ARPES studies on topological insulators by angle resolved …€¦ · • Metallic surface states &...

71
Changyoung Kim Dept of Physics, Yonsei University ARPES studies on topological insulators by angle resolved photoemission 이화 CNRS Lecture (Feb 08, 2011) Collaborators : S. R. Park, Chul Kim, W. S. Jung, Y. Y. Koh, D. J. Song, S. Kimura, M. Arita, K. Shimada, S. Kimura, J. H. Han, H. J. Lee, H. J. Choi, K. D. Lee, N. Hur, J. Y. Kim, B. K. Cho, J. H. Kim, Y. S. Kwon, J. H. Han

Transcript of ARPES studies on topological insulators by angle resolved …€¦ · • Metallic surface states &...

  • Changyoung Kim

    Dept of Physics,

    Yonsei University

    ARPES studies on topological insulators by

    angle resolved photoemission

    이화 CNRS Lecture (Feb 08, 2011)

    Collaborators : S. R. Park, Chul Kim, W. S. Jung, Y. Y. Koh, D. J.

    Song, S. Kimura, M. Arita, K. Shimada, S. Kimura, J. H. Han, H. J.

    Lee, H. J. Choi, K. D. Lee, N. Hur, J. Y. Kim, B. K. Cho, J. H. Kim,

    Y. S. Kwon, J. H. Han

  • OUTLINE

    • Introduction to topology

    • Topological insulators

    • Metallic surface states & chiral spins

    • Verification of existence of TIs

    • Quasi-particle dynamics

    • Chiral orbital angular momentum states

    • Summary

  • Topology

  • What is ‘topology’?

    • Topologically same (same class)

    =

    • Topologically different (different class)

    =

    http://en.wikipedia.org/wiki/File:Mug_and_Torus_morph.gifhttp://en.wikipedia.org/wiki/File:Torus.pnghttp://en.wikipedia.org/wiki/File:Torus.png

  • Topologically different

    • Moebius strip • Simple strip

    • ‘Topology’ can be used to sort things out.

    That is, it is a way of classifying objects, states or materials.

  • Defining topology

    • How do we mathematically define ‘topology’ of the strip?

    +

    -

    +

    -

    + + & - - → +1 topology

    + - & - + → -1 topology

    3210; Topological

    Quantum Numbers

    00

    10

    Topologically trivial

    Topologically non-trivial

    • The ‘strip’ can be defined in any space, including momentum

    space

    • In general, topology is defined by topological quantum number

  • Topology

  • Topological number (examples)

    +

    -• Sign change after 1 turn : -1, non-trivial

    • No sign change after 1 turn : +1, trivial

    • Moebius strip

    • Spins

    • +1, Integer spin, Bosons

    • -1, Half-integer spin, Fermion

    Topological number

    http://en.wikipedia.org/wiki/File:Moebius_Surface_1_Display_Small.png

  • Other concepts

  • Terminology – time reversal symmetry

    • Time reversal ( t → -t )

    • Time reversal symmetry

    E(k,↑) = E(-k, ↓)

    , Position of a particle in three-space

    , Acceleration of the particle

    , Force on the particle

    , Energy of spinless particle

    , Electric potential (voltage)

    , Electric field

    , Density of electric charge

    , Electric polarization

    , The time when an event occurs

    , Velocity of a particle

    , Linear momentum of a particle

    , Angular momentum of a particle

    , Electromagnetic vector potential

    , Magnetic induction

    , Density of electric current

    , Magnetization

    Even symmetry (no change after reversal) Odd symmetry (- sign after reversal)

  • Terminology – inversion symmetry

    • Inversion ( r → -r )

    • Inversion symmetry

    inversion

    Even symmetry (no change after inversion) Odd symmetry (- sign after inversion)

    , Position of a particle in three-space

    , Acceleration of the particle

    , Force on the particle

    , Electric polarization

    , Velocity of a particle

    , Linear momentum of a particle

    Q, Electric charge

    , Angular momentum of a particle

    , The time when an event occurs

    m, Particle mass

  • E(k,↑) = E(-k, ↑)

