Artificial Organs, Tissues, and Support...

6
excerpt from the book: Biomechatronics, Popovic, Academic Press, Elsevier, 2019. (No of pages 668) ISBN 978-0-12-812939-5 https://doi.org/10.1016/C2016-0-04132-3 Copyright © 2019 Elsevier Inc. All rights reserved. Chapter 7, Pages 175-199 Artificial Organs, Tissues, and Support Systems Hiroyuki Tashiro*, Marko B. Popovic , Ivo Dobrev , Yasuo Terasawa § *KYUSHU UNIVERSITY, FUKUOKA, JAPAN WORCESTER POLYTECHNIC INSTITUTE, WORCESTER, MA, UNITED STATES UNIVERSITY HOSPITAL ZURICH, UNIVERSITY ZURICH, ZURICH, SWITZERLAND § NIDEK CO., LTD., AICHI, JAPAN Abstract When diseases or injuries result in serious dysfunction of organs, people may face a life-threatening crisis. In such cases, treatment with an artificial organ can be performed. The artificial organs are anticipated to perform functionally as substitutes for impaired or missing organs. Attempts to replace dysfunctional body parts with engineered devices have a history that is at least 3000–4000 years old. Currently, not only material science, electrical and electronic engineering, mechanical engineering but also nanotechnology and tissue engineering are applied to the design of artificial organs. In this chapter, numerous artificial organs, tissues, and support systems already in wide use as well as those that still being actively researched and developed are addressed. CHAPTER OUTLINE 7.1 Introduction ........................................................................................................................... 175 7.2 Cardiovascular and Respiratory Devices ................................................................................. 177 7.2.1 Artificial Heart Lung—Circulation-Assisting Device—Artificial Heart ....................................177 7.2.2 Artificial Heart Valve .............................................................................................................178 7.2.3 Artificial Blood Vessel ............................................................................................................182 7.2.4 Pacemaker .............................................................................................................................182

Transcript of Artificial Organs, Tissues, and Support...

Page 1: Artificial Organs, Tissues, and Support Systemsusers.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_7.pdf · [47] C. Veraart, C. Raftopoulos, J.T. Mortimer, J. Delbeke, D. Pins,

excerpt from the book: Biomechatronics, Popovic, Academic Press, Elsevier, 2019. (No of pages 668) ISBN 978-0-12-812939-5 https://doi.org/10.1016/C2016-0-04132-3 Copyright © 2019 Elsevier Inc. All rights reserved. Chapter 7, Pages 175-199

Artificial Organs, Tissues, and Support Systems Hiroyuki Tashiro*, Marko B. Popovic†, Ivo Dobrev‡, Yasuo Terasawa§

*KYUSHU UNIVERSITY, FUKUOKA, JAPAN †WORCESTER POLYTECHNIC INSTITUTE,

WORCESTER, MA, UNITED STATES ‡UNIVERSITY HOSPITAL ZURICH, UNIVERSITY ZURICH,

ZURICH, SWITZERLAND §NIDEK CO., LTD., AICHI, JAPAN

Abstract

When diseases or injuries result in serious dysfunction of organs, people may face a life-threatening crisis.

In such cases, treatment with an artificial organ can be performed. The artificial organs are anticipated to

perform functionally as substitutes for impaired or missing organs. Attempts to replace dysfunctional

body parts with engineered devices have a history that is at least 3000–4000 years old. Currently, not only

material science, electrical and electronic engineering, mechanical engineering but also nanotechnology

and tissue engineering are applied to the design of artificial organs. In this chapter, numerous artificial

organs, tissues, and support systems already in wide use as well as those that still being actively

researched and developed are addressed.

CHAPTER OUTLINE

7.1 Introduction ........................................................................................................................... 175

7.2 Cardiovascular and Respiratory Devices ................................................................................. 177

7.2.1 Artificial Heart Lung—Circulation-Assisting Device—Artificial Heart ....................................177

7.2.2 Artificial Heart Valve .............................................................................................................178

7.2.3 Artificial Blood Vessel ............................................................................................................182

7.2.4 Pacemaker .............................................................................................................................182

Page 2: Artificial Organs, Tissues, and Support Systemsusers.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_7.pdf · [47] C. Veraart, C. Raftopoulos, J.T. Mortimer, J. Delbeke, D. Pins,

7.2.5 Artificial Respirator ................................................................................................................182

7.3 Metabolic and Digestive Devices ............................................................................................. 183

