ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity...

25
ARTICLE REVIEW Optimal Homologous Cycles, Total Unimodularity, and Linear Programming by Tamal K. Dey, Anil N. Hirani and Bala Krishnamoorthy January 9, 2017 Etienne Moutot and Johanna Seif

Transcript of ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity...

Page 1: ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity ...perso.ens-lyon.fr/etienne.moutot/static/etudes/M2/topo_slides.pdf · ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity,andLinear

ARTICLE REVIEWOptimal Homologous Cycles, Total Unimodularity, and LinearProgrammingby Tamal K. Dey, Anil N. Hirani and Bala Krishnamoorthy

January 9, 2017

Etienne Moutot and Johanna Seif

Page 2: ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity ...perso.ens-lyon.fr/etienne.moutot/static/etudes/M2/topo_slides.pdf · ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity,andLinear

Topological preliminaries Optimization Problem Modularity equivalence and its implications

OUTLINE

1. Topological preliminaries

2. Optimization Problem

3. Modularity equivalence and its implications

2

Page 3: ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity ...perso.ens-lyon.fr/etienne.moutot/static/etudes/M2/topo_slides.pdf · ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity,andLinear

Topological preliminaries Optimization Problem Modularity equivalence and its implications

INTRODUCTION

Problem: Optimal Homologous Chain Problem (OHCP).

It is NP-hard over Z2 [2]Here: p-chains over Z

3

Page 4: ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity ...perso.ens-lyon.fr/etienne.moutot/static/etudes/M2/topo_slides.pdf · ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity,andLinear

TOPOLOGICAL PRELIMINARIES

Page 5: ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity ...perso.ens-lyon.fr/etienne.moutot/static/etudes/M2/topo_slides.pdf · ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity,andLinear

Topological preliminaries Optimization Problem Modularity equivalence and its implications

P-CHAIN

K is an oriented simplicial complex.

Definition

A p-chain in K with coefficients in Z is a function:

p-simplices → Z

Cp(K): p-chain group of K.

5

Page 6: ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity ...perso.ens-lyon.fr/etienne.moutot/static/etudes/M2/topo_slides.pdf · ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity,andLinear

Topological preliminaries Optimization Problem Modularity equivalence and its implications

BOUNDARY

Definition

The boundary operator ∂p : Cp(K) → Cp−1(K) (where v̂i is thedeletion of vi in the vertex set) is defined by:

∂p[v0, . . . , vp] =

p∑i=0

(−1)i[v0, . . . , v̂i, . . . , vp]

6

Page 7: ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity ...perso.ens-lyon.fr/etienne.moutot/static/etudes/M2/topo_slides.pdf · ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity,andLinear

Topological preliminaries Optimization Problem Modularity equivalence and its implications

MATRIX REPRESENTATION

Definition

Let {σi}m−1i=0 and {τj}n−1

j=0 be the set of oriented (p− 1) and p sim-plices respectively in K. We write ∂pτj =

∑αiσi.

Thematrix representation [∂p] of the homeomorphism ∂p is :

[∂p]i,j = αi

7

Page 8: ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity ...perso.ens-lyon.fr/etienne.moutot/static/etudes/M2/topo_slides.pdf · ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity,andLinear

Topological preliminaries Optimization Problem Modularity equivalence and its implications

HOMOLOGY

Definition

Two p-chains c and c′ in K are homologous if there exists a(p + 1)-chain d in K such that

c = c′ + ∂p+1d.

If c′ = 0 then we says that c is homologous to zero.

8

Page 9: ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity ...perso.ens-lyon.fr/etienne.moutot/static/etudes/M2/topo_slides.pdf · ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity,andLinear

Topological preliminaries Optimization Problem Modularity equivalence and its implications

TORSION

Fundamental theorem of finitely generated groups [4]

Every finitely generated group G can be written as

G = F ⊕ T

where F is homeomorph to a direct sum of Z andT ∼= Z/t1 ⊕ · · · ⊕ Z/tk with ti > 1 and ti|ti+1.

We say that G is torsion free if T = 0.