    Inversion symmetry & crystal structure

    • Inversion symmetry • No inversion symmetry

    • In a crystal with inversion symmetry

  • Things happen on the surface

    • Surface reconstruction • STM image

    Si 7X7 surface

  • Surface states

    • Potential • States

    Bulk states

    Surface states

    http://upload.wikimedia.org/wikipedia/en/d/d3/FigPotential.PNGhttp://upload.wikimedia.org/wikipedia/en/b/b0/Solution1.PNGhttp://en.wikipedia.org/wiki/File:Solution2.PNG

  • Spin-orbit interaction

    Due to orbital motion, this electron feels magnetic field,

    which couples to the spin of the electron

  • Spin-orbit interaction

    • Perturbation Hamiltonian

    • For the same atomic level, H’ ~ Z4

    • In general, SOI increases with atomic number Z

  • Various Hall effects

  • Hall effect

    • Metallic system, magnetic field

  • Anomalous Hall effect

    • Metallic system with magnetization

  • Quantum Hall effect

    • Landau levels• Hall effect with

    coherent orbital motion

  • Quantum Hall effect

  • Edge states in QHE

    • No current in the bulk (when EF is between Landau levels)

    • Current flow along the edge

    • No back scattering (dissipationless current)

    • Edge states ‘protected’

    B

  • Spin Hall effect

    • Metallic system, no magnetic field,

    spin accumulation

  • Spin Hall effect

    Energy

    x

    B = 0

    Optical Kerr rotation used

    Edge spin current

    e

  • Quantum spin Hall effect

    • Insulating system, current only at the edges, B = 0

    B = 0

    Edge currents

    e

  • Quantum spin Hall effect (observation)

    • Quantum spin Hall effect in HgTe quantum wellsPrediction : Bernevig, Hughes and Zhang, Science ’06

    Observation : Konig et al., Science ’07 HgTe

  • Comparison of various Hall effects

    B≠0

    Charge

    B=0

    Spin

    Hall Quantum Hall

    Spin Hall Quantum spin Hall

    Conductor

    Magnetic field

    ElectronHole

    Conductor

    Magnetic field

    ElectronHole

    Bulk conductance &

    Charge accumulation

    at the edges

    Edge currents &

    No back scattering

    Protected edge states

    Conductor

    Bulk conduction &

    Spin accumulation

    at the edges

    SOI at the edges

    ElectronElectron

    Charge current

    Spin current

    Insulator

    Edge currents &

    Spin polarized

    at the edges

    SOI at the edges

    ElectronElectron

    Charge current

    Spin current

    Bulk insulatingBulk conducting

  • Topological insulators

    - 3D extension of QSHE

  • Metallic edge states in QSH???

    • QHE : Originally metallic states. Bulk becomes insulating

    due to coherent orbital motion.

    • QSHE : Originally insulator. Edges somehow need to

    become metallic → topology comes in here!

    metallic=

  • Typical band

    Bonding

    (Symmetric or ‘+’)

    Inverted band

    Bonding (S or ‘+’)

    ABonding (AS or ‘-’)

    SOI

    Band inversion by SOI

    • Spin–orbit interaction (SOI) may invert the band structure

    Anti-Bonding

    (Anti-Symmetric or ‘-’)

    Note : Parity can be defined for certain momentum points

  • Moebius strip in the phase space

    • n=0 state (topologically trivial)

    • n=1 state (topologically non-trivial)

    k

    E

    G X

    k

    E

    G X

    Conventional strip Conventioanl insulator

    Moebius strip Different class of insulator

    Topologically trivial insulator

    Topologically non-trivial insulator

  • • Spin degeneracy is lifted due to SOI (each band has only one spin)

