ars.els-cdn.com · Web viewNewman DK, Kennedy EK, Coates JD, Ahmann D, Ellis DJ, Lovley DR, et al....

18

Click here to load reader

Transcript of ars.els-cdn.com · Web viewNewman DK, Kennedy EK, Coates JD, Ahmann D, Ellis DJ, Lovley DR, et al....

Page 1: ars.els-cdn.com · Web viewNewman DK, Kennedy EK, Coates JD, Ahmann D, Ellis DJ, Lovley DR, et al. 1997. Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum

Supplementary material

Interindividual Variability of Soil Arsenic Metabolism by Human Gut

Microbiota Using SHIME Model

Naiyi Yin a, b, Huili Du a, b, Pengfei Wang a, b, Xiaolin Cai a, b, Peng Chen b, Guoxin Sun b,

Yanshan Cui a, b, *

a College of Resources and Environment, University of Chinese Academy of Sciences, Beijing

101408, People’s Republic of China

b Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing

100085, People’s Republic of China

*Corresponding Author

Tel: +86-10-6967 2968

E-mail: [email protected]

2 Tables; 3 Figures.

Page 2: ars.els-cdn.com · Web viewNewman DK, Kennedy EK, Coates JD, Ahmann D, Ellis DJ, Lovley DR, et al. 1997. Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum

Table S1

Correlation matrix between concentrations of Fe, Mn, and As in colon digests (n = 95).

Fe Mn As

Fe 1.000 -0.430** 0.740**

Mn 1.000 -0.527**

As 1.000

**Correlation is significant at the 0.01 level

Page 3: ars.els-cdn.com · Web viewNewman DK, Kennedy EK, Coates JD, Ahmann D, Ellis DJ, Lovley DR, et al. 1997. Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum

Table S2

Relative abundance of gut bacterial genera in this study according to previous reports.

Genus Relative abundance Taxa References

Adult Child

Aeromonas 0 0.002 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Aeromonadales;f__Aeromonadaceae;g__Aeromonas; Bentley and Chasteen (2002)

Alcaligenes 0.082 0.713 k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Alcaligenaceae;g__Alcaligenes; Bentley and Chasteen (2002)

Alistipes 2.416 0.414 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Rikenellaceae;g__Alistipes; Yu et al. (2016)

Alkaliphilus 0.011 0.004 k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Clostridiaceae_2;g__Alkaliphilus; Fisher et al. (2008)

Bacteroides 35.868 41.447 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Bacteroidaceae;g__Bacteroides; Newman et al. (1997)

Bifidobacterium 0.087 0.241 k__Bacteria;p__Actinobacteria;c__unidentified_Actinobacteria;o__Bifidobacteriales;f__Bifidobacteriaceae;g__Bifidobacterium; Lee et al. (2008)

Bilophila 0.624 0.065 k__Bacteria;p__Proteobacteria;c__Deltaproteobacteria;o__Desulfovibrionales;f__Desulfovibrionaceae;g__Bilophila; Yu et al. (2016)

Cloacibacillus 4.995 0.189 k__Bacteria;p__Synergistetes;c__Synergistia;o__Synergistales;f__Synergistaceae;g__Cloacibacillus; Yu et al. (2016)

Clostridium 0 0.085 k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Clostridiaceae_1;g__Clostridium; Stolz (2006)

Desulfovibrio 0.722 13.222 k__Bacteria;p__Proteobacteria;c__Deltaproteobacteria;o__Desulfovibrionales;f__Desulfovibrionaceae;g__Desulfovibrio; Kocar et al. (2010)

Escherichia-Shigella 18.470 2.930 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacteriales;f__Enterobacteriaceae;g__Escherichia-Shigella; Saltikov and Olson (2002)

Exiguobacterium 0.225 0.004 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Family_XII;g__Exiguobacterium; Cai et al. (2016)

Klebsiella 3.443 4.589 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacteriales;f__Enterobacteriaceae;g__Klebsiella; Maeda et al. (1992)

Lactobacillus 0.022 0.011 k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus; Lee et al. (2008)

Methanosarcina 0.015 0 k__Archaea;p__Euryarchaeota;c__Methanomicrobia;o__Methanosarcinales;f__Methanosarcinaceae;g__Methanosarcina; Wang et al. (2014)

Proteus 0.145 0.186 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacteriales;f__Enterobacteriaceae;g__Proteus; Shariatpanahi et al.( 1981)

Pseudomonas 0.052 0.215 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Pseudomonadaceae;g__Pseudomonas; Chen et al. (2013)

Shewanella 0.041 0.004 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Alteromonadales;f__Shewanellaceae;g__Shewanella; Lee et al. (2007)

Sulfurospirillum 0.013 0.061 k__Bacteria;p__Proteobacteria;c__Epsilonproteobacteria;o__Campylobacterales;f__Campylobacteraceae;g__Sulfurospirillum; Zobrist et al. (2000)

Veillonella 0 0.009 k__Bacteria;p__Firmicutes;c__Negativicutes;o__Selenomonadales;f__Veillonellaceae;g__Veillonella; Bentley and Chasteen (2002)

Page 4: ars.els-cdn.com · Web viewNewman DK, Kennedy EK, Coates JD, Ahmann D, Ellis DJ, Lovley DR, et al. 1997. Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum
Page 5: ars.els-cdn.com · Web viewNewman DK, Kennedy EK, Coates JD, Ahmann D, Ellis DJ, Lovley DR, et al. 1997. Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum

Fig. S1. As bioaccessibility (mean ± SD) in small intestinal (Intestine) and colon (C12, C24,

and C48: colon 12, 24, and 48 h) phases of eight As-contaminated soils (n = 3). Note the

different scales for the As bioaccessibility (y-axis). Abbreviations: PA, PBET-SHIME (Adult);

PC, PBET-SHIME (Child); UA, UBM-SHIME (Adult); UC, UBM-SHIME (Child).

