. B. a subduction zone, where one plate is pushed under

the other. C. a fold in the middle of a plate caused by compressing

forces on both sides of the plate. D. a hot spot in Earth’s mantle, which is spreading two

plates apart. E. the result of a earthquake that occurred thousands

of years ago.

Q9.9

Page 69: ASTR178 Other Worlds

The Red Sea rift is

A. formed by two tectonic plates moving apart. B. a subduction zone, where one plate is pushed under

the other. C. a fold in the middle of a plate caused by compressing

forces on both sides of the plate. D. a hot spot in Earth’s mantle, which is spreading two

plates apart. E. the result of a earthquake that occurred thousands

of years ago.

A9.9

Page 70: ASTR178 Other Worlds

The Mid-Atlantic Ridge is best described as

A. a line of undersea mountains caused by two plates colliding and pushing each other upward.

B. a fold in the middle of a plate caused by compressing forces on both sides of the plate.

C. a region where one plate is being subducted beneath another.

D. a site where two plates are moving apart, allowing molten subsurface rock to rise upward.

E. a region in the middle of a plate that happens to lie over a hot spot in the mantle.

Q9.10

Page 71: ASTR178 Other Worlds

The Mid-Atlantic Ridge is best described as

A. a line of undersea mountains caused by two plates colliding and pushing each other upward.

B. a fold in the middle of a plate caused by compressing forces on both sides of the plate.

C. a region where one plate is being subducted beneath another.

D. a site where two plates are moving apart, allowing molten subsurface rock to rise upward.

E. a region in the middle of a plate that happens to lie over a hot spot in the mantle.

A9.10

Page 72: ASTR178 Other Worlds

The Earth shows very little evidence of meteor impacts because

A. plate tectonics is continuously recycling the Earth’s crust.

B. wind and rain have continually eroded the Earth’s surface.

C. very few meteors struck the Earth in the past. D. vegetation has covered the craters.E. Both A and B are correct.

Q9.11

Page 73: ASTR178 Other Worlds

The Earth shows very little evidence of meteor impacts because

A. plate tectonics is continuously recycling the Earth’s crust.

B. wind and rain have continually eroded the Earth’s surface.

C. very few meteors struck the Earth in the past. D. vegetation has covered the craters.E. Both A and B are correct.

A9.11

Page 74: ASTR178 Other Worlds

If the early atmosphere of the Earth was composed of carbon dioxide, why does the present atmosphere contain oxygen molecules?

A. Volcanoes slowly enriched the Earth’s atmosphere with oxygen.

B. When life first developed on the Earth, this life produced oxygen from carbon dioxide by photosynthesis.

C. Rainwater slowly broke down carbon dioxide into its components.

D. Oxygen was captured from space over many millions of years.

E. Solar radiation breaks down CO2.

Q9.12

Page 75: ASTR178 Other Worlds

If the early atmosphere of the Earth was composed of carbon dioxide, why does the present atmosphere contain oxygen molecules?

A. Volcanoes slowly enriched the Earth’s atmosphere with oxygen.

B. When life first developed on the Earth, this life produced oxygen from carbon dioxide by photosynthesis.

C. Rainwater slowly broke down carbon dioxide into its components.

D. Oxygen was captured from space over many millions of years.

E. Solar radiation breaks down CO2.

A9.12

Page 76: ASTR178 Other Worlds

Ozone is a molecule made up of three oxygen atoms. The ozone layer that protects the Earth’s surface from ultraviolet light

A. has been present and stable for as long as we have been measuring it.

B. has shown gradual changes over the last 20 years with a hole appearing over Antarctica.

C. shows no holes yet but appears to be getting thinner. D. shows rather large seasonal changes with large holes

appearing over the North and South Poles during their respective winters.

E. is no longer present.

Q9.13

Page 77: ASTR178 Other Worlds

Ozone is a molecule made up of three oxygen atoms. The ozone layer that protects the Earth’s surface from ultraviolet light

A. has been present and stable for as long as we have been measuring it.

B. has shown gradual changes over the last 20 years with a hole appearing over Antarctica.

C. shows no holes yet but appears to be getting thinner. D. shows rather large seasonal changes with large holes

appearing over the North and South Poles during their respective winters.

E. is no longer present.

A9.13

Page 78: ASTR178 Other Worlds

The oxygen in our atmosphere is chemically reactive, combining with other elements to form compounds, and is also being used by respiratory life. Despite this, the amount of oxygen in our atmosphere is not decreasing because it is being replenished by

A. outgassing from seawater. B. volcanic eruptions. C. biological activity, such as photosynthesis. D. meteors and comets, which bring oxygen to the

Earth. E. solar radiation breaking down CO2.

Q9.14

Page 79: ASTR178 Other Worlds

The oxygen in our atmosphere is chemically reactive, combining with other elements to form compounds, and is also being used by respiratory life. Despite this, the amount of oxygen in our atmosphere is not decreasing because it is being replenished by

A. outgassing from seawater. B. volcanic eruptions. C. biological activity, such as photosynthesis. D. meteors and comets, which bring oxygen to the

Earth. E. solar radiation breaking down CO2.

A9.14