7.3.1 Artificial Dialyzer ....................................................................................................................183

7.3.2 Artificial Pancreatic Islet .........................................................................................................185

7.4 Sensory Devices ....................................................................................................................... 185

7.4.1 Ear ..........................................................................................................................................185

7.4.2 Eye ..........................................................................................................................................191

7.5 Orthopedic, Dentistry, Plastic, and Reconstructive Devices ...................................................... 194

7.5.1 Breast Prosthesis ....................................................................................................................194

7.5.2 Dental Implant ........................................................................................................................195

7.5.3 Artificial Skin ...........................................................................................................................195

7.5.4 Artificial Dura Mater ...............................................................................................................196

7.5.5 Artificial Bone and Artificial Joint ...........................................................................................196

7.6 Neuromodulation .................................................................................................................... 196

References .................................................................................................................................... 196

Biomechatronics. https://doi.org/10.1016/B978-0-12-812939-5.00007-0

© 2019 Elsevier Inc. All rights reserved.

[chapter content intentionally omitted]

References

[1] R. Tang, Artificial organs, Bios 69 (3) (1998) 119–122.

[2] G. Catapano, G.J. Verkerke, Artificial organs. in: Z.O. Abu-Faraj (Ed.), Handbook of Research on

Biomedical Engineering Education and Advanced Bioengineering Learning: Interdisciplinary Concepts, IGI

Global, Hershey, 2012, p. 63, doi:10.4018/978-1-4666-0122-2.ch002.

[3] P.M. Galletti, Prostheses and artificial organs, in: J.D. Bronzino (Ed.), The Biomedical Engineering

Handbook, CRC Press, Boca Raton, 1995, p. 1836.

Page 3: Artificial Organs, Tissues, and Support Systemsusers.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_7.pdf · [47] C. Veraart, C. Raftopoulos, J.T. Mortimer, J. Delbeke, D. Pins,

[4] A.G. Nerlich, A. Zink, U. Szeimies, H.G. Hagedorn, Ancient Egyptian prosthesis of the big toe. Lancet

356 (9248) (2000) 2176–2179, doi:10.1016/S0140-6736(00)03507-8.

[5] G. Capatano, Artificial organs design: towards the integration of disciplines. in: Proceeding of 2011 1st

Middle East Conference on Biomedical Engineering (MECBME), Sharjah, United Arab Emirates, 21–24

Feburuary, 2011, pp. 185–187, doi:10.1109/MECBME.2011.5752096.

[6] Y. Man, X. li, S. Wang, Recent advances in biohybrid materials for tissue engineering and

regenerativemedicine. J. Mol. Eng. Mater 4 (1) (2016) 164001, doi:10.1142/S2251237316400013.

[7] P.S. Malchesky, Artificial organs and vanishing boundaries. Artif. Organs 25 (2) (2001) 75–88,

doi:10.1046/j.1525-1594.2001.025002075.x.

[8] A.C. Passaroni, M.A. de Moraes Silva, W.B. Yoshida, Cardiopulmonary bypass: development of John

Gibbon’s heart-lung machine. Rev. Bras. Cir. Cardiovasc. 30 (2) (2015) 235–245, doi:10.5935/1678-

9741.20150021.

[9] E. Tatsumi, Artificial lungs: current state and trends of clinical use and research and development. J.

Artif. Organs 10 (1) (2007) 1–5, doi:10.1007/s10047-006-0356-x.

[10] D. Hou, F. Yang, X. Hou, Clinical application of intra-aortic balloon counterpulsation in high-risk

patients undergoing cardiac surgery. Perfusion 33 (3) (2017) 178–184, doi:10.1177/0267659117734630.

[11] C. Feldmann, A. Chatterjee, A. Haverich, J.D. Schmitto, Left ventricular assist devices—a state of the

art review. in: S. Islam (Ed.), Heart Failure: From Research to Clinical Practice, in: Adv. Exp.Med. Biol.

Series, vol. 1067, Springer, Cham, 2013, pp. 287–294, doi:10.1007/5584_2018_145.

[12] M.B. Popovic, Biomechanics and Robotics, Pan Stanford, Singapore, 2013.

[13] R.D. Dowling, L.A. Gray Jr., S.W. Etoch, H. Laks, D. Marelli, L. Samuels, J. Entwistle, G. Couper, G. J.

Vlahakes, O.H. Frazier, Initial experience with the AbioCor implantable replacement heart system. J.

