arenes

52
Arenes: compounds containing both aliphatic and aromatic parts. Alkylbenzenes Alkenylbenzenes Alkynylbenzenes Etc. Emphasis on the effect that one part has on the chemistry of the other half. Reactivity & orientation

Transcript of arenes

Page 1: arenes

Arenes:

compounds containing both aliphatic and aromatic parts.

Alkylbenzenes

Alkenylbenzenes

Alkynylbenzenes

Etc.

Emphasis on the effect that one part has on the chemistry of the other half.

Reactivity & orientation

Page 2: arenes

Example: ethylbenzene

EAS in the aromatic part

-CH2CH3 activates and directs ortho- & para-

CH2

CH3

CH2

CH3CH2

CH3

CH2 CH3 CH CH3

Br2, Fe Br

Br

Br2, heat

Br

+ HBr

+

Free radical halogenation in the side chain

-C6H5 activates and directs benzyl

Page 3: arenes

Alkylbenzenes, nomenclature:

Special names

CH3 CH3

CH3

CH3

CH3

CH3

CH3

toluene o-xylene m-xylene p-xylene

Page 4: arenes

others named as “alkylbenzenes”:

CHH3C CH3 CH2

H2C

CH3

H2C

CHCH3

CH3

isopropylbenzene n-propylbenzene isobutylbenzene

CH2

CH2

CH3

CH3

o-diethylbenzene n-butylbenzene

Page 5: arenes

Use of phenyl C6H5- = “phenyl”

CH2CH2

2-methyl-3-phenylheptane 1,2-diphenylethane

do not confuse phenyl (C6H5-) with benzyl (C6H5CH2-)

Page 6: arenes

Alkenylbenzenes, nomenclature:

CH=CH2

styrene

CH2CH=CH2

3-phenylpropene(allylbenzene)

(Z)-1-phenyl-1-butene

Special name

Rest are named as substituted alkenes

Page 7: arenes

Alkynylbenzenes, nomenclature:

C CH

phenylacetylene5-phenyl-2-hexyne

phenylethyne

Page 8: arenes

Alcohols, etc., nomenclature:

CHH3C OH

1-phenylethanol

phenylethyl alcohol

CH2OH

benzyl alcohol

1-chloro-2-phenylethane

-phenylethyl chloride

CH2CH2-Cl

cyclohexylbenzene

phenylcyclohexane

Page 9: arenes

Alkylbenzenes, syntheses:

1. Friedel-Crafts alkylation

2. Modification of a side chain:

a) addition of hydrogen to an alkene

b) reduction of an alkylhalide

i) hydrolysis of Grignard reagent

ii) active metal and acid

c) Corey-House synthesis

Page 10: arenes

Modification of side chain:

Br

+ H2, Ni

+ Sn, HCl

Br

+ Mg; then H2o

ethylbenzene

Page 11: arenes

Friedel-Crafts:

Ar-H + R-X, AlCl3 Ar-R + HX

Ar-H + R-OH, H+ Ar-R + H2O

Ar-H + alkene, H+ Ar-R

Page 12: arenes

CH3CH3

C

CH3

H3C CH3

+ H3C C

CH3

Br

CH3

AlCl3

+ CH3CH2-OH, H+ CH2CH3

+ CH2=CHCH3, H+CH

CH3

CH3

isopropylbenzene

ethylbenzene

p-tert-butyltoluene

Page 13: arenes

H+

cyclohexylbenzene

H3CCH2Cl

AlCl3CH2 CH3

ortho-p-benzyltoluene

CH2Cl2, AlCl32 CH2

diphenylmethane

Page 14: arenes

Friedel-Crafts limitations:

a) Polyalkylation

b) Possible rearrangement

c) R-X cannot be Ar-X

d) NR when the benzene ring is less reactive than bromobenzene

e) NR with -NH2, -NHR, -NR2 groups

Page 15: arenes

polyalkylation

CH3CH3Br, AlCl3

+CH3 CH3

CH3

CH3

+

CH3

CH3

H3C

+

The alkyl group activates the ring making the products more reactive that the reactants leading to polyalkylation. Use of excess aromatic compound minimizes polyalkylation in the lab.

Page 16: arenes

The electrophile in Friedel Crafts alkylation is a carbocation:

R-X + AlX3 R+

R-OH + H+ R+

| |— C = C — + H+ R+

Carbocations can rearrange!

Page 17: arenes

rearrangement

+ CH3CH2CH2-Br, AlCl3

CHCH3H3C

AlCl3+

C CH3H3C

CH3

+

H+

isopropylbenzene

tert-butylbenzene

2-methyl-2-phenylbutane

carbocation rearrangements are possible!