9

Page 10: ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity ...perso.ens-lyon.fr/etienne.moutot/static/etudes/M2/topo_slides.pdf · ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity,andLinear

Topological preliminaries Optimization Problem Modularity equivalence and its implications

RELATIVE HOMOLOGY GROUP

Definition

We call relative chain Cp(L,L0) of L modulo a subcomplex L0 :

Cp(L)/Cp(L0)

Definition

→ ∂(L,L0)p : Cp(L,L0) → Cp−1(L,L0) = ∂p|L0

→ Zp(L,L0) = ker ∂(L,L0)p relative cycles

→ Bp(L,L0) = im ∂(L,L0)p+1 relative boundaries

→ Hp(L,L0) = Zp(L,L0)/Bp(L,L0): relative homology group

10

Page 11: ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity ...perso.ens-lyon.fr/etienne.moutot/static/etudes/M2/topo_slides.pdf · ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity,andLinear

OPTIMIZATION PROBLEM

Page 12: ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity ...perso.ens-lyon.fr/etienne.moutot/static/etudes/M2/topo_slides.pdf · ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity,andLinear

Topological preliminaries Optimization Problem Modularity equivalence and its implications

OHCP FORMULATION

Optimal Homologous Chain Problem (OHCP)

Input: a p-chain c in K and the diagonal matrix W.Output: find c∗ homologous chain to c that minimize ∥Wc∗∥1

(with the classical definition of the 1-norm).

12

Page 13: ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity ...perso.ens-lyon.fr/etienne.moutot/static/etudes/M2/topo_slides.pdf · ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity,andLinear

Topological preliminaries Optimization Problem Modularity equivalence and its implications

LINEAR PROGRAM

minx,y

||Wx||1 such that x = c + [δp+1]y, and x ∈ Zm, y ∈ Zn

→ Take c∗ = (x1 . . . xn)

→ Replace |xi| with x+i − x−i

min∑

i|wi|(x+i + x−i )

subject to x+ − x− = c+ [∂p+1](y+ − y−)x+, x−, y+, y− ≥ 0

x+, x− ∈ Zm, y ∈ Zn

13

Page 14: ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity ...perso.ens-lyon.fr/etienne.moutot/static/etudes/M2/topo_slides.pdf · ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity,andLinear

Topological preliminaries Optimization Problem Modularity equivalence and its implications

Theorem (TU optimization)

We consider two vectors b ∈ Zm and f ∈ Rn and the integerlinear program:

min f Tx subject to Ax = b, x ≥ 0, x ∈ Zn

If A is Totally Unimodular (TU), this integer linear program canbe solved in polynomial time in the dimensions of A.

14

Page 15: ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity ...perso.ens-lyon.fr/etienne.moutot/static/etudes/M2/topo_slides.pdf · ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity,andLinear

Topological preliminaries Optimization Problem Modularity equivalence and its implications

THE MATRIX TO STUDY

The matrix in our linear program is:[I −I −[∂p+1] [∂p+1]

]Lemma

If [∂p+1] is TU then[I −I −[∂p+1] [∂p+1]

]is also TU.

15

Page 16: ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity ...perso.ens-lyon.fr/etienne.moutot/static/etudes/M2/topo_slides.pdf · ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity,andLinear

MODULARITY EQUIVALENCE AND ITSIMPLICATIONS

Page 17: ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity ...perso.ens-lyon.fr/etienne.moutot/static/etudes/M2/topo_slides.pdf · ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity,andLinear

Topological preliminaries Optimization Problem Modularity equivalence and its implications

ORIENTABLE MANIFLODS

Theorem

For a finite simplicial complex triangulating a (p+1)-dimensionalcompact orientable manifold, [∂p+1] is totally unimodular irre-spective of the orientations of the simplices.

→ Proof independent of the main theorem.→ Rely on the link between [∂p+1] and the topological boundary.