Thorac. Cardiovasc. Surg. 127 (1) (2004) 131–141, doi:10.1016/j.jtcvs.2003.07.023.

[14] G.D. Dangas, J.I. Weitz, G. Giustino, R. Makkar, R. Mehran, Prosthetic heart valve thrombosis. J. Am.

Coll. Cardiol. 68 (24) (2016) 2670–2689, doi:10.1016/j.jacc.2016.09.958.

[15] S. Pashneh-Tala, S. MacNeil, F. Claeyssens, The tissue-engineered vascular graft—past, present, and

future, Tissue Eng. Part B Rev. 22 (1) (2016) 68–100, doi:10.1089/ten.teb.2015.0100.

[16] H.Bangerter, S. Boemke, R.R€othlisberger, V. Schwartz,M.Bergmann, M.D.M€uller,

V.Djonov,Combined maceration procedure permits advanced microsurgical dissection of Thiel-embalmed

specimens. Ann. Anat. 210 (2017) 9–17, doi:10.1016/j.aanat.2016.10.008.

[17] O. Aquilina, A brief history of cardiac pacing, Images Paediatr. Cardiol. 8 (2) (2006) 17–81.

[18] A.S. Slutsky, History of mechanical ventilation. From vesalius to ventilator-induced lung injury. Am. J.

Respir. Crit. Care Med. 191 (10) (2015) 1106–1115, doi:10.1164/rccm.201503-0421PP.

[19] V.L. Pinto, S. Sharma, Continuous Positive Airway Pressure (CPAP), StatPearls [Internet], StatPearls

Publishing, Treasure Island, 2018. https://www.ncbi.nlm.nih.gov/books/NBK482178/ (Accessed

18.03.16).

Page 4: Artificial Organs, Tissues, and Support Systemsusers.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_7.pdf · [47] C. Veraart, C. Raftopoulos, J.T. Mortimer, J. Delbeke, D. Pins,

[20] Z.J. Twardowski, History of hemodialyzers’designs.Hemodial. Int. 12 (2) (2008) 173–210,

doi:10.1111/j.1542-4758.2008.00253.x.

[21] G. Panarello,H. de Baz, E. Cecchin, F. Tesio, Dialysis for the elderly: survival and risk factors, Adv. Perit.

Dial. 5 (1989) 49–51.

[22] R. Hirano, K. Namazuda, J. Suemitsu, T. Harashima, N. Hirata, Plasma separation using a membrane.

Transfus. Apher. Sci. 56 (5) (2017) 649–653, doi:10.1016/j.transci.2017.08.008.

[23] N. Kambe, S. Kawahito, N.Mita, K. Takaishi, T. Katayama, Y. Sakai, T. Soga, H. Kawano,M. Matsuhisa,

M. Shimada, T. Kitagawa, H. Kitahata, Impact of newly developed, next-generation artificial endocrine

pancreas. J. Med. Investig. 62 (1–2) (2015) 41–43, doi:10.2152/jmi.62.41.

[24] J.R. Castle, J.H. DeVries, B. Kovatchev, Future of automated insulin delivery systems. Diabetes

Technol. Ther 19 (Suppl. 3) (2017) S67–S72, doi:10.1089/dia.2017.0012.

[25] L. Chittka, A. Brockmann, Perception space-the final frontier, PLoS Biol 3 (4) (2005) e137,

doi:10.1371/journal.pbio.0030137.

[26] L.L. Beranek, Acoustics, Acoustical Society of America, New York, 1993.

[27] C. Mathers, A. Smith, M. Concha, Global Burden of Hearing Loss in the Year 2000. Global Burden of

Disease, World Health Organization, Geneva, 2003.

http://www.who.int/healthinfo/statistics/bod_hearingloss.pdf. Accessed 18.03.16.

[28] D.J.Hoare, P. Adjamian,M. Sereda, Electrical stimulation of the ear, head, cranial nerve, or cortex for

the treatment of tinnitus: a scoping review. Neural Plast 2016 (2016) 5130503,

doi:10.1155/2016/5130503.

[29] G.M. Sessler, J. Hillenbrand, Hearing aid microphones: from electret to piezoelectret transducers, in:

Proceedings of SENSOR+TEST Conferences 2011, N€urnberg, Germany, 7–9 June 2011, Proc. Sensor 2011

(2011) 463–467, doi:10.5162/sensor11/c6.1.

