ars.els-cdn.com  · Web viewFTIR spectra of the synthesized pristine and modified NPs in Nujol...

13
Electronic Supplementary Material Synthesis of Organic Motif Tailored Hybrid Nanoframes: Exploiting in vitro Bioactivity and Heavy Metal Ion Extraction Applications Kundan C. Tayade , Sopan T. Ingle , Anil S. Kuwar‡, Sanjay B. Attarde * School of Environmental and Earth Sciences, North Maharashtra University, Jalgaon (MS) India. ‡ School of Chemical Sciences, North Maharashtra University, Jalgaon (MS) India. *E-mail- : [email protected] ______________________________________________________________________ _______________ 4000.0 3600 3200 2800 2400 2000 1800 1600 1400 1200 1000 800 600 450.0 1.4 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 39.1 cm -1 %T 3301.15 2924.20 2854.23 1635.15 1598.16 1518.77 1463.43 1416.89 1363.19 1296.59 1247.54 1174.02 1133.66 1052.69 1005.61 955.79 906.69 823.72 787.14 694.63 592.81 565.64 501.96 1681.38 1666.31 3196.54 3140.38 Fig. S1. FTIR spectrum of the synthesized abiotic motif L.

Transcript of ars.els-cdn.com  · Web viewFTIR spectra of the synthesized pristine and modified NPs in Nujol...

Electronic Supplementary Material

Synthesis of Organic Motif Tailored Hybrid Nanoframes: Exploiting in vitro Bioactivity

and Heavy Metal Ion Extraction Applications

Kundan C. Tayade†, Sopan T. Ingle†, Anil S. Kuwar‡, Sanjay B. Attarde†*

†School of Environmental and Earth Sciences, North Maharashtra University, Jalgaon (MS) India.

‡ School of Chemical Sciences, North Maharashtra University, Jalgaon (MS) India.*E-mail- : [email protected]

_____________________________________________________________________________________

4000.0 3600 3200 2800 2400 2000 1800 1600 1400 1200 1000 800 600 450.01.4

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

39.1

cm-1

%T

3301.15

2924.20

2854.23

1635.15

1598.16

1518.77

1463.43

1416.891363.19

1296.59

1247.54

1174.02

1133.66

1052.69

1005.61

955.79

906.69

823.72

787.14

694.63

592.81

565.64

501.96

1681.38

1666.31

3196.54

3140.38

Fig. S1. FTIR spectrum of the synthesized abiotic motif L.

4000.0 3600 3200 2800 2400 2000 1800 1600 1400 1200 1000 800 600 450.05.7

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30.0

cm-1

%T

3388.92

2924.19

2854.08

1630.84

1461.11

1377.31

589.51

1031.251121.66

1156.11

1280.971741.66

630.83

4000.0 3600 3200 2800 2400 2000 1800 1600 1400 1200 1000 800 600 450.05.2

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

43.8

cm-1

%T

3410.24

2923.69

2854.11

1635.00

1462.58

1377.29

1092.16

721.53

583.94

805.20

469.37

970.97

IR spectrum of Fe3O4 NPs, recorded in nujol

IR spectrum of Fe3O4@SiO2 NPs, recorded in nujol

4000.0 3600 3200 2800 2400 2000 1800 1600 1400 1200 1000 800 600 450.05.8

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

39.9

cm-1

%T

3384.61

2854.09

1624.78

1460.37

1377.28

1100.00

793.29

721.73

569.48

473.70

2099.35

964.51

1308.95

2730.02

628.68

Fig. S2. FTIR spectra of the synthesized pristine and modified NPs in Nujol (Because of basic

peaks of nujol intensity of rest of the peaks get affected)

5007501000125015001750200025003000350040001/cm

0

10

20

30

40

50

60

70

80

90

100

%T

Sio2 MNP

Characteristic IR peaks for SiO2

IR spectrum of Fe3O4@SiO2@L NPs, recorded in nujol

IR spectrum of Fe3O4@SiO2 NPs, recorded in KBr

Peak ≈ 1550 cm-1

NH (amide II band) bending

5007501000125015001750200025003000350040001/cm

0

10

20

30

40

50

60

70

80

90

100

%T

S8MNP

Fig. S3. FTIR spectra of the synthesized Fe3O4@SiO2 NPs and Fe3O4@SiO2@L NPs in KB

Table ST1- Comparison of fundamental FTIR frequencies of Fe3O4, Fe3O4@SiO2 NPs with literature reported values and FTIR values of Fe3O4@SiO2@L

IR frequency description (cm-1)

Literature reported method

Present method

Fe3O4 Fe3O4@SiO2 Fe3O4 Fe3O4@SiO2 Fe3O4@SiO2@LH–O–H stretching modes (free or adsorbed water)

3380 (cm-1)

3428 (cm-1)

3389 (cm-1)

3310 (cm-1)

3385 (cm-1)

H–O–H bending vibration (free or adsorbed water)

1630 (cm-1)

1640 (cm-1)

1631 (cm-1)

1635 (cm-1)

1625 (cm-1)

Fe–O bending 582 (cm-1)

--589

(cm-1)-- --

Si–O–Si antisymmetricalStretch (Broad)(←Si-O→←Si)

--1080 (cm-1)

--1092 (cm-1)

1100 (cm-1)

Si–O–Sisymmetric stretch(←Si-O-Si→)

--798

(cm-1)--

805 (cm-1)

793 (cm-1)

Si–O–Fe--

574 (cm-1)

--584

(cm-1)569

(cm-1)Si–OH

--965

(cm-1)--

971 (cm-1)

965 (cm-1)

IR spectrum of Fe3O4@SiO2@L NPs, recorded in KBr

Peak ≈ 1550 cm-1

NH (amide II band) bending

200 400 600 800 1000 1200 1400 1600 1800 20000

0.10.20.30.40.50.60.70.8

Raman Shift (cm-1)

Inte

nsity

(a.u

.)-C-N-Stretch

-CH2-Stretch

-NH-C=OStretch

-C-C-Stretch

Fig. S4. Raman spectra of the synthesized key NPs

Fig. S5. EDX image of the pristine Fe3O4 NPs

Fig. S6. EDX image of the SiO2@Fe3O4 NPs

Fig. S7. EDX image of the Fe3O4@SiO2@L NPs

Fig. S8. TEM image of Fe3O4@SiO2 NPs, reveals the aggregation of pristine Fe3O4 NPs (core) in SiO2 shell.