CH3CCH2CH3

CH3

CH3CHCH2-Br

CH3

CH3CCH2-OH

CH3

CH3

Page 18: arenes

n-alkylbenzenes cannot be made by Friedel-Crafts alkylation due to

carbocation rearrangements

Page 19: arenes

R-X cannot be Ar-X

+ R-X, AlCl3

R

+

XAlCl3

NR

The Ar-X bond is strong and does not break like the R-X bond!

Page 20: arenes

NR with rings less reactive than bromobenzene

Br

+ CH3CH2-Br, AlCl3

Br Br

CH2CH3

CH2CH3+

COOH

NO2

+ CH3-Br, AlCl3

+ CH3CH2-OH, H+

NR

NR

-CHO, -COR

-SO3H

-COOH, -COOR

-CN

-NR3+

-NO2

Page 21: arenes

NR with –NH2, -NHR, -NR2

NH2

+ CH3CH2-Cl, AlCl3 NR

NH2

+ AlCl3

NH2 AlCl3

Lewis base Lewis acid deactivated to EAS

Page 22: arenes

Friedel-Crafts limitations:

a) Polyalkylation

b) Possible rearrangement

c) R-X cannot be Ar-X

d) NR when the benzene ring is less reactive than bromobenzene

e) NR with -NH2, -NHR, -NR2 groups

In syntheses it is often best to do Friedel-Crafts alkylation in the first step!

Page 23: arenes

Alkylbenzenes, reactions:

1. Reduction

2. Oxidation

3. EAS

a) nitration

b) sulfonation

c) halogenation

d) Friedel-Crafts alkylation

4. Side chain

free radical halogenation

Page 24: arenes

Alkylbenezenes, reduction:

NR NR NR

NR

H2, Ni

H2, Ni

300oC, 100 atm.

CH3CH3

H2C

CH3

H2C

CH3

Page 25: arenes

Alkylbenezenes, oxidation:

NR NR NR

NR NR

KMnO4

KMnO4

heat

CH3CH3

H2C

CH3

COOH

Page 26: arenes

+ KMnO4, heat

+ KMnO4, heat

COOH

COOH

COOH

+ 2 CO2

Page 27: arenes

Oxidation of alkylbenzenes.

1) Syn

2) identification

C8H10:

H2C

CH3

CH3

CH3

CH3

CH3

CH3

CH3 COOH

COOH

COOH

COOH

COOH

COOH

COOH

bp 136oC

bp 144oC

bp 139oC

bp 138oC

mp 122oC

mp 231oC

mp 348oC

mp 300oC

Page 28: arenes

Alkylbenzenes, EAS

CH2CH3CH2CH3

CH2CH3

CH2CH3CH2CH3

CH2CH3CH2CH3

CH2CH3CH2CH3

NO2

NO2

SO3H

SO3H

Br

Br

CH3

CH3

+

+

+

+HNO3, H2SO4

H2SO4, SO3

Br2, Fe

CH3Cl, AlCl3

-R is electron releasing. Activates to EAS and directs ortho/para

Page 29: arenes

Alkylbenzenes, free radical halogenation in side chain:

benzyl free radical

CH2CH3

CH2CH3

+ Cl2, heat

+ Br2, heat

CHCH3 CH2CH2-Cl

CHCH3

Cl

+

Br

91% 9%

only

Page 30: arenes

CH2CH3

benzyl free radical > 3o > 2o > 1o > CH3

CHCH3

CHCH3CHCH3 CHCH3.

.

.

.

X2 2 X.

+ X .

Page 31: arenes

Alkenylbenzenes, syntheses:

1. Modification of side chain:

a) dehydrohalogenation of alkyl halide

b) dehydration of alcohol

c) dehalogenation of vicinal dihalide

d) reduction of alkyne

(2. Friedel-Crafts alkylation)

Page 32: arenes

Alkenylbenzenes, synthesis modification of side chain

CHCH3

CHCH3

CHCH2

C

CH=CH2

CH

Br

OH

Cl Cl

styrene

KOH(alc)

H+, heat

Zn

H2, Pd-C

Page 33: arenes

Alkenylbenzenes, synthesis Friedel-Crafts alkylation

not normally used for alkenylbenzenes.

an exception:

+ CH2=CHCH2-Br, AlCl3 CH2CH=CH2

allylbenzene

+ CH2=CH-Br, AlCl3 NR

Page 34: arenes

Br

KOH(alc)

conjugated with the ring

+ KOH, heat

Page 35: arenes

Alkenylbenzenes, reactions:

1. Reduction

2. Oxidation

3. EAS

4. Side chain

a) add’n of H2 j) oxymercuration

b) add’n of X2 k) hydroboration

c) add’n of HX l) addition of free rad.