    • Odd number of bands cross EF• Edge states protected against perturbation

    Properties of edge states

    G

    ‘Protected’ states

  • Chiral spin states

  • Spin-orbit interaction

    Due to orbital motion, this electron

    feels magnetic field, which couples

    to the spin of the electron

    +

    B

    E

    • Perturbation Hamiltonian

  • Symmetry breaking at the surface

  • Rashba effects

    Solid VacuumSurf

    ace

  • Rashba effects

    Spin degeneracy lifted

  • F. Reinert et al. PRB (2001) J. Henk et al. PRB (2003)

    Rashba splitting

    Au(111) surface

    states

  • Time reversal pair

    : TI

    : Trivial

    Fermi surface

    G

    Energ

    y

    momentum

    EF

    Time reversal

    pair

  • Experimental Verification

    of TIs

  • BE

    Kin

    etic

    En

    ergy

    Initial State

    Momentum

    En

    erg

    y

    Ef

    h

    Final State

    “V

    ert

    ica

    l tr

    an

    sit

    ion

    Momentum Resolved PES – Mapping Bands

    • Measure both energy

    and momentum of

    electron

    • Direct Mapping of

    “Band” (ARPES)

  • Graphite Band StructureB

    ind

    ing

    en

    erg

    y (

    eV

    )

    G(A) M(L) K(H) G(A)

    0

    1

    2

    3

    4

    5

    6

    7k

    y (Å

    -1)

    0 1 2 3

    0

    1

    2

    3

    4

    G

    M KG

    ky (Å-1)

  • Year Author Done

    2006 Kane & Mele Proposes concepts of QSHE in 2D and relevant Z2 invariants

    2006 Zhang Proposes CdTe-HgTe heterostructure for QSHE

    2007 Wurzburg group Finds QSHE in CdTe-HgTe heterostructure

    2007 Fu-Kane Proposes 3D version of Z2 invariants and name 3D candidate

    materials (Bi1-xSbx)

    2007 Behnia Quantum oscillation study of pure Bi

    2008 Hasan First ARPES study of Bi1-xSbx

    2009 Fang & Zhang Proposes new TBI materials (Bi2Se3, Bi2Te3, Sb2Te3) with one

    Dirac surface

    2009 Hasan ARPES study of Bi2Se3

    2009 Chen ARPES study of Bi2Te3

    2009 Yazdani Observes QPI in Bi1-xSbx (x=0.08)

    2009 Manoharan QPI of pure Sb

    2009 Ando Quantum oscillation of Bi1-xSbx

    Chronology of QSHE => TI

  • Crystal structure of Sb and Bi

  • First prediction (Bi1-xSbx)

  • Nature 452, 970 (2008)

  • Zhang Fang, NatPhys 5, 438 (2009)

  • Nature Physic 5, 398 (2009)

    Bi2-xCaxSe3

  • Bi2-xSnxTe3 (x=0.0) Bi2-xSnxTe3 (x=0.0067)Bi2-xSnxTe3 (x=0.0027)

    Y. L. Chen et al., Science (2009)

  • Chiral spins

    • ARPES

    • Reconstruction of spin states

  • Joint DOS

    Suppression of back scattering

    • ARPES on Bi0.92Sb0.08

    * SSP : Spin-dependent Scattering Probability

    ExpJDOS SSP

    From ARPES

    P. Roushan et al., Nature (2009)

  • Quasi-particle dynamics

    (intrinsic life time)

  • • Cared only about the topological nature,

    that is, the # of Ef crossings.