17

Page 18: ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity ...perso.ens-lyon.fr/etienne.moutot/static/etudes/M2/topo_slides.pdf · ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity,andLinear

Topological preliminaries Optimization Problem Modularity equivalence and its implications

ORIENTABLE MANIFLODS

Theorem

For a finite simplicial complex triangulating a (p+1)-dimensionalcompact orientable manifold, [∂p+1] is totally unimodular irre-spective of the orientations of the simplices.

→ Proof independent of the main theorem.

→ Rely on the link between [∂p+1] and the topological boundary.

17

Page 19: ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity ...perso.ens-lyon.fr/etienne.moutot/static/etudes/M2/topo_slides.pdf · ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity,andLinear

Topological preliminaries Optimization Problem Modularity equivalence and its implications

ORIENTABLE MANIFLODS

Theorem

For a finite simplicial complex triangulating a (p+1)-dimensionalcompact orientable manifold, [∂p+1] is totally unimodular irre-spective of the orientations of the simplices.

→ Proof independent of the main theorem.→ Rely on the link between [∂p+1] and the topological boundary.

17

Page 20: ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity ...perso.ens-lyon.fr/etienne.moutot/static/etudes/M2/topo_slides.pdf · ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity,andLinear

Topological preliminaries Optimization Problem Modularity equivalence and its implications

MODULARITY EQUIVALENCE

Definition

A pure simplicial complex of dimension p is a simplicial com-plex formed by a collection of p-simplices and their proper faces.

Theorem (Main Theorem)

[∂p+1] is totally unimodular iff Hp(L,L0) is torsion-free for allpure subcomplexes L0, L of K of dimension p and p + 1 respec-tively, where L0 ⊂ L.

18

Page 21: ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity ...perso.ens-lyon.fr/etienne.moutot/static/etudes/M2/topo_slides.pdf · ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity,andLinear

Topological preliminaries Optimization Problem Modularity equivalence and its implications

Proof idea.

→ Relies on Smith normal form.→ S, T invertible, D = diag(d1, . . . , dl) (where di ≥ 1) such that:[

∂(L,L0)p+1

]= S

[D 00 0

]T

19

Page 22: ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity ...perso.ens-lyon.fr/etienne.moutot/static/etudes/M2/topo_slides.pdf · ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity,andLinear

Topological preliminaries Optimization Problem Modularity equivalence and its implications

TORSION-FREE DECISION PROBLEM

Corollary

For a simplicial complexK of dimension greater than p, there is apolynomial time algorithm for answering the following question:Is Hp(L,L0) torsion-free for all pure subcomplexes L0 and L ofdimensions p and (p + 1) such that L0 ⊂ L?

20

Page 23: ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity ...perso.ens-lyon.fr/etienne.moutot/static/etudes/M2/topo_slides.pdf · ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity,andLinear

Topological preliminaries Optimization Problem Modularity equivalence and its implications

DISCUSSION

→ Polynomial time algorithm for torsion-free spaces→ More precise complexity→ What when there is a torsion ?→ Is it still NP-hard in Z2 without torsion ?

→ Actual implementation vaguely presented→ Not much details given (source code, . . .)→ Performances of the implementation ?

21

Page 24: ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity ...perso.ens-lyon.fr/etienne.moutot/static/etudes/M2/topo_slides.pdf · ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity,andLinear

Thank you for your attention !

Page 25: ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity ...perso.ens-lyon.fr/etienne.moutot/static/etudes/M2/topo_slides.pdf · ARTICLEREVIEW OptimalHomologousCycles,TotalUnimodularity,andLinear

Topological preliminaries Optimization Problem Modularity equivalence and its implications

REFERENCES

Tamal K. Dey, Anil N. Hirani and Bala Krishnamoorthy»Optimal Homologous Cycles, Total Unimodularity, and LinearProgramming.«SIAM Journal on Computing, 2011

Chao Chen and Daniel Freedman»Hardness results for homology localization.«Discrete & Computational Geometry, 2011

Alireza Tahbaz-Salehi and Ali Jadbabaie»Distributed coverage verification in sen- sor networks withoutlocation information.«EEE Transactions on Automatic Control, 2010

James R. Munkres»Elements of algebraic topology«Addison–Wesley Publishing Company, Menlo Park, 1984

23