Fig. S9. Particle size analysis of Fe3O4@SiO2@ L NPs (hybrid NPs)

0 50 100 150 200 250 300 3500.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

3.00E-02Fe3O4 NPs Fe3O4@SiO2 NPs Fe3O4@SiO2@L NPs

Diameter [Å]

Dv(

d)[

cc/Å

/g]

Fig. S10. BJH plots of the synthesized NPs

0 50 100 150 200 250 300 350 4000.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

3.00E-02

Fe3O4 NCs Fe3O4@SiO2 NCsFe3O4@SiO2@L NCs

Pore Width (Å)

dV

(w)[

cc/Å

/g]

Fig. S11. DFT plots of the synthesized NPs

3 3.5 4 4.5 5 5.50

20406080

100120140160180

f(x) = 7.45714053367441 x − 4.52128690753276R² = 0.999609800149795

f(x) = 31.2825153558648 x + 3.50815298815675R² = 0.998696941092322

f(x) = 8.30977434569621 x − 6.30998753532353R² = 0.984903879431731

Fe3O4 NPs Linear (Fe3O4 NPs)

Thickness (t), in [Å]

Volu

me

Adso

rbre

d, in

[cc/

g]

Fig. S12. T-plots of the synthesized NPs

Table ST2. DFT observed parameters of the synthesized NPs

Sr. No. Code Pore volume (cc g-1)

Lower confidence limits (nm)

Actual Fitting Error (%)

pore width (mode)(Å)

1. Pristine Fe3O4 NPs 0.7944 1.6137 2.630 3.6000×1002

2. Fe3O4@SiO2 NPs 0.5584 1.6879 0.574 3.7943×1001

3. Fe3O4@SiO2@L NPs 0.9269 1.6879 3.524 2.8746×1002

Table ST3.Table depicting summary of an assortment of parameters derived from the magnetization curve

Sample Mass, gAverage Time, sec

Time Constant, sec

Sensitivity, emu

Number of points

Magnetization (Ms), emu

Coercivity (Hci), G

Retentivity (Mr), emu

PrestineFe3O4

NPs

4.90×10-02 3 1 -6.1 151 1.5266 15.467 2.24×10-02

F

e3O4@SiO2@L

NPs

34.00×10-03 3 1 -17 151 1.1744 28.573 37.06×10-03

Fig. S13. TGA of organic motif L recorded at heating rate of 5 oC/min

Table ST4. Computed RL values for Zn(II) ion sorption

Concentration (ppm) RL

Concentration (ppm) RL

1 0.869 750.08

1

2.5 0.727 1000.06

2

5 0.571 1500.04

2

12.5 0.347 2500.02

6

25 0.210 4000.01

6

37.5 0.151 5000.01

350 0.117

Table ST4. Comparison of literature reported work with current work

Working Group

Material Used for Extraction

Material Origin and Magnetism

Langmuir Isotherm

Present Study

Fe3O4@SiO2@(L) NPs Synthetic Materials, Magnetic

Qm (mg/g) b (L/mg) RL R2

158.73 0.150 0.268 0.9993

Freundlich Isotherm Temkin Isotherm

1/n n KF

(mg/g) R2 A

(L/mg)b

(KJ/mol)B R2

0.5158 1.9390 37.3150 0.9797 1.42E-03 0.1054 105.43 0.9836Dada et

al.[1]

Rice husk modified with orthophosphoric acid

Biosorbent,Nonmagnetic

Langmuir Isotherm

Qm (mg/g) b (L/mg) RL R2

101.01 0.065 0.133 0.9900

Freundlich Isotherm Temkin Isotherm

1/n n KF

(mg/g) R2 A

(L/mg)b

(KJ/mol)B R2

0.625 1.6 7.61 0.89 1.075 97.788 2 5.34 0.6 1 5 Amini et

al.[2]

Fe3O4@SiO2

NanoparticlesSynthetic Materials, Magnetic

Langmuir IsothermQm (mg/g) b (L/mg) RL R2

119 0.1356 -- 0.997

Freundlich Isotherm Temkin Isotherm1/n n KF

(mg/g) R2 A

(L/mg)b

(KJ/mol)B R2

0.663 -- 13.09 0.975 -- -- -- --

References:

1. A.O. Dada, A.P. Olalekan, A.M. Olatunya, O. Dada, Langmuir, Freundlich, Temkin and

Dubinin–Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+ Unto Phosphoric Acid

Modified Rice Husk, IOSR Journal of Applied Chemistry, 2012, 3, 38–45.

2. Masoomeh Emadi, Esmaeil Shams, Mohammad Kazem Amini, Removal of Zinc from

Aqueous Solutions by Magnetite Silica Core-Shell Nanoparticles, Journal of Chemistry, 2013,

http://dx.doi.org/10.1155/2013/787682.