    • We would like to see the quasi-particle

    dynamics, i.e., will do line shape analysis

  • 22 ),(Im)),(Re(

    ),(Im1),(

    e

    kk

    kkA

    k

    Spectral function

    Energy

    AR

    PE

    S inte

    nsity

    FWHM:

    2Im ~ 1/t

    -Im

    (meV

    )

    100

    Binding Energy (meV)

    200 150 100 50 0

    50

    0

    Sm

    1.8

    5 Ce

    0.1

    5 Cu

    O4

    S. R. Park et al., PRL (2009)

    G

    ,

    400 300 200 100 0

    ARPES for lifetime measurement

  • Photohole (> 0)

    Phonon

    (0)

    Resulting spectrum

    2”

    Photohole (< 0)

    X

    ” 0

    Phonon contribution to

  • Photohole at

    ’ ”

    20

    '0 2

    1"'~"

    ddAt T=0,

    "))'"(1)("(')'(~"

    dFFdF DDDFinite T,

    222

    2

    1)(

    2

    1~ kT

    for accessible energy and T range

    ”~28060

    4020

    0x1

    0-3

    302520151050

    kT

    80

    60

    40

    20

    0x10

    -3

    302520151050

    e-e contribution to

  • Extracting many-body interactions

    Hengsberger et al. 83, 592 (1999)

    Be(0001)

    T. Valla et al. PRL83, 2085 (1999)

    D

    Width~ 1/t

    Dispersion

    Mo(110)

    D

    e-e

    e-ph

  • -0.4

    5-0.4

    0-0.3

    5-0.3

    0-0.2

    5-0.2

    0-0.1

    5-0.1

    0-0.0

    50.0

    00.0

    5

    eV

    -0.20 -0.10 0.00 0.10

    Inverse angstrong

    -0.4

    5-0.4

    0-0.3

    5-0.3

    0-0.2

    5-0.2

    0-0.1

    5-0.1

    0-0.0

    50.0

    00.0

    5

    eV

    -0.20 -0.10 0.00 0.10

    Inverse angstrong

    -0.4

    5-0.4

    0-0.3

    5-0.3

    0-0.2

    5-0.2

    0-0.1

    5-0.1

    0-0.0

    50.0

    00.0

    5

    eV

    -0.20 -0.10 0.00 0.10

    Inverse angstrong

    0.0

    0.1

    0.2

    0.0-0.1 0.1 0.0-0.1 0.0-0.1 0.1

    Bin

    din

    g E

    ner

    gy

    (eV

    )

    Momentum (Å-1)

    12K 90K 210K

    0.1

    0.3

    0.4

    ImΣ

    (meV

    )

    Binding Energy(eV)

    0

    20

    40

    80

    60

    0.000.150.25 0.10 0.050.20

    12K90K210K

    0.080.060.040.02

    -0.25

    -0.20

    -0.15

    -0.10

    -0.05

    0.0012K

    Bin

    din

    g E

    ner

    gy

    (eV

    )

    Momentum (Å-1)

    Dispersion

    WidthT-dependence on Bi2Se3

  • -0.1

    5-0.1

    0-0.0

    50.0

    00.0

    5

    eV

    -0.10 0.00 0.10

    Inverse angstrong

    -0.1

    5-0.1

    0-0.0

    50.0

    00.0

    5

    eV

    0.100.00-0.10

    Inverse angstrong

    -0.1

    5-0.1

    0-0.0

    50.0

    00.0

    5

    eV

    -0.10 0.00 0.10

    Inverse angstrong

    0.0

    0.1

    0.2

    0.30.0-0.1 0.1 0.0-0.1 0.0-0.1 0.1

    Momentum (Å-1)

    24K 150K 287K

    0.1

    • Energy and T independent !

    24K

    -0.02-0.03-0.04

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    Bin

    din

    g E

    ner

    gy (

    eV)

    Momentum (Å-1)

    0.0 .02 .04 .06-.08 -.06 -.04 -.02

    Binding Energy(eV)

    ImΣ

    (meV

    )