Page 6: ars.els-cdn.com · Web viewNewman DK, Kennedy EK, Coates JD, Ahmann D, Ellis DJ, Lovley DR, et al. 1997. Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum
Page 7: ars.els-cdn.com · Web viewNewman DK, Kennedy EK, Coates JD, Ahmann D, Ellis DJ, Lovley DR, et al. 1997. Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum

Fig. S2. Concentration (mean ± SD) of chromatographically detected As species in colon

digests of eight As-contaminated soils (n = 3). Note the different scales for the As

concentrations (y-axis). Abbreviations: PA, PBET-SHIME (Adult); PC, PBET-SHIME

(Child); UA, UBM-SHIME (Adult); UC, UBM-SHIME (Child).

Page 8: ars.els-cdn.com · Web viewNewman DK, Kennedy EK, Coates JD, Ahmann D, Ellis DJ, Lovley DR, et al. 1997. Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum

Fig. S3. The gut microbiota composition profiles at the phylum level in the adult and child.

References

Page 9: ars.els-cdn.com · Web viewNewman DK, Kennedy EK, Coates JD, Ahmann D, Ellis DJ, Lovley DR, et al. 1997. Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum

Bentley R, Chasteen TG. 2002. Microbial methylation of metalloids: arsenic, antimony, and

bismuth. Microbiol Mol Biol Rev 66:250-271.

Cai XL, Zhang ZN, Yin NY, Du HL, Li ZJ, Cui YS. 2016. Comparison of arsenate reduction

and release by three As(V)-reducing bacterium isolated from arsenic contaminated soil

of Inner Mongolia, China. Chemosphere 161: 200-207.

Chen J, Qin J, Zhu YG, De Lorenzo V, Rosen BP. 2013. Engineering the soil bacterium

Pseudomonas putida for arsenic methylation. Appl Environ Microbiol 79:4493-4495.

Fisher E, Dawson AM, Polshyna G, Lisak J, Crable B, Perera E, et al. 2008. Transformation

of inorganic and organic arsenic by Alkaliphilus oremlandii sp nov strain OhILAs.

Ann NY Acad Sci 1125:230-241.

Kocar BD, Borch T, Fendorf S. 2010. Arsenic repartitioning during biogenic sulfidization and

transformation of ferrihydrite. Geochim Cosmochim Ac 74:980-994.

Lee JH, Karamychev VN, Kozyavkin SA, Mills D, Pavlov AR, Pavlova NV, et al. 2008.

Comparative genomic analysis of the gut bacterium Bifidobacterium longum reveals

loci susceptible to deletion during pure culture growth. BMC Genomics 9:1-16.

Lee JH, Kim MG, Yoo BY, Myung NV, Maeng JS, Lee T, et al. 2007. Biogenic formation of

photoactive arsenic-sulfide nanotubes by Shewanella sp strain HN-41. Proc Natl Acad

Sci USA 104:20410-20415.

Newman DK, Kennedy EK, Coates JD, Ahmann D, Ellis DJ, Lovley DR, et al. 1997.

Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp.

nov. Arch Microbiol 168:380-388.

Saltikov CW, Olson BH. 2002. Homology of Escherichia coli R773 arsA, arsB, and arsC

Page 10: ars.els-cdn.com · Web viewNewman DK, Kennedy EK, Coates JD, Ahmann D, Ellis DJ, Lovley DR, et al. 1997. Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum

genes in arsenic-resistant bacteria isolated from raw sewage and arsenic-enriched

creek waters. Appl Environ Microbiol 68:280-288.

Shariatpanahi M, Anderson AC, Abdelghani AA, Englande AJ, Hughes J, Wilkinson RF.

1981. Biotransformation of the pesticide, sodium arsenate. J Environ Sci Health

16:35-47.

Stolz JE, Basu P, Santini JM, Oremland RS. 2006. Arsenic and selenium in microbial

metabolism. Annu Rev Microbiol 60:107-130.

Wang PP, Sun GX, Zhu YG. 2014. Identification and characterization of arsenite

methyltransferase from an Archaeon, Methanosarcina acetivorans C2A. Environ Sci

Technol 48:12706-12713.

Yu HY, Wu B, Zhang XX, Liu S, Yu J, Cheng SP, et al. 2016. Arsenic metabolism and

toxicity influenced by ferric iron in simulated gastrointestinal tract and the roles of gut

microbiota. Environ Sci Technol 50:7189-7197.

Zobrist J, Dowdle PR, Davis JA, Oremland RS. 2000. Mobilization of arsenite by

dissimilatory reduction of adsorbed arsenate. Environ Sci Technol 34:4747-4753.

Maeda SA, Ohki K, Miyahara K, Naka K, Higashi S. 1992. Metabolism of methylated arsenic

compounds by arsenic-resistant bacteria (Klebsiella oxytoca and Xanthomonas sp.).

Appl Organomet Chem 6:415-420.