d) add’n of H2SO4 m) add’n of carbenes

e) add’n of H2O n) epoxidation

f) add’n of X2 & H2O o) hydroxylation

g) dimerization p) allylic halogenation

h) alkylation q) ozonolysis

i) dimerization r) vigorous oxidation

Page 36: arenes

Alkenylbenzenes, reactions: reduction

CH=CH2

CH=CH2

+ H2, Ni

+ H2, Ni, 250oC, 1,500 psi

CH2CH3

H

CH2CH3

Page 37: arenes

Alkenylbenzenes, reactions oxidation

CH=CH2

CH=CH2

CH=CH2

CHCH2

COOH

CH=O

OHOH

+ CO2

+ O=CH2

KMnO4

heat

1. O3

2. Zn, H2O

KMnO4

Page 38: arenes

Alkenylbenzenes, reactions EAS?

CH=CH2

electrophilic aromatic substitution

electrophilic addition

alkenes are more reactive with electrophiles than aromatic rings!

CH=CH2 + Br2, Fe CHCH2

Br Br

Page 39: arenes

In syntheses of alkenylbenzenes, the carbon-carbon double bond must be synthesized after any EAS reactions

CH2CH3 CH2CH3

CH=CH2

Cl

CHCH3

CH2=CH2

HF

Cl2, Fe+ ortho

CH2CH2-Cl

Cl

Cl ClCl

Cl2, hv

KOH(alc)

p-chlorostyrene

Page 40: arenes

Alkenylbenzenes, reactions side chain:

CH=CHCH3 CH2CH2CH3

CHCHCH3

CHCH2CH3

CHCH2CH3

Br

Br

Br

OSO3H

H2, Ni

Br2, CCl4

HBr

H2SO4

Page 41: arenes

Benzyl carbocation

CH=CHCH3 + H+ CHCH2CH3

CHCH2CH3CHCH2CH3 CHCH2CH3

resonance stabilization of benzyl carbocation > 3o > 2o > 1o

Page 42: arenes

CH=CHCH3 CHCH2CH3

CHCHCH3

CHCH2CH3

CH2CHCH3

OH

OH

Br

OH

OH

H2O, H+

Br2, H2O

1. H2O, Hg(OAc)2

2. NaBH4

1. (BH3)2

2. H2O2, NaOH

Page 43: arenes

CH=CHCH3 CH2CHCH3

CH=CH2

CH=CHCH3

CH=CHCH3

CHCH2 n

polystyrene

Br

O

HBr, perox.

polymer.

CH2N2, hv

PBA

Page 44: arenes

CH=CHCH3 + Br2, heat CH=CHCH2-Br

C CCH3

H

H

(E)-1-phenylpropene

CH3

H OH

HO H

CH3

HO H

H OH+

KMnO4

100 syn-oxidation; make a model!

Page 45: arenes

Alkynylbenzenes, syntheses:

Dehydrohalogenation of vicinal dihalides

CH=CH2 CHCH2

Br

Br

C CHBr2 1. KOH

2. NaNH2

HC CH3

Br

KOH(alc)

H2C CH3

CH2=CH2

HF

Page 46: arenes

Alkynylbenzenes, reactions:

1. Reduction

2. Oxidation

3. EAS

4. Side chain

a) reduction e) as acids

b) add’n of X2 f) with Ag+

c) add’n of HX g) oxidation

d) add’n of H2O, H+

Page 47: arenes

Alkynylbenzenes, reactions: reduction

C C CH3 + 2 H2, Ni CH2CH2CH3

+ (xs) H2, Ni heat & pressure

C C CH3 + Li, NH3

+ H2, Pd-C

anti-

syn-

Page 48: arenes

Alkynylbenzenes, reactions: oxidation

C C CH3

KMnO4, heat

O3; then Zn, H2O

COOH + HOOCCH3

KMnO4

Page 49: arenes

Alkynylbenzenes, reactions EAS?

C

electrophilic aromatic substitution

electrophilic addition

alkynes are more reactive with electrophiles than aromatic rings!

C + Br2, Fe C=CH

CH

CH

Br

Br

Page 50: arenes

Alkynylbenzenes, reactions: side chain:

C C H C=CH

C

CCH3

Br

Br

Br

Br

Br

Br

C

Br

Br

H

C=CH2

Br

Br2

2 Br2

HBr

2 HBr

Page 51: arenes

C CHH2O, H+

CCH3

O

C CH

C CH

Na

Ag+

C

C

C-Na+

C-Ag+

C CCH3

Ag+

NR, not terminal

Page 52: arenes

Arenes:

alkylbenzenes

alkenylbenzenes

alkynylbenzenes

As expected, but remember that you cannot do EAS on alkenyl- or alkynylbenzenes.