    0

    10

    20

    30

    40

    50

    24K

    150K

    287K

    Dispersion

    WidthT-dependence on Bi2Te3

  • -0.3

    0-0.2

    5-0.2

    0-0.1

    5-0.1

    0-0.0

    50.0

    00.0

    50.1

    0

    eV

    -0.10 0.00 0.10

    Inverse angstrong

    5.8

    05.7

    55.7

    05.6

    55.6

    05.5

    55.5

    05.4

    55.4

    0

    eV

    -0.10 0.00 0.10

    Inverse angstrong

    5.8

    05.7

    55.7

    05.6

    55.6

    05.5

    55.5

    05.4

    55.4

    0

    eV

    -0.10 0.00 0.10

    Inverse angstrong

    0.0

    0.1

    0.2

    0.30.0-0.1 0.1 0.0-0.1 0.1 0.0-0.1 0.1

    Momentum (Å-1)

    11K 80K 310K ImΣ

    (meV

    )

    0.000

    20

    40

    80

    Binding Energy(eV)0.10 0.050.15

    60

    11k80k310k

    -0.15

    -0.10

    -0.05

    0.00 11K

    -0.03-0.04-0.05

    Bin

    din

    g E

    ner

    gy

    (eV

    )

    Momentum (Å-1)-0.02

    T-dependence on Sb

  • Sb data taken with laser ARPES

    EDC fit dispersion

    EDC fit peak HWHMat differnt K location

    Green line:DE~6meV

    Green line: DE~10meV

    Sb(111)

    0.25 0.20 0.15 0.10 0.05

    Binding energy (eV)

    0.0

    60

    50

    40

    30

    20

    10

    0

    Im

    (meV

    )

    Bi2Se3(Our first)

    Sb (Y. Chen, Z. X. Shen)

    7eV P. E.

    Sb

    Bi2Te3

    Laser ARPES data from Sb(111)

  • Point I:

    • Extremely small, if any, e-e interaction in the SS

    independent width

    • Extremely small, if any, e-ph coupling in the SS

    -no kinks & T-independent peak width at =0

    • Probably due to the small FS size (little phase space)

    Point II:

    • e-e interaction exists in the bulk states

    • Defects couple the surface and bulk states

    • For a clean system, SSs are decoupled from the bulk.

    Observations/Summary

  • Chiral orbital angular

    momentum states

  • Nature Physics 5, 398 (2009)

    Bi2-xCaxSe3

  • Left circularRight circular

    kx

    ky

    kx

    ky

    Bin

    din

    g E

    ner

    gy (

    eV)

    Bin

    din

    g E

    ner

    gy (

    eV)

    Polarization dependence

  • 0.0

    -5.0

    5.0

    *phase125

    kx

    ky

    kx

    ky

    Binding Energy (eV)

    0.90.60.0 0.3

    0.0

    -5.0

    5.0

    An

    gle

    (m

    om

    entu

    m)

    An

    gle

    (m

    om

    entu

    m)

    Polarization dependence

  • Photoemission : i f

    Right CP : mRCP = 1, therefore mf = mi + 1

    Left CP : mLCP = – 1, therefore mf = mi – 1

    Initial state : composed of p states (l = 1)

    Final state ~ eikr

    mi

    1

    0

    -1

    mf

    RHP

    LHP

    Dichroism results from orbital angular

    momentum of the initial state

    Dichroism

    Dichroism in ARPES

    Initial state

    Final state

    Dipole selection rules

  • Dim

    LCP

    Bright

    RCP

    Dim

    Bright

    Orbital

    Spin

    • Due to symmetry, out of surface orbital angular momentum is constant

    • In-plane component contributes to the contrast

    Chiral orbital angular momentum

  • At 0degree

    < Lx > < Ly > < Lz >

    Se1 0.0000 0.0210 0.0355

    Bi1 0.0000 0.1479 0.0078

    Se2 0.0000 -0.0354 0.0056

    Bi1’ 0.0000 0.0906 0.0099

    Se1’ 0.0000 -0.0319 0.0183

    Calculated orbital angular momentum

    GK M

    G

    KM

    Surface

  • • Strong coupling between spin and local orbital angular

    momentum

    • Not only spins but also orbital angular momentum has

    chiral structure

    • Possibility of scattering from orbital angular momentum

    scattering

    Summary