[30] D.J. Young, M.A. Zurcher,M. Semaan, C.A.Megerian,W.H. Ko,MEMS capacitive accelerometer-based

middle ear microphone. IEEE Trans. Biomed. Eng. 59 (12) (2012) 3283–3292,

doi:10.1109/TBME.2012.2195782.

[31] H. Luts, K. Eneman, J. Wouters, M. Schulte, M. Vormann, M. Buechler, N. Dillier, R. Houben, W. A.

Dreschler, M. Froehlich, H. Puder, Multicenter evaluation of signal enhancement algorithms for hearing

aids. J. Acoust. Soc. Am. 127 (3) (2010) 1491–1505, doi:10.1121/1.3299168.

[32] S. Kochkin, MarkeTrak VIII: 25-year trends in the hearing health market, Hear. Rev. 16 (11) (2009) 12–

31.

[33] J.P. Fay, R. Perkins, S.C. Levy,M.Nilsson, S. Puria, Preliminary evaluation of a light based contact

hearing device for the hearing impaired. Otol. Neurotol 34 (5) (2013) 912–921,

doi:10.1097/MAO.0b013e31827de4b1.

[34] G.R. Ball, Implantable Electromagnetic Hearing Transducer, U.S. Patent 5,554,096, Issued September

10, 1996.

Page 5: Artificial Organs, Tissues, and Support Systemsusers.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_7.pdf · [47] C. Veraart, C. Raftopoulos, J.T. Mortimer, J. Delbeke, D. Pins,

[35] S. Stenfelt, R.L. Goode, Bone conducted sound: physiological and clinical aspects. Otol. Neurotol. 26

(6) (2005) 1245–1261, doi:10.1097/01.mao.0000187236.10842.d5.

[36] N. Dillier, J. Guntensperger, T. Spillmann, A computer-controlled test system for electrical stimulation

of the auditory nerve of deaf patients with implanted multi-electrodes, in: M. Hoke, G. Kauffmann, E.

Bappert (Eds.), Scand. Audiol (Suppl. 11) (1980) 163–170.

[37] M.S. Schwartz, S.R. Otto, R.V. Shannon, W.E. Hitselberger, D.E. Brackmann, Auditory brainstem

implants. Neurotherapeutics 5 (1) (2008) 128–136, doi:10.1016/j.nurt.2007.10.068.

[38] B. Schwab,M. Durisin, G. Kontorinis, Investigation of balance function using dynamic posturography

under electrical-acoustic stimulation in cochlear implant recipients. Int. J. Otolaryngol (2010) (2010)

978594, doi:10.1155/2010/978594.

[39] A. Gomaa, O. Comyn, C. Liu, Keratoprostheses in clinical practice – a review. Clin. Exp. Ophthalmol.

38 (2) (2010) 211–224, doi:10.1111/j.1442-9071.2010.02231.x.

[40] A.M. Potts, J. Inoue, D. Buffum, The electrically evoked response of the visual system (EER), Invest.

Ophthalmol. Vis. Sci. 7 (3) (1968) 269–278.

[41] Y.H.-L. Luo, L. da Cruz, The ArgusR II retinal prosthesis system. Prog. Retin. Eye Res. 50 (2016) 89–107,

doi:10.1016/j.preteyeres.2015.09.003.

[42] R. Hornig, M. Dapper, E. Le Joliff, R. Hill, K. Ishaque, C. Posch, R. Benosman, Y. LeMer, J.-A. Sahel, S.

Picau, Pixium vision: first clinical results and innovative developments. in: V.P. Gabel (Ed.), Artificial Vision,

Springer, Cham, 2017, pp. 99–113, doi:10.1007/978-3-319-41876-6_8.

[43] E. Zrenner, K.U. Bartz-Schmidt,D. Besch, F. Gekeler, A. Koitschev, H.G. Sachs, K. Stingl, The subretinal

implant ALPHA: implantation and functional results. in: V.P. Gabel (Ed.), Artificial Vision, Springer, Cham,

2017, pp. 65–83, doi:10.1007/978-3-319-41876-6_6.

[44] J.F. Rizzo III, D.B. Shire, S.K. Kelly, P. Troyk, M. Gingerich, B. McKee, A. Priplata, J. Chen, W. Drohan, P.

Doyle, O.Mendoza, L. Theogarajan, S. Cogan, J.L.Wyatt, Overview of the boston retinal prosthesis:

challenges and opportunities to restore useful vision to the blind. in: Proceedings of 2011 Annual

International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, 30 August–

3 September, 2011, pp. 7492–7495, doi:10.1109/IEMBS.2011.6093610.

[45] L.N. Ayton, P.J. Blamey, R.H. Guymer, C.D. Luu, D.A.X. Nayagam, N.C. Sinclair, M. N. Shivdasani, J.

Yeoh, M.F. McCombe, R.J. Briggs, N.L. Opie, J. Villalobos, P. N. Dimitrov, M. Varsamidis, M.A. Petoe, C.D.

McCarthy, J.G. Walker, N. Barnes, A.N. Burkitt, C. E. Williams, R.K. Shepherd, P.J. Allen, Bionic Vision

Australia Research Consortium, First-in-human trial of a novel suprachoroidal retinal prosthesis. PLoS ONE

9 (12) (2014) e115239, doi:10.1371/journal.pone.0115239.

[46] T. Fujikado, M. Kamei, H. Sakaguchi, H. Kanda, T. Endo, M. Hirota, T. Morimoto, K. Nishida, H. Kishima,

Y. Terasawa, K. Oosawa, M. Ozawa, K. Nishida, One-year outcome of 49-channel suprachoroidal–

transretinal stimulation prosthesis in patients with advanced retinitis pigmentosa. Invest. Ophthalmol.

Vis. Sci 57 (14) (2016) 6147–6157, doi:10.1167/iovs.16-20367.

Page 6: Artificial Organs, Tissues, and Support Systemsusers.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_7.pdf · [47] C. Veraart, C. Raftopoulos, J.T. Mortimer, J. Delbeke, D. Pins,

[47] C. Veraart, C. Raftopoulos, J.T. Mortimer, J. Delbeke, D. Pins, G. Michaux, A. Vanlierde, S. Parrini, M.-

C. Wanet-Defalque, Visual sensations produced by optic nerve stimulation using an implanted self-sizing

spiral cuff electrode. Brain Res 813 (1) (1998) 181–186, doi:10.1016/S0006-8993(98) 00977-9.

[48] M.J. Kyada, N.J. Killian, J.S. Pezaris, Thalamic visual prosthesis project, in: V.P. Gabel (Ed.), Artificial

Vision, Springer, Cham, 2017, pp. 177–189, doi:10.1007/978-3-319-41876-6_14.

[49] W.H. Dobelle, Artificial vision for the blind by connecting a television camera to the visual cortex,

ASAIO J. 46 (1) (2000) 3–9.

[50] G.P. Kaskhedikar, Z. Hu, G. Dagnelie, P.R. Troyk, Proposed intracortical vision prosthesis system for

phosphene mapping and psychophysical studies, in: Proceedings of 2013 6th International IEEE/EMBS

Conference on Neural Engineering (NER), San Diego, CA, 6–8 November, 2013, pp. 880–882,

doi:10.1109/NER.2013.6696075.

[51] C.F.Walter, E.P. Richards III, The biomaterials access assurance act of 1998, IEEE Eng.Med. Biol. Mag.

18 (2) (1999) 125–127.

[52] R.V. Shevchenko, S.L. James, S.E. James, A review of tissue-engineered skin bioconstructs available

for skin reconstruction. J. R. Soc. Interface 7 (43) (2010) 229–258, doi:10.1098/rsif.2009.0403.

[53] T. Esmonde, C.J. Lueck, L. Symon, L.W. Duchen, R.G. Will, Creutzfeldt-Jakob disease and lyophilized

dura mater grafts: report of two cases. J. Neurol. Neurosurg. Psychiatry 56 (9) (1993) 999–1000,

doi:10.1136/jnnp.56.9.999.

[54] K. Yamada, S. Miyamoto, M. Takayama, I. Nagata, N. Hashimoto, Y. Ikada, H. Kikuchi, Clinical

application of a new bioabsorbable artificial dura mater. J. Neurosurg. 96 (4) (2002) 731–735,

doi:10.3171/jns.2002.96.4.0731.

[55] M. Navarro, A. Michiardi, O. Castano, J.A. Planell, Biomaterials in orthopaedics. J. R. Soc. Interface 5

(27) (2008) 1137–1158, doi:10.1098/rsif.2008.0151.

[56] E.B. Plow, A. Pascual-Leone, A. Machado, Brain stimulation in the treatment of chronic neuropathic

and non-cancerous pain. J. Pain 13 (5) (2012) 411–424, doi:10.1016/j.jpain.2012.02.001.